
A MACHINE LEARNING DATASET FOR LARGE-SCOPE HIGH RESOLUTION 
REMOTE SENSING IMAGE INTERPRETATION CONSIDERING LANDSCAPE 

SPATIAL HETEROGENEITY 

Yue Xu1, Xiangyun Hu1, *, Yujun Wei1, Ying Yang2, Donghua Wang2 

1. Wuhan University, Wuhan, China (email address: yuexu41@whu.edu.cn, huxy@whu.edu.cn, 2013302590157@whu.edu.cn)
2.National Geomatics of China, Beijing, China (email address: yangying@ngcc.cn, donghua@ngcc.cn )

KEY WORDS: Deep Learning, Sample Dataset, Sample distribution, Land cover and Land use, Landscape spatial Heterogeneity 

ABSTRACT: 

The demand for timely information about earth’s surface such as land cover and land use (LC/LU), is consistently increasing. Machine 
learning method shows its advantage on collecting such information from remotely sensed images while requiring sufficient training 
sample. For satellite remote sensing image, however, sample datasets covering large scope are still limited. Most existing sample 
datasets for satellite remote sensing image built based on a few frames of image located on a local area. For large scope (national level) 
view, choosing a sufficient unbiased sampling method is crucial for constructing balanced training sample dataset. Dependable spatial 
sample locations considering spatial heterogeneity of land cover are needed for choosing sample images. This paper introduces an 
ongoing work on establishing a national scope sample dataset for high spatial-resolution satellite remote sensing image processing. 
Sample sites been chosen sufficiently using spatial sampling method, and divided sample patches been grouped using clustering method 
for further uses. The neural network model for road detection trained our dataset subset shows an increased performance on both 
completeness and accuracy, comparing to two widely used public dataset. 

1. INTRODUCTION

The demand for timely information about the earth’s surface, 
such as land cover and land use (LC/LU), is consistently 
increasing, because such information provides a base for many 
local, regional or global scope applications, e.g. resources 
monitoring, change monitoring, and environmental studies 
(Grekousis et al., 2015; Jun et al., 2014). Especially, recently 
large scope (national or global range) information extraction is in 
urgent demand, under the SDG30 goals set by UN for global 
sustainable development (UN, n.d.) . 

Reliable methods are needed for extracting geospatial 
information. Geospatial information with high spatial-temporal 
resolution and reliability are essential for monitoring global 
environmental and resources conditions. With the rapid 
development of space technology, remote sensing images have 
become main resources to acquire such large scope geospatial 
information (Song et al., 2018), while the efficiency of 
information extraction has been one of the main bottlenecks 
(Townshend and Justice, 1981).  

On the other hand, Machine learning method shows its advantage 
on collecting such information from remotely sensed images 
while requiring sufficient training sample (Zhang et al., 2016). 
Artificial intelligence and computer vision technologies can help 
to mine the information from remote sensing data (Rawat and 
Wang, 2017; Zhang et al., 2016). Deep neural network based 
approach has been widely used on remote sensing image 
interpretation for various purpose, especially on land use and land 
cover monitoring (Zhang et al., 2016). Sample dataset is an 
important basis for deep learning applications. The well-known 
ImageNet (Deng et al., n.d.) for ground view images has more 
than ten thousand categories of objects which can be used to train 
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networks. With networks pertained on it, features with 
corresponding labels can be learnt, then further application like 
object detection (Shu et al., 2018) and semantic segmentation 
(Yujun et al., 2018) can be done more efficiently.  
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Figure 1.  Main flow for building the sample dataset 

For satellite remote sensing image, however, sample datasets 
covering large scope (such as national or regional scope) are still 
limited. Most existing datasets for satellite remote sensing image 
were built based on a few frames of image located on a local area 
(Demir et al., 2018; Zhang, 2017). This might cause the low 
generalization ability for trained models, because small sample 
size could be easily overfitted. Moreover, current sample datasets 
on satellite remote sensing images usually annotate pixels into 
only around ten categories (Demir et al., 2018; Xia et al., 2017; 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-731-2019 | © Authors 2019. CC BY 4.0 License.

 
731



 

Zhang, 2017). The coarse classification might also cause huge in-
class differences, which will make the trained models fragile 
while testing on larger data volume.  
 
For constructing remote sensing image sample dataset with large 
scope (national level, for example) view, choosing a sufficient 
sampling method is also crucial for selecting sample images. 
When training dataset is imbalanced, i.e. the training samples are 
unevenly distributed among classes, Machine learning models 
often perform biased on the majority class, where tends to 
misclassify the minority class (Khoshgoftaar et al., 2010; 
Murphey et al., 2004). Dependable spatial sample locations 
considering spatial heterogeneity of land cover are needed (Chen 
et al., 2016) to obtain optimized sample distributions, sufficient 
sample numbers for rare classes, and adequate sample size for 
each region of geographical space.  
 
To insure sufficient sample distribution, our approach considers 
unbalanced data problem while constructing the dataset. While 
previously, some researches deal with unevenly distributed 
training data by developing algorisms (Geng et al., 2016) or 
reshape dataset using resampling strategies (Estabrooks et al., 
2004; Kubat and Matwin, 1997).  

 
Figure 2. Sample location for choosing remote sensing image 

This paper introduces an ongoing work on establishing a national 
scope sample dataset for high spatial-resolution satellite remote 
sensing image processing. We consider avoiding unbalanced 
sample distribution of LC/LU categories through different scale 
from national to the patch groups.  
 
Figure 1 shows the main flow of construction the sample dataset: 
 (1) To insure sample balance in national scope level, we select 
sample points with the method which takes landscape spatial 
heterogeneity into consideration; 
 (2)Based on the location of each sample point, find the 
corresponding image frame from the high-spatial resolution 
datasets with fully annotated pixel-level ground truth. 
 (3) Divide each image frame into patches. Then based on fully 
annotated pixel-level labels or image feature pattern, grouping 
small patches into specific clusters using unsupervised approach.  
(4) Every patch can be considered as a group of specific scene, 
by training based on the clustered scenes, specific interpretation 
model can learn features corresponding to each scene.  
(5) Further data process method could be applied to our dataset 
based on clustering results, to insure sample balance among 
scope of scenes (patches). E.g. as a preparation for the uses like 
semantic segmentation for multiple classes, users can adjusting 
sample distribution based on clustering information. 
 
Thus, this dataset would serve the use of large scale productions 
on land use and land cover monitoring. Based on grouped scenes, 
we can train multiple models as an ensemble optimization to 
improve the overall performance of LU/LC segmentation. In 

addition, image features extracted from each category of scene 
can be considered as one ‘bag of features, allowing for similar 
image searching not only inside the dataset, also outside the 
dataset to expend the dataset scope to a global level. 
 
Two Specific machine learning tasks could be set. (1) The 
grouped scene can serve as a multi-label scene classification task. 
(2) A semantic segmentation task for remote sensing image with 
all objects or specific objects. Besides, the pre-trained networks 
for scene classification can serve as a baseline for further using 
on other information extraction methods of remotely sensed 
images. 
 
From a preliminary experiment, the neural network model for 
road detection trained our grouped dataset shows an increased 
performance on both completeness and accuracy, comparing to 
two widely used public dataset. 
 
Section 2 of this paper introduces related methods, where the 
third section shows some results as well as some discussion. The 
conclusion and future works are introduced at the end of this 
paper. 
 

2. METHOD 

The main flow for constructing our dataset introduces in section 
1 and shown in figure 1. To avoid unbalanced sample distribution 
through different scale from national to the scope within a patch, 
we adopted a spatial sampling method provided by Chen et 
al.(Chen et al., 2016) for national scope sample distribution and 
use a clustering method which is prepared for adjusting sample 
distribution among patches for further applications. Here we 
briefly introduce the related methods. 
 
2.1 Sampling method 

Sample points been selected from the 30-meter resolution land 
cover datasets (Jun et al., 2014) with the method proposed by 
Chen et.al. which taking into consideration of landscape spatial 
heterogeneity. Then, based on location of each sample point, we 
can find the corresponding image frame from the high-spatial 
resolution (higher than 1 meter) datasets established by the 
Chinese National Geographic Conditions Survey Program with 
fully annotated pixel-level ground truth (NGCC, n.d.).  
 
The landscape index (LSI) is a quantitative measurement of 
landscape heterogeneity and is based on the ratio of the perimeter 
to area(Patton, 1975; Rutledge, 2003) . In general, higher LSI is 
caused by more complex landscapes, as such landscapes have 
bigger borders for a given zone (Plexida et al., 2014; Zhou et al., 
2014) . 
 
For given regions, Chen‘s (Chen et al., 2016) method can 
determine corresponding sample sizes and their spatial 
distributions according to landscapes classes. They use LSI as 
three levels to characterize the spatial heterogeneity: rLSI for a 
region, cLSI for land cover classes under such region and uLSI 
for each geographic sampling unit.  
 
Specifically, for raster data, the basic LSI (Chen et al., 2012) is: 
 

LSI ൌ
∑ 𝑏௝

4ඥ𝑞𝑠ଶ
ൌ 0.25 ൈ ෍

𝑏௝

ඥ𝑞
                    ሺ1ሻ 

 
Where q is the number of pixel and b is the number of edges for 
a pixel j. s is the spatial resolution. 
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Then for each region we can calculate its LSI called rLSI. It is 
used to calculate sample sizes Ni for each target region: 
 

𝑁௜ ൌ
𝑟𝐿𝑆𝐼௜ ൈ 𝐴௜

∑ 𝑟𝐿𝑆𝐼௝ ൈ 𝐴௝
௝ୀ௡
௝ୀଵ

ൈ 𝑁, ሺ𝑖 ൌ 1, … , 𝑛ሻ                   ሺ2ሻ 

 
Ai and Aj are the areas of region i and j, respectively. N is the total 
sample size. Thus, region that is more heterogeneous will have a 
higher sample density leading to a larger sample sizes. 
 
The cLSIs are used to allocate sample numbers to land type 
classes. For class k of a given region i, the sample number is: 
 

𝑐𝑁௜,௞ ൌ 𝑁௜ ൈ
𝑐𝐿𝑆𝐼௜,௞ ൈ 𝑊௜,௞

∑ 𝑐𝐿𝑆𝐼௜,௞ ൈ 𝑊௜,௞
௞ୀெ
௞ୀଵ

, ሺ𝑘 ൌ 1, … , 𝑚ሻ                   ሺ3ሻ 

 
Where, Ni is the sample size, Wi,k is proportion of area, k. is the 
cLSI for a class  
 
The uLSIs been used for adaptively choosing optimal geographic 
units for sample sites location according to spatial heterogeneity. 
Suppose that region i is composed by R×L geographical units.  
 

𝑢𝐿𝑆𝐼௥,௟௞
௜                    ሺ4ሻ 

Is the uLSI of class k in row r and column l. 
 
Sample site location can be selected with uLSI curves. uLSI 
curves are derived by descending rank of the geographical units 
based on the uLSIs for each class.  
 
2.2 Clustering method 

We also want to prepare samples groups for further applications.  
With derived sample points from method described in section 2.1, 
remote sensing image frames can be found based on locations. 
After that, we divide each image frame into 512*512 patches. 
Then based on fully annotated pixel-level labels, we further 
divided patches into specific clusters using unsupervised mean-
shift clustering method, considering categories appearance or 
image texture pattern depends on different application purpose. 
 
Since the number of clustered scenes as a priori is unknown, 
clustering the patches with parametric strategies like k-means are 
difficult. We choose to use the mean-shift procedure (Comaniciu 
and Meer, 2002), a non-parametric density based method. A 
feature vector is generated for each divided patch, which is 
formed with a 10 dimensional histogram: 10 bins for 10 first-
classes of land cover categories form ground truth image. Image 
texture as further cues can be added by extending the vector, 22 
bins for LBP features derived from corresponding remote sensing 
image. Uniform LBPri (Ojala et al  ., 2002) is used for describing 
small-scale appearance (textures) of the image and which is 
rotation invariance with uniform patterns. This kind of cue is 
prepared as a clustering option for further uses of our dataset.  
The main flow for clustering is: 

1) Derive image features using uniform LBPri  
2) Histogram for image texture and semantic label 
3) Mean-shift (Comaniciu and Meer, 2002) for scene 

clustering  
 
With these steps, we categorized pre-divided sample patches into 
multiple scenes for overall ensemble model for large scale image 
processing. Each scene can be considered as one ‘bag of features’, 
allowing for similar image searching among the whole dataset 
and for further training specific interpretation models. 
 

3. RESULT AND DISCUSSION 

With the above approach, we generated 1602 random sampled 
points using the tool GLCVal (NGCC, n.d.) developed by the 
National Geomatic Center of China from Global Landcover30 
dataset with ten categories (Grasslands, Forrest, Cultivated land, 
Bareland, Shrublands, Artificial surfaces, Water bodies and 
Permanent snow/ice). Based on these sample points, about 1000 
high-resolution image frames (Multi data source, mainly 1 meter 
resolution image from Chinese Gaofen 2 Satellite (CRESDA, 
n.d.) and 0.5 meter aerial image. with supplement of 2 meter 
image from Chinese ZY-3 Satellite (Deren, 2016) and other 
image) were found from the Chinese National Geographic 
Conditions Survey Dataset, and more than 1 million patches of 
512*512 images were generated. Considering the semantic labels’ 
ontology components and their corresponding image texture 
using uniform LBP, we categorized these patches into multiple 
scenes for further specific model training.  
 

30m Land cover point type Count 
Artificial surfaces 161 
Barren land 199 
Cultivated land 216 
Forests 227 
Grass lands 234 
Permanent snow and ice 126 
Shrub lands 185 
Water bodies 154 
Wetland 100 
Grand Total 1602 

Table 1. Number of sample location for each Land cover type 

 
Figure 3. Divided patches and ground truth 

The resulted sample site locations followed the spatial 
heterogeneity across China, which insures sufficient number of 
sample for each land cover and land use category has been chosen. 
Figure 2 shows sample locations for choosing remote sensing 
image. As can be seen from the image, the distribution of sample 
locations followed the distribution pattern of land use and land 
cover type cross the whole China. Artificial surfaces, cultivated 
land and forests are denser in the eastern region than western 
region, while barren land and shrub land sample points occurred 
more in the western area of China. Sufficient sample numbers for 
each class have been generated. Table 1 shows the number of 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-731-2019 | © Authors 2019. CC BY 4.0 License.

 
733



 

sample location for each land cover type under the 30 meter 
global land use and land cover production.  
 
The divided patches show a high quality of annotation result, 
which make this production a perfect source for feeding deep 
neural networks. Figure 3 shows some divided patches and 
corresponding ground truth. With fully annotated pixel-level 
ground truth generated by the Chinese National Geographic 
Conditions Survey Program, which has been validated by visual 
interpretation and field verification. In this dataset the land cover 
and land use objects have been classified into 10 first-class, 59 
second-class and 143 third-class categories (“Content and 
Evaluation Indicators for Chinese National Geographic 
Conditions Survey Program,” 2017). Appendix 1 shows one of 
the first class category, cultivated land, with its second and third 
categories.  

 
Figure 4. Cluster result, upper side: labels, lower side: images. 

Since the overall accuracy has been validated via field survey, 
this production becomes a perfect source of sample making for 
deep learning. The accuracy is within 5 pixels, or 10 pixels under 
shadows or shaded condition(“Regulations on Inspection, 
Acceptance and Quality Assessment for Chinese National 
Geographic Conditions Survey Program,” 2013) . 
 
Every patch can be considered as a specific scene, by training 
based on the categories of each scene clusters, networks can learn 
features corresponding to specific objects in scene. Figure 4 
shows the clustering result using the mean-shift clustering 
method considering the semantic labels’ appearance and image 
texture. 
 

Dataset Completeness Accuracy 
Massachusetts Road dataset 39.6% 90.7% 
Massachusetts Road dataset + 
deepglobe 

69.0% 69.0% 

ours 71.1% 80.1% 
Table 2. Results of different datasets 

 
As a preliminary experiment, we implemented a deep learning 
approach proposed by Wei et al. (Yujun et al., 2018) for road 
centreline extraction. Then test the result completeness and 
accuracy (Heipke et al., n.d.) on a same frame of ZY3 satellite 
image. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
                   ሺ5ሻ 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
                   ሺ6ሻ 

Where TP, FN and FP is the length of correctly extracted roads, 
missing roads and falsely extracted roads, respectively. 
 
We trained three models for comparison. First, trained one 
network on the Massachusetts Road dataset (Mnih, 2013), then 
trained one on the combination of two datasets: Massachusetts 
Road dataset and deepglobe dataset (Demir et al., 2018) . Finally 
we trained the network on our dataset. As shown in table 2. For 
same model on same remote sensing image, the completeness 

increased from 39.6% to 71% for Massachusetts Road dataset 
and our dataset. Where the accuracy increased from 69% to 80.15% 
for the combined dataset and ours. The accuracy on the 
Massachusetts road dataset is not comparable due to its low 
completeness. Figure 5 shows a part of extracted result of the 
road centreline. Result from our road category (Figure 5.c) shows 
an obvious improvement on completeness comparing to 
Massachusetts Road dataset (Figure 5.a). while the completeness 
difference of Figure 5.b and Figure 5.c is not obvious, from Table 
2, the improvement of overall accuracy calculated from the whole 
frame of remote sensing is still significant. The improvement on 
completeness and accuracy indicating that our dataset included 
sufficient variance of images for such category. 

 
Figure 5. Part of interpreting result of road category. a.: result 

from Massachusetts Road dataset; b.: result from Massachusetts 
Road dataset + deep global; c: result from out dataset; d: GT 

 
4. CONCLUSION 

This paper introduces an ongoing work on establishing a 
national scope sample dataset for high spatial-resolution satellite 
remote sensing image processing. The neural network model for 
road-centreline detection trained our dataset obtained a 
performance increase on both completeness and accuracy, 
comparing to two widely used public dataset. 
 
Two Specific machine learning tasks could been set. (1) The 
grouped scene can serve as a multi-label scene classification task. 
(2) A semantic segmentation task for remote sensing image with 
all objects or specific objects. 
 
For future works, feature information extracted from categories 
of our grouped scenes can be used for overall ensemble model 
for large scale production. Each category of scene can be 
considered as one ‘bag of features, allowing for further training 
interpretation models and for similar image searching within the 
dataset or searching outside the dataset to expending the scope to 
a global level,  
 
Further assessments on improvement of method performance 
using our dataset will conduct in the future. E.g. semantic 
segmentation for multi-objects should be conducted as well as its 
overall performance assessment. The dataset or pre-trained 
model could possibly become public for research purpose. 
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APPENDIX  

Id First class Second class Third 
class 

Mini
mum 
area 

0100 Cultivated 
land 

  
400 m 

0110 
 

paddy field 
 

400 m 
0120 

 
Dry land 

 
400 m 

0130 
 

orchard 
 

400 m 
0131 

  
Shrub 400 m 

0132 
  

Liana 400 m 
0133 

  
Herbal  400 m 

0140 
 

Tea garden 
 

400 m 
0150 

 
mulberry field 

 
400 m 

0160 
 

rubber plantation 
 

400 m 
0170 

 
nursery garden 

 
400 m 

0180 
 

flower nursery 
 

400 m 
0190 

 
Other Economic 
seedlings 

 
400 m 

0191 
  

Shrub  400 m 
0192 

  
Liana  400 m 

0193 
  

Herbal  400 m 
Appendix 1: Example of categories from Chinese National 

Geographic Conditions Survey Program 
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