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ABSTRACT: 

 

Increase in building complexity can cause difficulties orienting people, especially people with reduced mobility. This work presents 

a methodology to enable the direct use of indoor point clouds as navigable models for pathfinding. Input point cloud is classified in 

horizontal and vertical elements according to inclination of each point respect to n neighbour points. Points belonging to the main 

floor are detected by histogram application. Other floors at different heights and stairs are detected by analysing the proximity to the 

detected main floor. Then, point cloud regions classified as floor are rasterized to delimit navigable surface and occlusions are 

corrected by applying morphological operations assuming planarity and taking into account the existence of obstacles. Finally, point 

cloud of navigable floor is downsampled and structured in a grid. Remaining points are nodes to create navigable indoor graph. The 

methodology has been tested in two real case studies provided by the ISPRS benchmark on indoor modelling. A pathfinding 

algorithm is applied to generate routes and to verify the usability of generated graphs. Generated models and routes are coherent with 

selected motor skills because routes avoid obstacles and can cross areas of non-acquired data. The proposed methodology allows to 

use point clouds directly as navigation graphs, without an intermediate phase of generating parametric model of surfaces.  
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1. INTRODUCTION 

Population increase in cities implies a building growth. 

Buildings are becoming more and more complex, so finding a 

way inside them can be a challenge. This is especially 

remarkable in public buildings, i.e. railway stations, airports, 

universities and hospitals, as well as office and residential 

buildings. Top views and 3D models do not always allow 

comfortable interpretation of buildings to search for routes. The 

generation of specific navigation models, such as networks and 

hierarchical graphs, is necessary to apply path-finding 

algorithms. Each model type has its own characteristics related 

with node locations and connections. The characteristics are 

reflected in the route generation (Vanclooster et al., 2016). 

Navigation models should include information of relevant 

elements and navigable space according to pedestrian needs 

(Park et al., 2018): entrance, rooms, stairs, elevators, etc. 

 

In order to obtain navigation models, 3D or 2D plans of the 

buildings are used. But when theoretical information is non-

existent or outdated, LiDAR technology allows the acquisition 

of the 3D as-built environment quickly and accurately. 

Acquired point clouds contain geometric information and 

obstacle locations, not existing in the theoretical models. The 

disadvantage of point clouds is that they present a large amount 

of disordered information, density variations and occlusions. 

These limitations must be addressed in order to obtain complete 

and useful models of the scenes. 

 

The aim of this work is to develop a methodology to use indoor 

point clouds directly as navigable models for pathfinding. The 

models generated must be coherent with user motor skills. Two 

different user profiles have been chosen according to two motor 

skills, which correspond to the displacement of persons with no 

reduced mobility (PnRM) and people in wheelchairs. The 

proposed methodology involves correcting occlusions on 

acquired point cloud of floor and keeping the free unobstructed 

space necessary for a person or a wheelchair to pass 

comfortably. Point cloud is firstly classified as floor, ceiling and 

obstacles. The point cloud corresponding to floor and obstacles 

is rasterized to obtain a semantically enriched image with 

classes. On the raster image, obstacles are expanded, according 

to the free unobstructed width that corresponds to each motor 

skill, then, floor occlusions are corrected by applying 

mathematical morphology operations. The last phase is devoted 

to uniform point density, distribute graph nodes and join them 

by arcs. To verify the usability of the generated graph for real 

route calculation, a pathfinding algorithm is applied to generate 

routes. 

 

The rest of this paper is organized as follows. Section 2 collects 

related work about indoor modelling for path planning. Section 

3 presents the designed methodology. Section 4 is devoted to 

analyse the results. Finally, Section 5 concludes this work. 

 

 

2. RELATED WORK 

The most common indoor environment models are navigation 

graphs between rooms. These models are a variation of building 

topological graphs. Adjacent rooms are connected through 

doors by arcs (Tran et al., 2017). Rooms and doors are 

represented as nodes located in the centroid. Different floors 

can also be connected via stairs or elevators (Lorenz et al., 

2006). Nodes can be semantically enriched with information of 

type of element they represent (Fichtner et al., 2018; Ge et al., 
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2015). Topological building networks allows an easy path-

finding between rooms and floors, but has limitations in open 

spaces and does not consider the existing obstacles within each 

room. When rooms have complex shapes, visibility analysis is 

used to segment them by decentralizing nodes (Stoffel et al., 

2007). Another alternative is calculate new nodes in corners and 

new arcs, in order to generate more realistic routes 

(Boguslawski et al., 2016; Liu and Zlatanova, 2011; Yang and 

Worboys, 2015). 

 

Topological building networks can be generated from BIM 

(Building Information model) (Teo and Cho, 2016) or point 

clouds (Jamali et al., 2017). Depending on the input data, 

networks can be obtained in different ways.  In point clouds, 

doors and walls must be detected to delimit rooms (Díaz-

Vilariño et al., 2015; Nakagawa et al., 2015; Staats et al., 2018). 

In BIM, all elements are characterised, the application of 

methodologies for doors and walls detection is therefore not 

necessary. Sithole (2018) relates the skeleton of floor BIM 

elements, calculated from morphological operations, with an 

indoor network. 

 

An alternative to model based on the relationship between 

rooms is that based on navigable space. This modelling focuses 

on a distribution of the existing free space inside buildings, 

which is discretized through the Delaunay triangulation 

(Krüminaitè and Zlatanova, 2014), Voronoi diagrams 

(Wallgrün, 2005) or octrees (Fichtner et al., 2018). In works 

that model space from point clouds, navigable space is 

influenced by floor elements existing in scenes. Staats et al. 

(2017) distinguish between floor and stairs, as well as dynamic 

objects and furniture. Fichtner et al. (2018) also distinguish 

between navigable surfaces (stairs and floors) and the octree 

that distributes space is semantically enriched and with this 

information. Maruyama et al., (2017, 2016) reduce the number 

of points belonging to floor in order to create a navigation 

graph and analyse the accessibility of the environment. 

 

Certain applications require a more detailed modelling of the 

navigable environment, for example, the study of movement of 

crowds or evacuation in emergencies. In these cases, a cellular 

automata model is chosen, the floor is discretized at fixed size 

intervals, normally in grid or voxel-grid. The regular 

discretization allows a more precise location of people in the 

environment (Ren et al., 2017). Zhang et al. (2015) assign 

weights to a floor grid, related to distance to exit or dangerous 

zones, to calculate the movement of a crowd in an emergency 

situation. Ruggiero et al. (2018) employ a floor grid to study the 

probabilities of displacement of people. Occupation maps are 

another examples of cellular automata (Díaz-Vilariño et al., 

2018; Xu et al., 2018), navigable pixels can be differentiated 

from those occupied by objects. 

 

With regard to the mentioned works, the methodology presented 

in this paper exclusively employs an indoor point cloud without 

classifying or trajectory information as input. The floor is 

detected and part of its points are used as final graph nodes, 

distributed in the form of an 8 connected cellular automata. The 

rest of the elements, such as walls and furniture, are considered 

as obstacles. Their space and influence is eliminated from the 

navigable floor according to two motor skills and free 

unobstructed width in ISO-21.542 (ISO, 2011). Doors and other 

structural elements do not need to be detected and classified. 

Occlusions in the navigable floor are corrected. 

 

 

3. METHODOLOGY 

The input of the methodology is a point cloud of an one-plant 

indoor environment P(X,Y,Z). The methodology consists of a 

sequence of phases where the floor is detected, the navigable 

surface is delimited and the occlusions are corrected. At last, the 

point cloud of the navigable floor is downsampled, structured in 

a grid and converted into a graph. Figure 1 shows the workflow 

of the methodology. 

 

3.1 Floor and stairs detection 

To generate a precise map of the navigable surface, floors and 

stairs must be detected. A methodology for floor detection is 

developed by (Okorn et al., 2010), where floor and ceil are 

detected from the peaks of the 3D projection on vertical axes in 

a height histogram. The problem with this methodology is that 

small floors at different heights and stair segments are not 

detected correctly. In order to solve this, the methodology 

mentioned above has been modified and integrated into another 

major methodology explained in this sub-section. 

 

Firstly, normals N(Nx,Ny,Nz) of each point with respect to its n 

neighbours are estimated. Then, points whose normal has 

horizontal tilt Nz < nt are separated as possible floor points H 

and others as possible obstacles V. H are represented in a 

histogram in projection on vertical axis. The points whose bins 

have more weight correspond to the main floor F and ceiling C, 

which are differentiated by height. In the remaining horizontal 

points R, other fragments that also belong to the floor and stairs 

should be searched. 

 

The elements Er that form R are individualized by connected 

components (Soilán et al., 2016). Point to point distances 

D(Dx,Dy,Dz) between R and F are calculated. Elements Er 

containing points with Dz less than the maximum step height sh 

and with Dxy less than the minimum free unobstructed width 

fuw, are added to the floor already detected F. This process runs 

in a loop until new floor elements are no more detected. The 

Figure 1. Workflow of the methodology 
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pseudocode is indicated in Algorithm 1. This methodology 

ensures that false positives (i.e., chairs and tables) are not 

detected as floors (Figure 2). Floors more than distances sh, fuw 

from others are considered inaccessible. 

 

3.2 Navigable surface calculation 

In this phase, the navigable surface is delimited from the floor 

and the obstacle influence on it. The navigable floor is 

considered as the floor under the free unobstructed space, 

divided into height and width. 

 

Firstly, the free unobstructed height condition is applied. Two 

height thresholds have been defined for this, a minimum height 

fuh1 that a person can climb and a maximum height fuh2 that 

can pass without the danger of hitting the head (Figure 3). The 

distances between the complete floor Fc and possible obstacles 

(V and Rf) are calculated. The points with a distance between 

fuh1 and fuh2 thresholds are saved in an obstacle point cloud O. 

Remaining points are discarded. 

 

Secondly, the free unobstructed width condition is applied. 

Point clouds Fc and O are rasterized (Soilán et al., 2018). In 

each pixel, the mode of element class is saved: floor, obstacle or 

empty. The pixels corresponding to obstacles are dilated fuw, so 

the floor pixels in contact with them are eroded the same size. 

 

Finally, to complete the navigable surface, holes in the point 

cloud of the navigable floor are filled. The occlusion correction 

methodology presented in (Balado et al., 2019) is used as 

modified. This methodology allows to complete occlusions by 

means of morphological operations assuming floor planarity. 

The modification implemented consists of generating points 

based on each pixel occluded, and not on polygons that group 

several pixels. The rasterization, application of fuw and 

occlusion correction are represented in Figure 4. 

 

Algorithm 1.  

Detection of steps and floors at different elevations. 

Inputs: Main_Floor {F}, Residual {R}, step_height sh, 

free_unobstructed_width fuw 

Outputs: Floor_Complete{Fc}, Residual_without_Floor {Rf} 

Horizontal_elements {Er}  ConnectedComponents (R)  

New_Floor {Fn} F 

Fc  F 

While Fn ≠ Ø  

     Distances {D}  ||R,F||      

     Fn  Er ⸧ R : (D(xy) < fuw & D(z) < sh) 

     Er  Remove { Er ⸧ R : (D(xy) < fuw & D(z) < sh)} 

     Fc  Add {Fn} 

End while 

Rf  R ∈ Er 

Return {Fc,Rf} 

 

 

Figure 2. Comparison of distances between horizontal surfaces 

in relation to sh. 

 

Figure 3. Relation between free unobstructed height (fuh1 and 

fuh2) and obstacles (in red) for the navigable surface. 
 

 

 

Figure 4. Process of navigable surface delimitation and 

occlusion correction: a) Point cloud with labeled O (gray) and 

Fc (green), b) Conversion to raster, c) Dilatation fuw/2 of 

obstacles, d) occlusion correction, e) complete navigable floor 

point cloud without occlusions Fcn. 

 

3.3 Graph generation 

At this stage of the methodology, the complete navigable floor 

Fcn point cloud is used as nodes and in a 3D graph G. As the 

point cloud has great variations in point density and an 

excessive amount of points, a downsampled is applied to reduce 

and distribute the remaining points in a grid at a distance d 

between them. These points are used as nodes in the navigation 

network. The points are connected to each other by searching 

for neighbours at distance d0.5, which ensures 8 connections of 

each node in different directions and more realistic routes 

(Bemmelen et al., 1993). 

 

 

4. RESULTS AND DISCUSSION 

4.1 Datasets 

The methodology has been tested in two case studies provided 

by the ISPRS benchmark on indoor modelling (Khoshelham et 

al., 2017). The down floor of TUB 2 (Technische Universität 

Braunschweig, Germany) and Fire Brigade in Delft (The 

Netherlands) have been selected as case studies 1 and 2 

respectively. The first one has been acquired with a Zeb-Revo 

sensor and presents few occlusions. The second has been 

acquired with Terrestrial Laser Scanner Leica C10, has 

occluded floor areas and numerous furniture. The methodology 

has been implemented in Matlab and processed on an Intel Core 

i7-7700HQ CPU 2.80 GHz with 16 GB RAM. 
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4.2 Results of methodology application 

This sub-section aims to evaluate the quality of the graph 

obtained with the methodology application. In order to 

guarantee the reproducibility, the parameter values must be 

established (Table 1). Parameters n and nt have been calculated 

experimentally. Parameters sh, fuw, fuh1 and fuh2 have been 

extracted from ISO-21-542. The parameter d is related to final 

graph node density. In consideration of methodology is applied 

in indoor environments with reduced dimensions, it is estimated 

that d = 0.2 m is a good balance between route precision and 

number of nodes in the final graph. 

 

The quality of the final indoor navigation model depends on the 

intermediate results of the methodology phases. The correct 

detection of floor and stairs, the obstacle detection and 

occlusion correction allow to delimit the whole navigable 

surface. Obstacles are represented on the navigable surface as 

areas without navigation nodes. The two thresholds fuh1 and 

fuh2 differentiate obstacles for PnRM and wheelchairs, for 

example, in areas with stairs (Figure 5). The methodology 

application also considers people and closed doors as obstacles. 

These situations produce the disappearance of floor navigable 

areas and cause breaks in the continuity of the generated 

models. Therefore, during the acquisition process it is 

recommended that doors are open and there are no people in the 

area. 

 

Most of navigable surface in occluded areas has been 

regenerated. Non-regenerated areas correspond to locations on 

the point cloud border with incomplete walls, because 

occlusions are confused with the building outside (Figure 6). 

 

 

Figure 5. Stairs in case study 1. Obstacles (in red) considered 

for PnRM (a) and for wheelchairs (b) on the floor and stairs (in 

green). 

 

 

Figure 6. Top view of case study 2 after occlusion correction. 

Colour code: Obstacles in red, floor occluded corrected in blue, 

remaining navigable floor in green.   

Navigable surface has been correctly delimited according to free 

unobstructed space left by obstacles, different for each motor 

skill (Figure 7). Final navigation nodes have been distributed 

uniformly on the navigable surface by the downsampled and the 

structuring (Figure 8). No obstacle has been omitted. The 

number of nodes needed to create a detailed interior navigation 

model was 0.01% of the number of points in the initial cloud 

(Table 2). 

 

Parameter Abbrev. 
Value for 

PnRM 

Value for 

wheelchairs 

Number of 

neighbours 
n 10 points 

Normal threshold for 

horizontality 
nt 0.9 

Step height sh 0.15 m 

Free unobstructed  

width 
fuw 0.8 m 1 m 

Free unobstructed 

height 1 
fuh1 0.15 m 0 m 

Free unobstructed 

height 2 
fuh2 2 m 2 m 

Node distance d 0.5 m 0.5 m 

Table 1. Parameter values. 

 

Dataset 

Initial 

point 

number 

Motor 

skill 

Remaining 

node 

number 

Processing 

time 

1 13.1M 
p 979 11m 42s 

w 865 11m 50s 

2 7.3M 
p 1918 10m 23s 

w 1566 10m 57s 

Table 2. Point cloud size and time processing. 

 

 

Figure 7. Navigable floor (green) of stairs in case study 1 for 

PnRM (a) and for wheelchairs (b). Obstacles in red. 

 
 

Figure 8. Node distribution in case study 1 for PnRM. Colour 

code: nodes in black, obstacles in red and navigable floor in 

green. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-753-2019 | © Authors 2019. CC BY 4.0 License.

 
756



 

4.3 Results of pathfinding application 

To test if the generated models are suitable for pedestrian 

pathfinding, Dijkstra algorithm has been implemented to 

calculate routes between two nodes. Based on knowledge about 

the indoor environment of both case studies, it has been proved 

visually that the generated routes avoid obstacles and can 

generate routes between and inside rooms (Figure 9 and Figure 

10).  

 

Due to floor and stairs detection and the consideration of 

different obstacles for each motor skill, routes generated for 

PnRM profiles can climb stairs (Figure 11). In the case of 

wheelchair profiles, the stairs are not passable no routes can be 

generated over them. The occlusion correction has been allowed 

to generate routes through areas not acquired due to occlusions 

in the input point cloud (Figure 12). The higher processing time 

of pathfinding has not exceeded 0.02 seconds to calculate a 

route 24 metres long. The generated models would allow the 

application of pathfinding algorithms in real time. 

 

 

5. CONCLUSIONS 

In this work, a methodology to enable the direct use of indoor 

point clouds as navigable models for pathfinding is presented. 

The models generated are more detailed than other alternatives 

based on topological relationships between rooms. The 

methodology uses point clouds as input data only with 

geometric information, not semantic as in BIM. 

 

The designed methodology allows to obtain a model delimited 

by the existing obstacles and the free unobstructed space needed 

by each user. Occlusions in point cloud of the navigable floor 

have been corrected. Thus, it is not necessary to use complete 

acquired areas, which is difficult due to furniture existing in 

indoors. Direct use of points as final nodes allows the 

generation of routes without an intermediate phase of 

generating parametric model of surfaces.  

 

Routes generated in case study models have been shown to be 

navigable for both motor skills, PnRM and wheelchairs. In 

addition, the processing time of the route calculation makes the 

proposed models suitable for real time application. 

 

Future work will focus on adapting the methodology to work on 

different building floors at the same time. The application of the 

methodology to new case studies with a greater complexity in 

floor elements for PnRM and wheelchairs will also be valued. 
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Figure 9. Route between rooms in case study 1. Colour code: 

acquired floor in green, obstacles in red and route nodes in 

black. 

 

 
Figure 10. Route inside room in case study 2. Colour code: 

acquired floor in green, obstacles in red and route nodes in 

black. 
 

 
 

Figure 11. Route in stairs for PnRM in case study 1. Colour 

code: acquired floor in green, obstacles in red and route nodes 

in black. 
 

 
Figure 12. Route over occluded areas in case study 2. Colour 

code: acquired floor in green, obstacles in red and route nodes 

in black. 
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