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ABSTRACT:

Indoor maps are required for multiple applications, such as, navigation, building maintenance and robotics. One of common methods
for map generation is laser scanning. In such maps, not only geometry of the map is of interest, but also its quality. This study aims
at developing methods for real-time generation of indoor maps using features extracted from pointclouds obtained by a robot with
their simultaneous quality assessment. We investigate, how this quality can be quantified for feature-based maps. First, we introduce
a method for modeling 2D maps into 3D models that enable their usage for localization. Second, we review and evaluate a number of
algorithms that can enable us to address features in a map. Hence, we enable the generation of objects from a pointcloud that has been
sensed. Finally, we study several aspects of the map quality and we formalize them into metrics that can be applied to quantify their
quality.

1. INTRODUCTION

Indoor maps are used in various applications, such as, naviga-
tion, building maintenance and robotics. One of the popular tech-
niques to obtain indoor maps is laser scanning. In order to seam-
lessly sense larger indoor spaces including multiple rooms and
corridors, mobile platforms are used. In such case, the indoor
environment can be mapped using an approach called Simultane-
ous Localization And Mapping (SLAM) introduced by Durrant-
Whyte et al. (1996). Pointclouds obtained in that way can be
compared with already existing maps, which can be used for po-
sitioning or map update. For this purposes, not only the geometry
of the existing an new map is needed, but also the quality of this
map is of high interest, as it is one of the attributes which should
be considered during the map usage as well as it should be consid-
ered during the matching and co-registration. Sester and Förstner
(1989); Iwaszczuk and Stilla (2017).

Even though a lot of research focuses on map construction meth-
ods Karagiorgou and Pfoser (2012), there is a lack of methods
that can enable the quantification of the quality of a robot gener-
ated map. Additionally, publications that focus on map evaluation
(Frank and Ester, 2006; Podolskaya et al., 2009) do not provide
a detailed analysis and comparison of criteria to be used for map
quality assessment. Tran et al. (2019) focus on geometric com-
parison of a 3D indoor model with a reference. However, we need
to consider the fact that maps may be used for a number of dif-
ferent applications and require different methods of comparison.

In order to determine the quality of a map, the quality of the 3D
pointcloud can be calculated (Karam et al., 2018). 3D pointcloud,
however, is an unorganized form of the 3D map and therefore
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difficult for storage and useless in some analysis where more ab-
stract or vector data as well as semantics are required. Therefore
feature based representation and their quality are more suitable
representation. In order to consider the quality of the map dur-
ing the mapping process, both, mapping and quality assessment
should be performed in real time. Frank and Ester (2006) propose
a method to quantify the quality of a map after generalization
takes place. They analyze many deformations that may result af-
ter generalization and propose an approach to specify map quality
based on inaccuracies that can be detected. They provide a list of
possible map operations that may result in increasing the uncer-
tainty. According to them, those operations are: (1) Elimination,
when all objects are not displayed, (2) Exaggeration, when ob-
jects are enlarged, (3) Aggregation/Division, when multiple ob-
jects are combined or larger objects are decomposed to smaller
ones, (4) Displacement, when objects have been shifted, (5) Re-
duction when object have been eliminated, (6) Typification, when
objects are described via typical patterns.

According to Pipino et al. (2002), quality metrics can be catego-
rized into groups based on objective or subjective approaches.
They call the metrics subjective, when they focus on the user
needs and objective when they are task-dependent or indepen-
dent. They apply this analysis on maps by assigning weights to
each metric based on its importance for a specific user segment.
Schwertfeger (2012) compares robot maps to ground truth maps.
He makes use of map quality attributes such as:(a) Global Ac-
curacy that is defined by the difference in distance between the
actual map feature and its corresponding estimated distance, (b)
Relative Accuracy that describes the amount of transformation
(i.e. shifting, rotating, etc) that has been introduced to the gener-
ated map, (c) Local Consistencies that studies relative positions
changes between objects, (d) Coverage, that describes the per-
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centage of features that have been mapped, (e) Resolution Quality
that describes the number of map features that could be identified
based on the originals.

Birk (2009) focuses on grid maps quality analysis. He introduces
a metric that he calls ‘brokeness’, responsible to control the num-
ber of regions in a map as well as their spatial relations. He argues
that a common error in map generation is rotated regions or par-
ticular regions that have been rotated due to technical problems
such as slipping wheels in a robot. When applying cross entropy
between cells at such situations will result in very low quality val-
ues despite the fact local contents of the wrong rotated room are
correct. Brokeness is introduced to quantify such errors, based on
a ground truth map. Zhang et al. (2011) propose a metric called
Feature Similarity Index for Image Quality Assessment - FSIM
for assessment of low level detail of an image, similar to what
the human visual system perceives. Their approach consist of
phase congruency, which specifies the local significance of a fea-
ture and image gradient magnitude. that involves three gradient
operators, such as Sobel, Prewitt, and Sharr operators as for the
estimation of the gradient magnitude. Cakmakov and Celakoska
(2004) discuss shape similarity of detected objects in an image or
a map. They distinguish two curve types, closed and free, where
Closed are those that describe an objects, while free which are
not closed, i.e. have no closing point. In such cases, a part of the
curve should be imagined as to be able to compare with others.
The authors define four perspectives possibilities for the match-
ing process: (a) Transformational - where representations such
as turning functions are used, (b) Geometrical - where polygon
representations are used. (c) Structural - where graph matching
techniques are used. (d) Quantitative - where closed curves are
identified for shape description.

1.1 Contribution

In this study we aim at developing a set of methods for real-time
generation of indoor maps using features extracted from point-
clouds acquired by a robot with their simultaneous quality assess-
ment. Then we investigate, how this quality can be quantified for
feature-based maps. First, we introduce a method for modeling
2D maps into 3D models that enable their usage for localization.
Second, we review and evaluate a number of algorithms that can
enable us to address features in a map. Hence, we enable the gen-
eration of objects from a pointcloud that has been sensed. Finally,
we study several aspects of the map quality, and review existing
methods for quality quantification. Based on analysis of exist-
ing metrics, we identify a need to introduce a new quality metric
- Characteristic Similarity, in order to quantify the rotation mis-
match, which is not covered by existing metrics.

2. 3D MAP GENERATION

We propose an approach to generate a dataset for our investiga-
tion based on Open Street Maps. We use them, to generate both:
the reference the 3D map and the LiDAR pointcloud. The re-
quiered data is being generated in four steps, as depicted in Figure
1.

1. Blender model of the environment (OSM2World, n.d.) (Fig-
ure 1a).

2. Model introduced to the Gazebo simulation tool (Gazebo,
n.d.) (Figure 1b).

3. Scanning the environment via LiDAR sensors (Figure 1c).

4. reasoning on the LiDAR sensed values and extraction of the
point cloud (Figure 1d).

Using this approach, we can ensure that the generated 3D map
and 3D LiDAR poincloud are in the same coordinate system.

Figure 1. Pointcloud building: a) blender model of the
environment; b) model in the Gazebo simulation tool; c)

scanning the indoor environment via robot’s LiDAR sensors that
Turtlebot3 robot is equipped with. The fourth step, in 1.(d), is to

reason on the LiDAR sensed values and extract a point cloud

After the pointcloud is acquired, points are first clustered into
lines, which are later clustered into polylines or polygons. Clus-
tering points into objects is achieved via buffering, where each
point’s boundaries are extended until they overlap with bound-
aries of another point or reach a maximum threshold. After points
are structured into groups according to their nearest neighbors, a
second level of clustering is applied that enables us to separate
points that belong to different polygons .

Based on the clustering results, polygons are recognized. We de-
vised three different strategies for polygon specification. Those
approaches are based on a number of existing algorithms, such
as the Concave Hull, Convex Hull, and Dijkstra Algorithm. We
used and tested all the three algorithms and a detailed evaluation
is available in the evaluation section. Examples of the concave
hull and convex hull algorithms are presesnted in Figure 2.

2.1 Concave Hull

This algorithm aims to describe the region, which is occupied
by a set of points. The algorithm operates based on a smooth-
ness parameter that controls the corners of a polygon and their
allowed irregularity. For example, a polygon may be assembled
from points that their interior angles are less than or equal to 180
degrees. Hence, a concave polygon is the polygon that surrounds
a set of points by the smallest possible area. An example of the
concave hull algorithm is available in Figure 2a.

2.2 Convex Hull

The concave hull based algorithm operates based on the same
principles with concave hull. Its main difference from Concave
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Hull is that instead of the level of smoothness, it tunes the tight-
ness of a polygon. As result, a polygon obtained through the
concave approach tends to obtain tighter areas around the same
set of points, when compared to a convex approach. An example
of the convex hull algorithm is available in Figure 2b.

Figure 2. Example of polygons obtained via the concave hull (a)
and convex hull (b). Franois Blair (n.d.).

2.3 Clustering Based on the Dijkstra Algorithm

Dijkstra is commonly used to calculate the shortest path between
two points or locations. However, in our scenario, it is used to
determine the sequence among the set of points, necessary for
forming a polygon. More specifically, this step is executed fol-
lowing three different sub-steps. The first step is to generate the
sequence of points, by marking each feature with a value that rep-
resents its location in reference to the previous nearest point. The
second step is to generate lines between all points, based on the
sequencing occurred above. The last step, is to fill enclosed areas
via the connected lines, which eventually enables us to reveal the
polygons.

3. QUALITY ASSESSMENT

In this section, we describe the set of quality metrics that we ap-
plied to the dynamically generated maps to quantify their quality.

3.1 Location Similarity - LS

This metric, introduced by Frank and Ester (2006), aims at quan-
tifying the difference between locations of the same feature in the
generated map, when compared against the reference map (dis-
placement error). The metric makes use of Voronoi cells, aiming
to reveal offsets between objects, by estimating the shifting that
has occurred to the center of gravity between each object. The
main idea behind Voronoi cells is to divide the map area into seg-
ments of equal surface, while the center of each cell remains to
be the object’s center.

The component’s execution begins by applying the Voronoi algo-
rithm on the map and obtain a list of neighbors for each feature.
The next step is to calculate distances between each feature and
its direct neighbors. Finally, it computes the differences of those
distances as

LSi(A,B) = 1−
[
∑p

m=1 |
distA(i,m)−distB(i,m)

max(dist(i))
|]

p
, (1)

where, LSi(A,B) is a value that describes the location similar-
ity of the ith object of map A and map B. The distance between
two objects i and m of the map A and map B is described by
distA(i,m) and distB(i,m) respectively. The maximum dis-
tance between two objects is expressed by max(dist(i)) and fi-
nally, the number of neighbors of an object is described by p.

The offset between those distances reflects the location similar-
ity for each object, from which, it eventually computes a global
Location Similarity value for the entire map as

LS(A,B) = 1−
[
∑p

m=1 LSi(A,B)]

n
, (2)

where LSi(A,B) is location similarity value for the ith object of
maps A and B and n describes the number of objects in the map.

3.2 Semantic Content Similarity - SCS

This metric, introduced by Frank and Ester (2006), aims to quan-
tify neglected objects that have been either merged with others,
have not being included or their only partial represented in the
map. This metric operates by estimating the Voronoi entropy of
the identified objects as

V Ei(A) =
∑

([Pi ∗ ln(Pi) ∗%V ]), (3)

where V Ei(A) indicates the entropy of the ith object category in
the map A, %V is the percentage of Voronoi area of one object
class with respect to the entire Voronoi area, and P is the number
of objects of the category i. More specifically, this metric oper-
ates by first categorizing objects according to the their occupied
area, usage and shape and then it estimates the entropy for each
of the categories on the reference, as well as the generated map.
Finally, it estimates the rate of change of Entropy between those
two maps.

The final SCS score, is computed as

SCS(A,B) =
min[V Ei(A), V Ei(B)]

max[V Ei(A), V Ei(B)]
(4)

where V Ei(A) and V Ei(B) describes the Voronoi entropy of
the maps A and B respectively. This formula allows to obtain the
ratio of entropy change. When reference and new maps obtain
the same entropy values, then the two maps are identical.

3.3 Characteristic Similarity - CS

This metric is introduced by us and aims at quantifying how each
polygons attributes preserved after generalization.

The most important step here is to design a suitable list of char-
acteristics to be used for comparison:

• Prepare and compute an attribute list which supports the area
and perimeter of a polygon.

• Compare each polygon with its corresponding one in the ref-
erence map .

• Provide each attribute with a specific weight reflecting its
importance.

After obtaining a numerical list of attributes for each object in the
map, the metric

CS(A,B) =
min[Ci(A), Ci(B)]

max[Ci(A), Ci(B)]
, (5)

where Ci is characteristic of ith element in maps A and B. The
value is normalized to be between 0 and 1.
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3.4 Shape Similarity - SS

This metric was introduced by Frank and Ester (2006). Its goal
is to quantify the difference of the shape of the objects that be-
long to the maps. For achieving this, it makes use of the turning
function. The turning function is a step-function that describes
a shape by plotting its perimeter against its slope, steps on the
function reflect rotations that a perimeter performs to construct
the shape.

More specifically, this subcomponent is implemented by first es-
timating the turning function of each object using the Formula
6. Later, it subtracts the turning function of each object from
each of object’s turning function on the reference map, since the
area between the two curves describes the difference between two
turning functions. Finally, it normalizes this value based on the
maximum difference.

SSi(Ni) = 1− Area(Ni)

max([Area(TFi, A), Area(TFi, A)])
(6)

where TFi, A is the turning function that describes the shape of
the ith object in the map A, while Ni is the area between the two
turning functions.

3.5 Polygon Assessment - PA

Polygon Assessment, introduced by Podolskaya et al. (2009), is
an aggregation of the Shape Similarity and Characteristic Simi-
larity, with an additional metric, the Vertices of each object. It
expresses the trade-off between the reduced amount of data and
the generalized characteristics of the map.

This metric is calculated by first computing the turning function
for each object in order to compute the shape similarity, as well
as computing the area for each available object for assessing the
characteristic similarity. Finally, we compute the number of ver-
tices for each available object. The final numerical metric value
can be then computed by

PA = WSS ∗ SS +WCS ∗ CS +WV ∗ V, (7)

where SS is the shape similarity, CS is the characteristic similar-
ity and V describes the vertex characteristics, while WSS , WCS

and WV are weights for each corresponding metric.

4. EVALUATION

Two different shaped areas were selected to evaluate the devel-
oped framework. The data was acquired by the Turtlebot3 us-
ing the Gazebo simulation tool Gazebo (n.d.). The two scenarios
were composed based on the variety of polygons in these areas:

Scenario 1 The first scenario is placed at Technical University
of Munich, which is marked red square in Figure 3. The room
is a lecture hall and it consists of three polygons, which are com-
posed by a collection of arc, circular and straight vertices, the two
smaller polygons are overlapping with the larger polygon, which
influences the Voronoi diagrams generation. Additionally, the
place consists of narrow corridors and cantilever points, which
could cause a drop to the LiDAR accuracy.

Figure 3. Test area

In Figure 4 it can be seen the extracted polygons. They were
extracted via the concave hull algorithm, with tightness range be-
tween 0.36 and 0.51. Table 1 lists the obtained quality results for
all polygons.

Figure 4. Polygons extracted in test area via the concave hull
approach

Quality Metric Polygon 1 Polygon 2 Polygon 3
LS 0.98 0.96 0.99
CS 0.95 0.95 0.89
SS 0.77 0.90 0.89
PA 0.79 0.86 0.77

Table 1. Calculated quality measures for each polygon
calculated using Concave Hull approach (Scenario 1)

As can be seen in Table 2 the obtained quality scores are high,
since the robot did not suffer from displacement shifts or errors.
We can notice, that the Shape Similarity (SS) and Polygon As-
sessment (PA) values are low compared to other metrics. SS is
highly dependable on vertices because it is computed based on a
turning function. We could observe that large polygons contain-
ing large number of vertices achieve the lowest SS values. Also
PA metric uses vertices as an integral part of its computation in
conjunction with the Shape Similarity.

4.1 Scenario 2

The second scenario builds on the outdoor area from the Rus-
sel Road in London (Figure 5). This scenario was chosen due to
the presence of inner and outer angles that follow L or T shape.
Such shapes allow to evaluate the limits of the proposed algo-
rithm when it is applied to the areas encompassing concave and
convex hulls. Additionally, in this scenario objects have more di-
rect neighbors. This is expected to influence the quality of the
result due to the additional displacement of the objects. How-
ever, more neighbors imply more relations which increases the
map processing time.

In Figure 6 can be seen the identified polygons, while in Table
3 the results for the second scenario using polygon specification

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-739-2019 | © Authors 2019. CC BY 4.0 License.

 
742



Concave Convex Dijkstra

LS 0.98 0.98 0.97

SCS 0.99 0.98 0.98

CS 0.93 0.92 0.84

SS 0.78 0.60 0.29

PA 0.80 0.78 0.56

Table 2. Map quality calculated based on introduced quality
measures (Scenario 1)

Figure 5. Scenario 2 - Customized Russel Road Buildings

with Concave Hull, Convex Hull, and Dijkstra Algorithm are pre-
sented. The quality evaluation provides a better picture of how
the polygons affect the quality of the extracted map, using vari-
ous metrics Table 4.

Figure 6. Polygons extracted in test area via the concave hull
approach.

5. DISCUSSION

The collected results enabled us to notice that the following prop-
erties of both explained scenarios affect specific quality metrics:

Arc Trajectories: One may notice that the robot did not manage to
capture exact vertices for this type of trajectory. In turn, this di-
rectly affected the shape similarity and the polygon assessment
quality metrics. The first metric is affected as a result of cu-
mulative angles being represented in the corresponding turning
function. The second one is affected because the shape similar-
ity is one of its components and it already considers the number
of Vertices in its computations. Concave and Convex Hull poly-
gons were less affected by this property than Dijkstra because of
Dijkstra’s ability to capture sharp segments that contribute to a
higher deformation of the shape. The tightness parameter reflects
how far the difference is between Concave and Convex Hulls ap-
proaches. Increasing the tightness factor (lower smoothness val-

Concave Convex Dijkstra

LS 0.99 0.99 0.99

SCS 0.99 0.97 0.99

CS 0.97 0.94 0.87

SS 0.37 0.59 0.03

PA 0.62 0.70 0.45

Table 3. Scenario 2 - Final Results

Qual. Metr. Pol 1 Pol 2 Pol 3 Pol 4 Pol 5 Pol 6
LS 0.99 0.99 0.99 0.99 0.99 0.98
CS 0.98 0.97 0.98 0.99 0.98 0.93
SS 0.13 0.53 0.24 0.80 0.21 0.261
PA 0.54 0.7 0.60 0.76 0.59 0.58

Table 4. Calculated quality measures for each polygon
calculated using Concave Hull approach (Scenario 2)

ues for the algorithm) may result in a situation where line seg-
ments start breaking around local cantilever points creating more
additional vertices deforming the shape which in turn deforms the
quality of the shape. This observation implies that a smoothness
value should be chosen to avoid two extremes of having many
broken segments producing new unnecessary vertices and cutting
inner angles in a way that deforms shapes.

5.1 Straight Trajectories:

This property is similar to the previous one in its effect upon qual-
ity metrics. The main observation is that when a relatively long
straight trajectory is considered, a robot may add additional ver-
tices that are not displayed on a corresponding reference map.
Another observation is that when a robot passes the same loca-
tion more than once, new vertices may be introduced, each with
a small added shift in the corresponding turning function. Shape
Similarity and Polygon Assessment metrics are mostly affected
by this type of trajectory.

Overlapping Polygons: These polygons increase the difficulty
to capture boundaries between objects. They also may change
how a relative location for one object is computed as a Loca-
tion Similarity metric may take other forms to represent an object
(other than a center of gravity). Location Similarity is the most
affected by this feature of the map (Table 1, low LS value for
polygon 3).

5.2 Narrow Corridors

Presence of a narrow passage on a map may force two indepen-
dent polygons to merge. This will result in a decreased object
count and relative importance after scan. Such a map feature af-
fects Semantic Content Similarity metric as it takes into account
how objects are categorized before and after a scan. Considered
examples of narrow passages in both scenarios did not, however,
generate cases with merged or eliminated objects.

5.3 Complex Rounding

This map feature is similar to Narrow Corridors in its effect on
the ability to separate objects. Dense area of points causes such
an issue. Presence of a complex rounding increases the burden
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to produce good shapes as the perimeter may be affected by de-
formed vertices. Shape Similarity and Semantic Content Simi-
larity are affected in these cases. The first scenario shows some
cases where the presence of a complex rounding around inner
polygons affected the shape a little bit thus introducing a drop in
quality metrics.

5.4 Cantilever Points

The presence of these points creates challenges to produce exact
perimeter and shapes. It affects Shape Similarity and Character-
istic Similarity metrics. These points can be produced as a result
of an algorithm used to generate polygons. Each algorithm may
differ in how it deals with these points but one may notice that
Concave Hull is the least affected by this property.

5.5 Inner Angles

Inner angles deform the whole polygon shape if wrong tightness
values are used. As we notice in the second scenario, polygons 1
and 3 have inner angles and they generated low quality values in
Concave Polygons case because of high value of tightness. Tight-
ness in these cases managed to capture better inner angles but it
results in breaking straight line segments around local cantilever
points.

5.6 Relative Neighbors

This property shows how the choice of metrics may affect time
needed to generate quality values. At some cases, not all of map
objects are important to be included into calculations. For in-
stance, checking quality for specific parts of the map or neglect
tiny objects at specific use cases. Moreover, in use cases where
location is already known and the shape matters, Location Simi-
larity can be dropped out.

6. CONCLUSION

This paper proposed an approach to quantify the quality of robot
maps that we obtain from different environments. First, we mod-
eled the environment and acquired its corresponding pointcloud
by performing a robot scan. To obtain a 3D indoor map, three
different algorithms enabling the modeling of detected objects
(Concave Hull, Convex Hull and Dijkstra Algorithm) were ex-
plored. As the core contribution of this paper, we provided a se-
ries of quality metrics that aim to capture different aspect of the
generated polygons. Finally, we analyzed which aspects of map
quality can be visible in which metric. Our approach was tested
against different environments.

We showed, that proposed quality quantification approaches are
suitable to assess a feature based map obtained by a robot. Be-
sides, by defining quality metrics, we are enabled to identify
deformations that may happen through generalization processes,
also in the reference map.

7. FUTURE WORK

A big topic for 3D indoor maps is georeferencig and relation to
outdoor maps. This is particularly important for navigation pur-
poses, where seamless transitions between outdoor and indoor
environment are necessary. In indoor, a high-quality and up-to-
date map is even more important than in outdoor, as indoor nav-
igation cannot rely on GNSS technology and often must be sup-
ported my map matching. In this context, the map quality wins

even more importance, as proposed qualities can be used to as-
sess, whether the match with a reference map can be correct or
not. To implement such approach, a single quality value would
be easier to handle. Therefore, our future efforts will turn towards
combining the individual results of each metric results in a final
quality value assisting in marking a map as accepted or not. Fur-
thermore, we plan to work on a quality measure for assessment
of the outdoor-indoor co-registration.
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