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ABSTRACT:  

 

As the use of building information model (BIM) for architectural heritage becomes more relevant, this paper explores different 

solutions to further automatize the modelling process. The scan-to-BIM process still requires manual intervention that is time 

consuming, subject to errors and user-dependent. In this paper, the main focus is the automated segmentation of windows. In the first 

part of our paper, we will review and compare several state-of-the-art methods for automatic detection and segmentation of openings 

in a point cloud. Based on the most pertinent aspects of those methods, a new algorithm focusing on indoor point clouds is proposed. 

After walls are already detected, they are converted in 2D binary images. Holes in those images correspond to openings. We submit 

each opening to an energy function with two terms: data and coherence. The data term depends on the shape of the opening. The 

coherence term considers the position of the opening in the scene. Those function let us determine if an opening in the point cloud is 

due to a window/door or an object obstructing the acquisition. In the third part we discuss the results obtained by applying the 

method to different datasets. 

 

 

1. INTRODUCTION 

As the use of building information model (BIM) for 

architectural heritage becomes more relevant, this paper 

explores different solutions to further automatize the modelling 

process. The scan-to-BIM process still requires manual 

intervention that is time consuming, subject to errors and user-

dependent. The work toward automatization of the process is in 

the continuity of the lab’s previous research. Semi-automatic 

methods were already developed for indoor (Macher et al., 

2017), outdoor segmentation (Boulaassal et al., 2010) and roof 

segmentation (Tarsha-Kurdi et al., 2008). The implicit next step 

is the judicious combination and improvement of those methods 

to deliver the complete segmentation. However, in this paper, 

the main focus is the segmentation of windows. An opening in 

the façade is the unique common entity that can be seen from 

inside and outside. As such, it can help the registration of 

indoor and outdoor point clouds. Besides, as we strive to 

enhance segmentation, being able to automatically model and 

label windows is pertinent on its own. 

 

In the first section of our paper, we will review and compare 

several state-of-the-art methods for automatic detection and 

segmentation of openings in a point cloud. Those methods 

differ on their degree of automatization and their field of 

application. Some of them were especially designed for indoor 

segmentation (Wenzhong et al., 2019) while others were only 

applied to exterior façades (Zolanvari et al., 2018). Recent 

studies highlight the success of deep learning convolutional 

neural network (CNN) for point cloud segmentation. While 

deep learning has already proven to be very efficient for many 

image processing problems, its applications to 3D point clouds 

are an active research field.  

 

Based on the most pertinent aspects of those methods, a new 

algorithm focusing on indoor point clouds is proposed. After 

walls are already detected, they are converted in 2D binary 

images. Holes in those images correspond to openings. Some of 

those openings are neither windows nor doors but the shape of 

objects that obstructed the wall during the acquisition. We 

associate each cluster to an energy function with two terms: data 

and coherence as suggested by Boykov et al. (2001) and 

Wenzhong et al. (2019). The data term depends on the shape of 

the opening. We can define it so that a rectangular opening has 

higher data energy. This will discard any opening due to non-

rectangular objects obstructing the wall. The coherence term 

considers the position of the opening in the scene. It includes 

several criteria, such as for instance: if the centroid of the 

opening is too close to the floor or the ceiling, it cannot be a 

door or a window. 

 

The third and final section of the paper compares the results 

obtained by applying the previously mentioned methods to our 

dataset. Algorithms were tested on data acquired in and around 

the zoological museum of Strasbourg (France) and an individual 

house (only indoor). Indoor data were acquired with static laser 

scanning technique and outdoor data with a mobile mapping 

system (Stereopolis from IGN). The museum consists of four 

floors and a vast attic, with an internal courtyard. The ground 

floor is composed of class rooms and labs. Two floors are 

dedicated to the visiting tour and are filled with life-sized 

animal models as well as complete skeletons. The third floor 

houses the employees’ offices. Pieces of furniture obstruct walls 

of most rooms. In the attic, old exposition models are stored. 

The individual house consists of two floors with a garden. All 

rooms are filled with household furniture. All those obstacles 

that cannot be removed during data acquisition create holes and 

therefore openings when segmenting the walls of each room. 

This apparent drawback makes those datasets particularly 

pertinent to test the robustness of our algorithm. Results are 

evaluated and discussed to validate our geometrical approach, 
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as well as to evaluate the pertinence of the deep learning 

approach for future research. 

 

 

2. STATE-OF-THE-ART 

2.1 Previous works 

The lab’s previous works include two segmentation pipelines, 

one specifically designed for façade segmentation (Boulaassal et 

al., 2010) and the other for indoor (Macher et al., 2017) point 

cloud segmentation. The former uses several iterations of the 

RANSAC algorithm (Fischler and Bolles, 1981) to find the 

main planes fitting the points of the façade. Independently for 

each plane, the Delaunay triangulation is calculated in order to 

use one of its underlying property. Areas with high density of 

points will form triangles with short edges whereas areas with 

fewer points will form triangles with longer edges. With the 

correct threshold, it is possible to extract only points of the 

latter areas. In the point cloud of a façade, the less populated 

areas are the boundaries of the façade and its openings 

(windows and doors). This pipeline allows quick and automated 

modelling of facades. It also models the openings. However, the 

resulting wireframe models are not yet identified and segmented 

as windows. Besides, information about the façade’s width is 

missing, because all extracted planes are modelled as surfaces 

rather than volumes. 

 

The second method (Macher et al., 2017), focused on indoor 

segmentation, automatically transforms an indoor point cloud 

into an obj file modelling walls, floors and ceiling as volumes. 

First, the peaks of the histogram showing the points’ altitude 

distribution are alternatively identified as the floors and 

ceilings. For each floor, a horizontal slice close to the ceiling is 

considered. Most furniture and doors do not reach the ceiling, 

so this slice will most likely only contain points belonging to 

walls. The slice of points is projected on a horizontal plane and 

converted into an image. From this perspective, a simple region 

growing segmentation can separate each room. For each room 

point cloud, the application of MLSAC algorithm (Torr and 

Zisserman, 2000) in an iterative way allows to find vertical 

planes and consequently identify walls. Each plane is associated 

with parallel planes that are close enough so that wall point 

clouds are identified. Finally, walls and slabs are reconstructed 

in an obj file before being converted into an ifc file.The 

algorithm processes large point clouds (up to 45 million points) 

within 30 minutes. It is relatively short considering the quality 

of the segmentation. 

 

2.2 Related works 

While it does not directly address the problematic of joint 

indoor/outdoor segmentation, many other researches were led in 

the field of opening detection. 

 

Most LiDAR acquisition systems (both static and dynamic) 

store for each detected point, the properties of the laser that was 

reflected on it i.e. mainly the station-to-point distance and 

direction of the laser. Assuming that the position of a wall is 

known, those properties can be exploited for opening detection 

(Colleu and Benitez, 2013);(Tuttas and Stilla, 2013). For each 

point, the corresponding laser direction is calculated, as well as 

the intersection between the laser direction and the known plane 

of the wall. At this stage, there are three possibilities: 

 

a) If the point under study is closer to the station 

than to the intersection point, the point belongs to an 

object obstructing the wall (furniture for indoor 

clouds, vehicle or tree outdoor clouds);  

b) If the point coincides with the intersection area, 

the point belongs to the wall;  

c)  If the point is farther than the intersection, the 

laser went through a window. This simple process 

allows the segmentation of indoor or outdoor in 3 

labels i.e. wall, obstruction and window. 

 

The next method (Li and al., 2018) takes advantage of an 

architectural property found in building facades: windows are 

usually aligned along horizontal and vertical lines. This means 

that when a window is detected, there are probably similar 

windows next to it on the same floor, but also above and under 

it on each floor. In this regard, facades are processed with 

horizontal and vertical slices rather than point by point. 

Gradient of different variables (density of points, colours, 

intensity) can be calculated across the slice. A brutal change in 

gradient value indicates that the slice is probably the frontier 

between a wall and a window. Like the previous method 

(Zolanvari et al., 2018) processes façade horizontally and 

vertically. The façade is decomposed in horizontal slices with a 

chosen width.  Each slice is a point cloud of the wall split by 

segments of windows. Those windows appear as holes in the 

point cloud’s slice, separating it in two distinct clusters. 

Counting and locating the clusters is enough to infer the number 

and positions of the windows’ vertical edges. The same method 

is applied on vertical slices to find windows’ horizontal edges. 

The speed and accuracy of the method mostly depends on the 

width chosen for the slices. 

 

2.3 Deep learning approaches 

In topography and geomatics as in many other fields, deep 

learning has recently been the focus of several researches. Deep 

is a branch of machine learning often used for 2D image 

recognition problems. It can be decomposed in two successive 

steps: training and testing. Training means that data is fed to 

several layers of randomly initialized functions called the 

convolutional neural network (CNN). The randomly segmented 

output is compared to the manually segmented ground truth to 

obtain the error. Then the functions’ parameters will be slightly 

changed to minimize the error. This step is repeated until the 

error is small enough to consider that the parameters of the 

functions have converged. The test step means that new data is 

fed to the CNN after convergence. If the training step was 

successful, the output should correspond to the ground truth 

with a small marge of error.  

 

In a 3D point cloud, there is no convenient way to order points, 

unlike in 2D matrices (left to right and up to down). As an 

object in 3D can be considered from all perspectives, its 

labelling must be invariant to rotations and translations. Point 

clouds are also much heavier data than 2D images and require 

more time and/or power to process. The design of a 3D CNN 

must meet those criteria. Different approaches already exist.  

 

SnapNet (Boulch et al., 2017) transposes the problem to 2D 

segmentation. Point clouds are roughly textured, then 2D 

screenshots are taken from different perspectives. Those images 

can be segmented by 2D CNN. When taking the screenshot, the 

depth of the object relative to the point of view brings one more 

parameter to feed to the CNN.  
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Rather than processing every point, SuperpointGraph (Landrieu 

and Simonovsky, 2018) regroups points with the same 

geometric properties into clusters they call “superpoint”. For 

instance, a superpoint can be a group of points belonging to the 

same plane. Then the graph representing the superpoint is fed to 

a 3D CNN that recognizes object as a specific combination of 

superpoints (geometries).  

 

In our study, we explored the method that directly takes a 3D 

point cloud as an input: PointNet (Qi et al., 2017). It was 

already tested on indoor point clouds. As such we wanted to test 

it to validate the pertinence of the deep learning approach for 

opening segmentation. 

 

We implemented the method described on PointNet’s github. 

We first tested the training algorithm using the dependencies 

and OS specified on the git. Since most of those are not 

supported any more (Ubuntu 14.04), we also tried to use the 

code on Ubuntu 18.04 with the newest version of Cuda and 

Tensorflow. Training achieved 78.6% accuracy with their 

datasets.  

 

 

3. METHOD 

Researching the state-of-the-art let us develop a novel method 

inspired by previous promising work.  

 

3.1 Overview 

The proposed opening detection method is just one step in a 

pipeline that aims at the joint automated segmentation of indoor 

and outdoor point cloud (figure 1). 

 

 
 

 

Figure 1. Current pipeline of the project. Green: previous 

works. Blue: ongoing development. Grey: future works. 

 

Macher et al. (2017) and Boulaassal et al. (2010) respectively 

developed methods for indoor segmentation in floors and rooms 

and extraction of planes in façade.  We currently focus on 

opening detection to use windows as common objects to 

register indoor and outdoor point clouds. In this article we focus 

on indoor opening detection. As you can infer from figure 1, 

our method takes as input an indoor point cloud where floors, 

rooms and walls were already segmented. The output is an .obj 

file representing floors, ceilings and walls as volume (to the 

exception of walls of the outer façade), with windows 

segmented out of walls. 

 

3.2 Developed approach for indoor openings detection 

The code is developed in Matlab (MathWorks). The indoor 

opening detection method on its own can be described in 

different steps, as detailed in figure 2. 

 

 
 

 

Figure 2. Pipeline of the point cloud processing chain for 

indoor opening segmentation 

 

Our previous work on indoor segmentation let us retrieve the 

indexes of the points belonging to each floor, each room and 

each wall. That is the sequence in which we process the input 

point cloud.  

For each wall, we know its centroid, Cartesian equation and 

the indexes of the points that belong to it. 

3.2.1 Transform to binary image 

As points of a wall approximately belong to the same plane, we 

transpose the problem to 2D like Boulch et al. (2017). First, we 

project all points on the plane defined by the Cartesian 

equation. We look for farthest points on the right and left side 

of the wall. We also look for the highest and lowest. Those 4 

points will define the width and height of the wall in the binary 

image. 

 

We tried different values for the sampling of the image i.e. pixel 

size. If the value is too low, the image will represent every hole 

between the points resulting in a lot of noises. If the sampling is 

set too high the details of openings will be lost and it will be 

hard to distinguish windows and obstructions. We chose a pixel 

size of 6 mm x 6 mm. 

 

For later steps, pixels of walls are represented with zeros and 

pixels of openings with ones. 

 

 
 A          B 

Figure 3. A) a 3D point cloud of a wall with two windows. 

B)  the right the 2D binary projection of the wall. Windows and 

noises appear in white on the black wall. 

 

3.2.2 Image Cleaning 

After looking at several datasets, it appeared that most openings 

due to obstructions are close to the ground. We discarded those 

openings by cleaning each column of the image that includes 

h/2 consecutive black pixels, where h is the height of the image 

of the wall. 
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A morphological opening (erosion followed by a dilatation) is 

applied on the binary image. It cleans most the remaining 

isolated noise (figure 4). 

 
 

Figure 4. Binary image of the wall after cleaning. 

 

3.2.3  Region Props 

This part uses Matlab’s regionprops function provided by the 

Image Processing Toolbox. It takes a binary image as input and 

finds the different region composing it. It uses a region growing 

algorithms. For each region, regionprops returns additional 

information that will be used in the next step: a binary image of 

the region, its extremums, its centroid and the number of pixels 

in the region. 

 

3.2.4 Energy Function 

To each region we associate two values that depends on the 

properties of the region. The term energy function and its 

primary decomposition was inspired by Boykov et al. (2001) 

and Whenzong et al. (2019). 

The coherence energy (1) verifies that the region do not have 

aberrant properties preventing this region from being a window. 

 

       1 if h0 < τ1  

                              1 if N < τ2 

Ecoherence =             1 if H/W < τ3                              (1)         

                 1 if H/W > τ4 

                              0 else 

 

 Where    Ecoherence = coherence term  

 h0 = height of the centroid 

 τ1   = minimum height for a window’s centroid 

 N  = number of points in the region 

 τ2  = minimum number of points to discard noise 

 H = height of the region 

 W = width of the region 

 τ3   = minimum H/W acceptable for a window 

  τ4   = maximum H/W acceptable for a window 

 

In (1) the first criteria allows us to discard objects that are too 

close to the ceiling to be anything else than an object 

obstructing the wall. The second criteria discards any opening 

that is too small to be a window, such as remaining noise or 

other obstruction. The third and fourth criteria are threshold that 

we defined to discard objects that are too large and small or too 

thin and high. The region can be an opening only if its 

coherence energy is null. 

 

The data energy (2) depends on the repartition of non-null 

points in the image of the region.   

 

     Edata =  ∑i ∑j      R(i,j)                      (2) 

                    NbC*NbL 

 

Where Edata   = data energy 

           R(i,j) = region’s image(i,j) pixel (with value 0 or 1) 

           NbC  = width  of the region’s image  

           NbL  = height of the region’s image 

For each line, we look at the repartition of pixels per columns. 

If all columns contain a non-null pixel, the opening is perfectly 

rectangular, and the data energy will be equal to the height of 

the region’s image. It is reduced for each line that is not filled. 

With the correct value for threshold τ5, this data term allows us 

to discard objects that passed the coherence term but do not 

have the usual mostly rectangular shape of windows or doors. 

 

 
Figure 5. The region on the left was obtained using the 

regionprops on figure 4. It is perfectly rectangular, so its data 

energy is equal to one. The region on the right is not completely 

rectangular, its energy will be lower. 

 

3.2.5 Segmentation 

The energy functions let us conclude for each region if it is a 

window/door or if it is not a real opening. For each window and 

door, we calculate the coordinates of its centroid and extrema 

relatively to the centroid of the wall. Then, we edit an .obj file 

of the walls to extrude doors and windows. For this step, we 

used the Boolean modifier of the software Blender. We select 

the .obj of the walls and the .obj file containing the windows. 

Blender computes the difference i.e. walls with extruded 

windows.  

 

 

4. RESULTS 

Since the zoological museum is a large point cloud (60 million 

points), the algorithm was first tested and tuned using the point 

cloud of a smaller habitation (10 million points) to observe 

results faster. In this dataset, most windows are partially 

occulted by furnitures. But it was possible to see through all 

windows (no curtains or shutter). This dataset has the advantage 

of including different sizes of rectangular windows. The data 

acquisition was performed by the office David Pierrot 

(Mandelieu, France).  

 

With 10 million points, the point cloud to BIM with segmented 

windows process took 9 minutes. After several experiments we 

chose the following thresholds 

 

Parameter Value 

τ1 30 pixels 

τ2 300 

τ3 3 

τ4 3 

τ5 0.8 

 

Table 1. Threshold values for the energy function 

For the individual house, 69% of windows were detected and 

segmented. 100 % of unobstructed windows were detected and 

segmented. The algorithm failed to detect windows that were 

partially obstructed by furnitures. In the binary image, those 

windows are merged with the obstructions as a single region. 

The resulting openings were discarded as they had a very low 

data energy.  
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For each segmented window we manually checked the position 

of its centroid to evaluate the error of positioning in the final 

model. The average error is below 5 cm. See figure 6 for 

segmentation results.  

 

 
 

On the museum, only the offices’ windows were detected. 

Indeed, most windows were covered, closed with shutters in 

order to protect the models exposed in the museum. Those 

windows did not appear as holes in the point clouds of the 

walls.  

 

 

 

 

 

 

 

 

 

 A      B    C 

 

Figure 6. A) point cloud of the individual habitation. B) .obj model after segmentation of floors, ceilings and walls (Macher et al., 

2017); (Acquisition: David Pierrot, Mandelieu). C) .obj model after implementation of the energy function. 

 

 

5. CONCLUSION AND FUTURE WORKS 

We developed an algorithm to automatically detect and segment 

openings in indoor point cloud. While this purpose is pertinent 

on its own, it is part of a bigger project that aims at automatic 

registration of indoor and outdoor point cloud. In this regard, 

the results are very promising. Indeed, in order to register 

indoor and outdoor point clouds, only a few common points are 

necessary. For this purpose, detecting 100% of openings is not 

required.Yet the algorithm is capable of reaching 100% 

accuracy on point clouds acquired with unobstructed windows. 

This drawback had the algorithm perform poorly on our main 

dataset, the museum. However, it proved rather efficient on 

point clouds corresponding to this requirement. With the 

individual house, 100% of unobstructed windows were 

segmented. Including all windows (partially obstructed and 

completely obstructed) 69 % were segmented. The restriction of 

the method is not an issue for many point clouds. However, it 

can still be improved to detect and segment windows that are 

partially obstructed. For instance, we could implement the 

method that analyses the laser’s trajectory (Colleu and Benitez, 

2013).  It would let us separate holes in the point cloud that 

were caused by windows and objects.  

 

In order to reduce the error of positioning of the windows, we 

could consider the pattern of the façade. If we detect windows 

of the same type on the same floor, their centroids should be 

positioned periodically on the same height. Each detected 

window would enhance the positioning of similar windows.  

 

As for the museum, we intend to look more into deep learning 

approaches for window detection. Deep learning algorithm 

seem to be more appropriate to cover the large variety of 

windows that must be detected. 
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