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ABSTRACT:

With the rapid development of new indoor sensors and acquisition techniques, the amount of indoor three dimensional (3D) point
cloud models was significantly increased. However, these massive “blind” point clouds are difficult to satisfy the demand of many
location-based indoor applications and GIS analysis. The robust semantic segmentation of 3D point clouds remains a challenge. In
this paper, a segmentation with layout estimation network (SLENet)-based 2D-3D semantic transfer method is proposed for robust
segmentation of image-based indoor 3D point clouds. Firstly, a SLENet is devised to simultaneously achieve the semantic labels and
indoor spatial layout estimation from 2D images. A pixel labeling pool is then constructed to incorporate the visual graphical model
to realize the efficient 2D-3D semantic transfer for 3D point clouds, which avoids the time-consuming pixel-wise label transfer
and the reprojection error. Finally, a 3D-contextual refinement, which explores the extra-image consistency with 3D constraints
is developed to suppress the labeling contradiction caused by multi-superpixel aggregation. The experiments were conducted on
an open dataset (NYUDv2 indoor dataset) and a local dataset. In comparison with the state-of-the-art methods in terms of 2D
semantic segmentation, SLENet can both learn discriminative enough features for inter-class segmentation while preserving clear
boundaries for intra-class segmentation. Based on the excellence of SLENet, the final 3D semantic segmentation tested on the point
cloud created from the local image dataset can reach a total accuracy of 89.97%, with the object semantics and indoor structural
information both expressed.

1. INTRODUCTION

In recent years, the location-based services (LBS) and GIS
applications have been extended from outdoor to indoor
environments (Zhou et al., 2017), which also induces the rapid
development of indoor data acquisition methodologies and
sensors. The indoor 3D scenes created by light detection and
ranging (LiDAR) surveying, consumer-level RGB-D camera
collection, or structure from motion (SFM) technique are
now widely available (Dimitrov , Mani, 2015). These 3D
scenes are usually represented as semantically unkown 3D point
clouds (Hermans et al., 2014). However, for many indoor
applications, such as 3D object tracking and retrieval, robot
object manipulation, autonomous navigation and augmented
reality (Wang et al., 2015), which requires not only the precise
representation of the data, but also the semantic describing
of the full indoor 3D models. Therefore, the semantic
segmentation of indoor 3D point clouds is vital for semantic
mapping of indoor scene (Tchapmi et al., 2017).
The semantic 3D point cloud segmentation, which aims to label
the cluttered scene into meaningful semantic objects (Lu et
al., 2016), has been an active topic touches diverse research
fields (Liu et al., 2017). In the previous works, one of the
common approach for semantic 3D point cloud modeling is to
directly draw on the ideas of 2D image semantic classification,
that is, train point-by-point feature classifier based on 3D
geometric features (Koppula et al., 2011), then obtain the
semantic classification results by a optimization with spatial
context constraints (Munoz et al., 2010). With the development
of deep learning in 2D image classification, these methods have
been progressively extended to 3D point cloud classification,
becoming an important approach for 3D point cloud semantic
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annotation (Boulch et al., 2018) (Su et al., 2015). However, the
design of effective 3D features still exists large difficulty, due
to the problem of occlusions, data noise, holes and non-uniform
distribution of 3D point clouds (Zhou et al., 2009).
In the field of 2D image recognition and segmentation,
the construction of large-scale 2D label training datasets
has been studied for decades (Deng et al., 2009) (Rakelly
et al., 2018) (Xiao et al., 2010) (Russell et al., 2008),
forming a large number of standard datasets, such as LabelMe
(Russell et al., 2008), ImageNet (Deng et al., 2009),
ImageNet-segment (Kuettel et al., 2012), etc. Considering
the rich image datasets in 2D side, W. Yan (Wang et
al., 2013) proposed an exemplar SVM-based method which
propagates the label information from imageNet to 3D point
clouds. II fouad (Fouad et al., 2017) also adopted a 2D-3D
transfer to realize the 3D point segmentation for indoor scenes
from RGB-D images. Currently, deep learning algorithms
have bloomed and show impressive performance in different
application fields, such as object segmentation (Rakelly et al.,
2018), object recognition and 3D scene understanding (Zhao
et al., 2017). However, their results are restricted to the
segmentation results in 2D images, due to the challenge in
unconstrained spatial layouts, large variability of both object
and indoor scene types, and illumination variance. Moreover,
the spatial consistency and scene context between images
did not fully considered in these methods. While, indoor
spaces often have strong structural features such as vertical
horizontal structures of wall, ceilings, and floors. Therefore,
the indoor semantic 3D model not only needs to express
object information, but also requires to express the structural
information.

To summarize, the direct segmentation of point clouds in
3D space remains very hard, using the 2D-3D transfer to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-785-2019 | © Authors 2019. CC BY 4.0 License.

 
785



Figure 1. The framework of labeling transfer from 2D images to 3D point clouds

realize the semantic segmentation of indoor 3D point clouds
is currently a more practical and efficient way, especially for
3D scenes created from image collections with SfM systems.
To achieve this goal, a segmentation with layout estimation
network (SLENet)–based 2D-3D semantic transfer method is
proposed for robust segmentation of indoor 3D point clouds. In
the proposed method, we divided into three separate running
processes, namely “2D labeling and spatial layout estimation
based on SLENet”, “2D-3D labeling Transfer” and “3D
contextual refinement” (see Fig. 1). We first devised a SLENet
to combine the tasks of indoor semantic segmentation and
space layout estimation in an integrated network. Specifically,
SLENet can both learn discriminative enough features for
inter-class segmentation while preserving clear boundaries for
intra-class segmentation. The 2D-3D semantic transfer which
incorporates a pixel labeling pool and a graphical visibility
model is then utilized to efficiently propagate the 2D labels
and spatial information to 3D point clouds. Finally, a label
prediction approach is developed to realize the 3D-contextual
refinement, which explores the extra-image consistency with
3D constraints to suppress the labeling contradiction caused by
multi-superpixel label fusion.

2. METHODOLOGY

2.1 Segmentation and Spatial Layout Estimation Based
On SLENet

Although object semantics and spatial layout are both essential
to describe an indoor scene, within many works based on deep
learning, none of them tackle these two tasks simultaneously.
To this end, this paper proposes a new network, called SLENet
(Segmentation with Layout Estimation Network), to combine
indoor semantic segmentation with space layout estimation.
This new network involves three components: the Backbone
Network, the Segmentation Head and the Layout Head, as
Figure 2 illustrates.

The Backbone Network can be divided into six stages according
to the size of feature maps, and it is worth noting that low-stage

Figure 2. The architecture of SLENet

features contain more spatial information while the higher ones
contain more semantic information. Therefore, we introduce
a new architecture called Large-scale Residual Connection, as
the dotted lines in Figure 2 and Figure 3(a) show, to transmit
spatial information to high stages for layout estimation and
semantic segmentation. Unlike residual structure in ResNet (He
et al., 2016) that only connects adjacent layers, large-scale
residual connection connects different stages rather than layers
in a dense manner, in which case it can utilize special
features from previous stages to a more considerable extent
while preserving the ability of residual structure that facilitates
gradient backpropagation and prevents vanishing gradient
problem. Moreover, from the second stage, each flowing stage
in the Backbone Network contains a solid block(Figure 3(b)),
which is proposed in DenseNet (Li , Vu, 2018), to improve
information flow between layers and fully exploit features
extracted previously. Semantic Segmentation can be regarded
as a pixel-level classification that includes object classification
and localization, so the design of the Segmentation Head
should take these two tasks into account. To fully utilize
high-level semantics for classification, the Segmentation Head
is attached to the top of the backbone network, and adopts
the Atrous Spatial Pyramid Pooling(ASPP) (Chen et al.,
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2018) of Deeplab v3 to extract and merge multi-scale
features(Figure 3(c)). Also, segmentation head also leverages
the encoder-decoder architecture to recover high-resolution
result from low-resolution feature maps. However, different
from Deeplab v3, we add the correspondent features from
previous stages into every deconvolution stage by concatenation
instead of recovering directly from the features linearly
produced by the encoder, which ignores the spatial information
contained in previous layers. Therefore, while the output of
the backbone network provides semantic features for object
classification, the extra spatial information in the decoding
process promotes more accurate localization prediction.

(a) (b) (c)

Figure 3. Illustrations of Large-scale Residual

Connection, Dense Block and ASPP. (a) Large-scale

Residual Connection. The blue block means a stage in the

backbone network; others refer to convolutional layers.

(b) The structure of Dense Block. A square here refers to

a convolutional layer. (c) Atrous Spatial Pyramid.

As for the layout estimation, it should be noted that layout
estimation can be formulated as dividing indoor space into five
categories: left wall, middle wall, right wall, floor and ceiling,
where spatial features play a much more important role than
the semantic ones. This observation guides us to attach the
layout head to lower layers to utilize the spatial information
directly. Since different stages produce multi-size feature maps,
we upsample smaller maps to fuse these multi-level features.
After the fusing block, the fused features will go through a
specifical design block to yield surface semantic labels, and the
box layout (Figure 2). The box layout then acts as a rough
estimation, combined with the extracted lines and vanishing
points of the indoor scene to get a series of candidate spatial
layouts. Finally, compared with the ground-truth, we choose
the layout with the highest score as the final result.

2.2 2D-3D Labeling Transfer

In this section, we describe how to achieve the label transfer
from 2D images to 3D point clouds. We first oversegment
the 2D images into superpixels and assign the corresponding
semantic label to each superpixel according to the segmentation
result from SLENet. The label propagation can then be
transmitted in units of superpixels, to avoid the time-consuming
pairwise 2D-3D semantic transfer and reinforce the robustness
to mismatching error occurring in 3D reconstruction from
images. The specific 2D-3D transfer is formulated as a
visibility graph model, which is constructed based on the view
relationship between the camera and the 3D point in the SfM
system.

2.2.1 Pixel Label Pool Construction Assuming that the
3D point cloud model is defined as P = {pi}, each
point is described by 3D coordinates and RGB colors
{xi, yi, zi, Ri, Gi, Bi}. The point cloud model is created with
the hierarchical SfM-PMVS algorithm with R real images.
Since the spatial 3D point is inversely calculated from the
feature point matching sequence in multiple images during the

3D reconstruction of SfM, the mapping relationship between
the 2D feature points and the corresponding 3D point can
be established. However, SfM can only get sparse 3D
point clouds, while the dense 3D point clouds are obtained
through the patch-based region growing algorithm (PMVS).
To semantically label the dense point cloud constructed from
SfM-PMVS, we first use the Simple Line Interface Method
(SLIC) method (Noh , Woodward, 1976) to segment an image
in units of superpixels. Then we construct the region block
of the feature points so that the category of a superpixel is
represented by the categories of the feature points in it. Through
the visibility model built from the SfM system, the superpixels
can be further back-projected into the 3D space, and the 2D-3D
label propagation for dense point clouds can finally be realized
with the superpixel label pool.

The pixel label pool is a collection of semantic labels of all
superpixels in a 2D image, which can be expressed as S =
{Si, lsi} , where i ∈ N indicates the superpixel number (N
is the number of superpixels),Si represents the ith superpixel,
lSi ∈ L signifies the semantic label value of the superpixel
Si. The specific construction process of the semantic label pool
is shown in Figure 4. And the label of each 2D superpixel is
directly delivered by the segmentation result of SLENet. The
goal of 2D-3D semantic transfer is to assign a corresponding
semantic label to each point in the point cloud according to the
pixel label in the superpixel pool. Using the units of superpixels
to realize 2D-3D label transfer is a robust solution for 3D dense
point cloud segmentation, which can also avoid the reprojection
error by establishing a superpixel buffer for 2D feature points
and the corresponding 3D point.

Figure 4. The process of superpixel label pool

construction

2.2.2 Graph Model Construction After getting the
semantic label of the 2D image in units of superpixels, we
need to establish a bridge between 3D point cloud and the
corresponding 2D superpixels to realize the semantic transfer
from the 2D superpixels to 3D points. Here, we define 3D
point cloud P = {pi} and superpixels S = {Si} as nodes
V = {pi} ∪ {Si}, and define the links of superpixels and
3D point as edges ε. Thus, a graph model G = {v, ε} can
be constructed based on Markov Random Field (MRF) (Li,
1994). According to the definition of the MRF graph model,
each node is only associated with itself and its neighbors, which
is independent of other nodes. Since the label of each 2D
superpixel is delivered by the segmentation result of SLENet,
there is no need to bridge edges between 2D superpixel nodes,
which is different from the work of Wang (Wang et al., 2013).
Hence, we only need to consider the relationship between every
3D point and its associated 2D superpixels. Recall that the
projection relationship between 3D point cloud and superpixels
is constructed with the visibility model created from the SfM
system. The visibility model connects the camera to the point
cloud and can tell that a 3D point is reconstructed from which
2D images. In other words, a 3D point node is connected with
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multiple 2D superpixel nodes via the SfM-encoded visibility
model. Thus its semantic label distribution can be determined
by all connected superpixel labels. As shown in Figure 5(a), it
can be seen that point 3 is visible from camera 2 and camera
3, the visible images are therefore imaged 2 and image 3. This
means the semantic label distribution of point 3 is determined
by the semantic of two superpixels (one is in image 2, and
the other is in image 3). Based on the visibility model, a 3D
point can be projected to the corresponding image space with
the transform matrices (i.e., camera parameter), thus connected
with its associated superpixels. The edges between a 3D point
and its associated superpixel nodes are then created as the red
links drawn in Figure 5(b). Finally, the desired graph model is
constructed.

(a) (b)

Figure 5. Construction of the graph model from the

visibility model. (a) This graph shows the projection

relationship between cameras and 3D point cloud in the

SfM-encoded visibility model. (b) is the construction of

the graph model, which express the corresponding

relationship from 2D to 3D, where I∗represent the ∗th
image, SI∗∗ indicate the superpixel in the image I∗.

2.3 3D Contextual Refinement

Given the semantic superpixels and the graph model, we can
fuse the 2D superpixels in multiple images to achieve the
propagation of semantic labels from 2D superpixels to 3D
points. Since for a 3D point p∗, the 2D superpixels in set
{Si | (Si, pi) ∈ ε} may have different label categories,
the label distribution of the point can then be defined by the
occurrence probability of every label. We, therefore, formulate
the problem of assigning a 3D point with the correct label as a
multi-category labeling problem. The potential energy function
is constructed as the following equation :

E =
∑

pi∈P

Ψd(l(pi) (1)

In this quation, E is the dependent variable of the potential
energy function, pi is the set of 3D points, l(pi) indicates the
semantic label of 3D point pi, and Ψd denotes a data term.
Since the superpixels associated with the same 3D point can
define a distribution function for the point, label propagation
can be conceived as labeling the 3D point with the label
with maximum occurrence probability. Therefore, if the label
distribution function of the 3D point is Pp∗ , the data term
definition can be defined as:

Ψd(l(pi)) = −Ppi(l(pi)) (2)

Finally, setting L as the semantic annotations of the 3D point
cloud, we can then minimize the potential energy function E by
graph cut algorithm to get the label mapping l(.):

l(.) = argmin
l∈L

E = argmin
l∈L

∑

pi∈P

Ψd(l(pi)) (3)

3. EXPERIMENTS

3.1 Experimental setup

3.1.1 Dataset For the semantic segmentation training, we
use the NYUDv2 RGBD indoor dataset (Silberman et al., 2012)
and a local dataset collected from a large meeting room in
LIESMARS (State Key Laboratory of Information Engineering
in Surveying, Mapping, and Remote Sensing) of Wuhan
University. From NYUDv2 RGBD, we select 769 images with
30 classes where 600 for training, 100 for validation and 69
for the test. Compared to scenes in NYUDv2 RGBD, the 3D
scene we aim to reconstruct contains some objects that possess
some unique features, e.g., the cane chair to be reconstructed
later is different from any chair in NYUDv2 RGBD. Therefore,
we construct a local dataset including such objects to fine-tune
the net. The additional dataset is composed of 261 images
with 39 densely annotated. The additional dataset includes
12 categories, such as a door, window, sketchpad, decorative
painting, television, air conditioning, chair, desk, book, bridge,
plant, and sundries, which are related to the indoor semantics to
be reconstructed later.

(a) (b)

Figure 6. Example of semantic segmentation training

dataset for SLENet.

For the layout estimation, we train the layout head on the
dataset published by Hedau et al. (Hedau , Hoiem, 2009),
which consists of 313 images, and test it on the local dataset
mentioned in segmentation training. The spatial layout can be
described by a 3D box or a surface layout. As shown in Figure
7, a box layout separates the ceiling, the wall and the ground
by lines extracted from corresponding borders, and a surface
layout segments the whole scene into five classes: the ceiling,
the middle wall, the left wall, the right wall and the ground, in
which all occlusions in the interior space are ignored.

(a) (b)

Figure 7. Example of spatial layout training dataset.

The 261 images collected from LIESMARS (local dataset)
were used to create the 3D scene for the final semantic
segmentation test of the indoor 3D point cloud. As shown
in figure 8, the test 3D scene is a large-scale complete indoor
scene.

3.1.2 Multi-stage Training Strategy

1. As we hope the backbone network can extract rich and
discriminative features, it is natural to train the network for
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(a) (b)

Figure 8. Dataset of meeting room.(a) shows the RGB

images we collected;(b) shows the corresponding 3D

point cloud.

segmentation first since it is more complicated than layout
estimation.

2. In the first stage, only the backbone network and
segmentation head are trained on the NYUDv2 RGBD
indoor dataset and then are fine-tuned on the additional
collected images.

3. In the second stage, only the head for layout estimation
will be trained. In detail, we jointly train the layout
structure lines and semantic surface labels to alleviate the
issue caused by occluded boundaries in the cluttered room.
The datasets used here are the same as the ones used in the
first stage.

4. In the third stage, all layers in the whole network are
jointly optimized on the same two datasets.

3.2 Results and Analysis

3.2.1 Segmentation and Layout Estimation Since
SLENet adopts some structures from Deeplab v3+ and
DenseNet, e.g., dense block and atrous spatial pyramid
pooling, we compare the results of Deeplab v3+, DenseNet121,
and SLENet on the publicly available NYUDv2 RGBD dataset
to validate the advantage of SLENet. We implement the three
models in Keras with Tensorflow as a backend, and employ
Adam optimizer with 1e-4 as initial learning rate. The models
are trained for 10K iterations on one NVIDIA GTX 1080Ti.
Figure 9 shows the segmentation results of some sample
images. From the results in the first and second columns, it
is evident that SLENet can balance better between preserving
structure details and learning discriminative features than
DenseNet121 and Deeplab v3+. More specifically, although
DenseNet121 and Deeplab v3+ respectively perform well in
terms of preserving structure details, e.g. object edge, and
learning different categories, DenseNet121 tends to mistake
objects sharing similar features (the light green refers to shelf
while the red denotes bookshelf), and Deeplab v3+ is more
inclined to over smooth edges and even obscure boundaries
between objects belonging to the same class. Different from
the two nets, SLENet retains sufficient structure details by the
spatial information from large-scale residual connection and
solid blocks, and succeeds in learning discriminative features
with the multi-scale features integrated by ASPP, in which case,
SLENet circumvents the shortcomings found in DenseNet121
and Deeplab v3+.
Figure 10 shows the segmentation results of SLENet after
fine-tuning on the local dataset. The segmentation accuracy
on local dataset reaches 96%. Figure 11 shows the results of
layout estimation. The pictures with black background are the
rough outputs of SLENet, indicating that SLENet successfully
acquires the ability to estimate the spatial layout of an indoor
scene, and the red boxes in images denote the final layout
refined from the estimation of SLENet.

(a) (b)

Figure 10. The semantic segmentation result with our

proposed SLENet. (a) shows the input image and

semantic segmentation results of our network. (b) shows

the segmentation legend of SLENet.

3.2.2 3D point cloud Segmentation Within the extracted
semantic segmentation and layout estimation results, we then
oversegment each of the 261 images used for point cloud
reconstruction into superpixels and assign the semantic labels
to each superpixel to form the superpixel label pool. In this
work, we employ the SLIC algorithm to perform the superpixel
oversegmentation, and the region size is set to 10, while the
regular term coefficient is set to 1.
A quantitative evaluation of the point cloud segmentation result
was also made as a reference. The manually labeled validation
semantic point cloud was used as the reference data. The total
number of testing 3D points is 13917738, while the corrected
labeled points are 12521788. Thus, the average segmentation
accuracy for the entire point cloud is 89.97%.

Figure 12. The semantic segmentation result of the test

3D point cloud.

4. CONCLUSION

In this paper, we presented a 2D-3D semantic transfer method
for robust segmentation of indoor 3D point clouds to tackle the
difficulties of lack of robust 3D features and adequate indoor 3D
training data in the point cloud semantic segmentation process.
In order to semantic modeling of the indoor scene with both
individual object and spatial structure information, a SLENet is
devised to simultaneously tackle these two tasks. Except for the
combination of semantic segmentation with layout estimation,
the proposed SLENet also adopt some network structure for
feature extraction and fusion to form a new architecture,
which can robustly solve the notorious problem, such as
uneven illumination, complicated texture, and high-occluded
situations. In comparison with the current popular DenseNet
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Original Images Ground Truth DenseNet121 DeepLab v3+ SLENet

Figure 9. Qualitative comparisons among DenseNet121 model, Deeplab v3 model and our SLENet model on NYUDv2

RGBD dataset.

(a) (b) (c)

Figure 11. Indoor spatial layout estimation results. (a)

shows the input images of SLENet. (b) shows the rough

spatial layout estimation results with our Network. (c)

shows the detail spatial layout extraction results.

and DeepLab v3+, the experimental results in both benchmark
dataset and local dataset also showed the superiority of the
proposed SLENet. Since the semantic labels of 3D point cloud
are transferred from 2D images in our solution, the excellence
of SLENet thus guarantees the accuracy of the final 3D point
cloud segmentation.
Moreover, the final testing on the 3D scene created with
local image dataset further verified the effectiveness of the
proposed method. It is worth noting that the proposed 2D-3D
semantic label propagation method is mainly suitable for the
SfM modeling point cloud, to some extent, our method has
some limitation in the processing of some other segmentation
situations. As we know, the 3D geometry features play an
essential role in the 3D semantic annotation process. Therefore,
we will explore the effective combination of the extracted 2D
annotation and 3D geometry features in the future work, leading
to better label assignment of the 3D point cloud model.
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