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ABSTRACT: 

 

Route planning and navigation in indoor space have become a hot topic recently. To accomplish this task, a map and a real-time 

detection system are needed. Due to Lidar systems’ high efficiency in data acquisition, Lidar sensors have become an indispensable 

part of an object detection system. In this paper, we use Lidar points to generate obstacle maps. The obstacle maps can be used as a 

reference for route planning and navigation. To identify single objects more precisely, a deep network combined PointNet with 

Markov Random Field (MRF) is designed in our work to classify Lidar points. Then, single objects are segmented by using the 

Euclidean clustering method. After that, the prior rules and derived criteria we summarized from large amount images are used to 

determine objects’ kind between Influence Movement Obstacles (IMO) and Non-Influence Movement Obstacles (N-IMO). Finally, 

objects are projected into a 2D plane to generate obstacle maps. To evaluate the performance of our method, experiments were 

performed on the S3DIS dataset of Stanford University. The results show that our method greatly improves the overall accuracy 

compared to the original PointNet model, and can generate high-quality obstacle maps. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Semantic scene recognition is a challenging task for robot 

vision, especially when used for human symbiotic robots living 

and working collaboratively with humans together in daily life 

(Kyosuke et al., 2017). Compared with outdoor counterpart, 

indoor scene annotation is a relatively difficult issue since it 

usually contains illumination variations, occlusions and 

overlaps among objects, significant appearance variations and 

imbalanced representations of object categories (Chu et al., 

2017). To data it has become a more noteworthy issue how to 

connect the indoor scene recognition with the real life. Hence, 

this paper presented a method of fusion the indoor scene 

recognition with the real life to construct the obstacle element 

map. 

 

In recent years, many methods about indoor scene recognition 

have been presented. Such as Random forests (Fröhlich et al., 

2012), Support Vector Machines (SVM) (Chuan et al., 2009), 

Conditional Random Field (CRF) (Zheng et al., 2015) and 

Bayesian classifier (Alexander et al., 2012) and so on. With the 

development of the deep learning, the deep learning -based 

methods has been increasingly popular in recent years. 

 

Nowadays, numerous deep learning-based architectures are 

developed, such as Convolutional Neural Networks (CNN) 

(Girshick, 2015), Recurrent Neural Networks (RNN) 

(Francesco et al., 2016), Multi-scale Convolutional Neural 

Networks (MCNN) (Zhao and Du, 2018), Fully Convolutional 

Network (FCN) (Jonathan et al., 2015), Visual Geometry Group 

Network (VGGNet) (Simonyan and Zisserman, 2014), Google 

Inception Network (GoogleNet) (Szegedy et al., 2015), 

Residual Network (ResNet) ( Ren et al., 2012), Recurrent 

Convolutional Neural Networks (R-CNN) (Ren et al., 2015) 

and so on, and show superior performance in many applications. 

However, the data of being used to the models are usually 

images data or depth images data. And color images data or 

depth images data have its own limitation that can’t describe the 

real world better. Compared with color images and depth 

images, the 3D point cloud data not only have RGB information, 

but also have more comprehensive spatial geometry information. 

Consequently, the 3D point cloud data have the ability of 

expressing the real world relatively better. In 2016, the team of 

Professor Silvio Savarese of the Computer Vision Laboratory at 

Stanford University in the United States proposed a network 

model that can apply point cloud data to deep learning, named 

PointNet (Charles et al., 2017). The availability of PointNet 

made the point cloud data can be used without voxelization 

(Dai et al., 2018) or super-voxelization operation directly, and 

reduce the loss of spatial features of point cloud data in the 

process. From then on, the utilization of 3D point cloud gets 

into the new era. However, PointNet has also the boundedness 

that it could not get a better result at recognition of large scale 

scene. Therefore, we proposed a method integrating PointNet 

with Markov Random Field (MRF) to improve the precision of 

scene recognition. 

 

When it comes to construction of obstacle element map or 

construction of indoor navigation map, several methods have 

been proposed. Nowadays, the most common method is to 

generate the map manually by software including Arcgis, Auto 

CAD and so on. With the advancement of technology, the 

predecessors also have proposed some automatic mapping 

methods, such as probabilistic mapping (Nüchter and Andreas, 

2008), feature based mapping (Hao and Srigrarom, 2016), and 

the image intensity and shadow based mapping (Pradeep et al., 
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2018). Except above methods, the more popular now is 

Simultaneous Localization and Mapping (SLAM), it is one of 

the main techniques for map generation. (Egodagamage and 

Tuceryan, 2017). 

 
Fig. 1 The construction outline of the obstacle element map 

 

Through the method of constructing obstacle element map 

based on indoor scene recognition proposed in this paper, the 

indoor scene recognition and indoor navigation can be 

combined better, and it has strong practical significance. 

 

The rest of the paper is as follows. Section 2 describes the 

proposed method in detail. Section 3 presents the experimental 

results and analysis for evaluating the proposed method. This 

paper concludes with a discussion of future research 

considerations in Section 4. 

 

2. METHODOLOGY 

In this paper, we proposed a method based on indoor scene 

recognition to automatically construct obstacle element map. 

This method combines semantic information from point cloud 

data, and indoor scene recognition to construct the obstacle 

element map. Thus: (1) Point cloud data input, and PointNet 

and MRF model fusion for recognition of indoor scenes. (2) 

Classification of the point cloud data of objects obtained in step 

(1) into two groups (i.e., influence movement obstacles and 

non-influence movement obstacles) and the extraction of 

semantic information for the four main classes (wall, door, 

influence movement obstacles and non-influence movement 

obstacles). (3) Construction of obstacle element map from the 

semantic information obtained from step (2), Fig. 1 outlines the 

workflow. 

 

2.1 Recognition of Indoor Scene 

In this section, we consider point cloud data as the experimental 

data. Compared with other types of data, point cloud data not 

only has RGB information, but also has more comprehensive 

spatial geometric information than images or depth images. 

Conversely, two-dimensional data is compared with three-

dimensional data, lacking much valuable information about the 

geometry and geometric layout of objects (Anand et al., 2012). 

Hence, in this paper, we proposed a method to recognize indoor 

scene by fusing PointNet with MRF using point cloud data. 

 

2.1.1 PointNet Model: The PointNet (Charles et al., 2017) 

has three key parts: the max pooling layer as a symmetric 

function to aggregate information from all the points, a local 

and global information combination structure, and two joint 

alignment networks that align both input points and point 

features. To further improve on the PointNet model, we added 

colour features based on the original PiontNet architecture, thus 

improving recognition accuracy of indoor scene greatly. 

 

2.1.2 Markov Random Field (MRF): Markov Random 

Field (MRF) (Geman and Geman, 1987) is a widely 

commended model. It has been used for a lot of meaningful 

things, such as scene annotation (Ren et al., 2012), scene 

segmentation (Russell et al., 2009), model reconstruction 

(Sengupta and Sturgess, 2015), etc. and so on. The MRF model 

is a weighted undirected graph E with a set of vertices V and a 

set of undirected edges between neighbouring vertices (Liu et 

al., 2018). In this paper, when scene recognition of point clouds 

is performed, many point clouds get distributed in discrete 

random fields, V represents the set of points in point cloud data, 

and each random variable has a point associated with it. Our 

purpose is to infer the label of point cloud data Y= {y1, y2,…, 

yV}, where yi is the label of point cloud i. 
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2.1.3 Fusion of PointNet and MRF: For the traditional 

PointNet, when point cloud segmentation or classification is 

implemented on a small scale, we can get better a result. 

However, when we implemented the traditional PointNet on a 

large scale data such as ours, we couldn’t get a better result, so, 

there was a need to improve it. We combined the PointNet with 

MRF based on the original PointNet architecture. In fusion 

process, expression of the energy function is the most important. 

Motivated by idea of deep learning and random field fusion 

(Liu et al.,2018; Li and Wang, 2016; Zheng et al.,2015), we 

considered the output layer of the PointNet as the unary term. 

Also, we can generate the pairwise term by using the feature 

correlation matrix to find out similar points and restrain the 

corresponding features to become more similar. So, the energy 

function is shown by Eq (1). As a result, the point clouds in 

indoor scene are classified into seven classes through PointNet-

MRF integration.  

 

 )(En)(EnEn(Y) pairwiseunary YY 1 +=   (1) 

 

where the unary energy term is the output layer of the PointNet, 

and the pairwise energy item is generated by using feature 

correlation matrix to find out the more similar points. 

 

2.2 Construction of Obstacle Element Map 

This section includes mainly two parts. Section 2.2.1 describes 

the criteria and method for influence movement obstacles and 

non-influence movement obstacles determination. The 

generation and expression of obstacle element map is described 

in section2.2.2 

 

2.2.1 Criteria and Method: The indoor scenes are generally 

more complicated. According to the Flexible Space Subdivision 

(FSS) framework principle (Abdoulaye et al., 2018), objects in 

indoor environments be divided into three classes, thus: the 

static objects (walls, ceilings, floors, etc.), semi-moving objects 

(beds, tables, chairs, etc.), and moving objects (mainly people 

and robots, etc.). The focus of this study is the recognition of 

static (specifically wall) and semi-moving object classes. 

 

There are several kinds of objects in an indoor scene. From the 

perspective of indoor navigation, some of them will obstruct the 

movement, and others will not. Thus, we can divide the objects 

in the room into two classes, those that influence movement and 

those that do not influence movement. Before determining 

whether the obstacles influence the movement or not, we 

collected a large number of images of the environment (family 

room, office, hospital, school classroom and indoor 

environment of the train station, etc.), as shown in Fig. 2. After 

summarizing the indoor environment in the form of samples, we 

made some observations.  

 

For the hospital indoor environment, the beds and cabinets in 

the ward are placed against the wall. In the clinic, the doctor's 

desk and the bed for observing the condition of patient are also 

placed against the wall. But there are a lot of benches in the 

waiting room that are not placed against the wall. In the 

classroom scene, some of the chairs and tables are placed 

against the wall, and the other part are basically placed far away 

from wall. And, there is a teaching desk in front of classroom. 

The desks, sofas etc. are placed against the wall, and some 

employees' desks are placed away from the wall, and the 

conference tables are basically placed in the central position of 

the unit space in office buildings. In shopping mall, most of the 

rest chairs and the shelves in the store are placed against the 

wall, in addition, a small number of shelves are placed away 

from the wall. In the family room, the beds, bookcases, desks, 

sofas, wardrobes, etc. are placed near the wall, but the objects 

such as dining tables, coffee tables, etc. are placed away from 

the wall. In the station, objects such as ticket vending machines 

are basically placed against the wall, in the waiting area, most of 

the rest benches are placed away from the wall. Some of the 

tables and chairs are placed close to the wall, and many others 

are placed far from the wall inside the restaurant. Therefore, we 

can summarize the following prior knowledges according to the 

layout rules of each typical scenario: 

(1) In the hospital, the beds of patient, cabinets, tables and 

benches are IMO. 

(2) The students’ desks and the teaching table are IMO in the 

classroom scene. 

(3) In the office buildings, the desks, sofas, conference tables, 

bookcases and so on are the IOM. 

(4)  For the shopping mall scene, the rest chairs, shelves and the 

tables are IOM. 

(5) At family room, so many objects are IOM, such as, the beds, 

bookcases, desks, sofas, wardrobes, etc. 

(6) There are mainly dining tables and bar counter are the IMO 

at restaurant. 

(7) In the station, objects such as ticket vending machines and 

the benches are IMO. 

 

If the objects are not included above all in each scene, we will 

determine them by two criteria. First, we can calculate the 

shortest distance between wall and object, and consider it as a 

criterion. Furthermore, some of the objects are especial, and we 

can determine whether they influence movement or not 

according to their properties (weight, wheels). However, we 

usually can’t get the weight of an object, so, we use the volume 

attribute of objects to measure the mobility of them. Moreover, 

because the wheels are mostly located at the bottom of the 

object, they are easily blocked by the objects themselves. 

Unfortunately, point cloud data in these areas sometimes has 

occlusion, and it is difficult to determine whether the wheels 

exist or not, hence, the availability of wheels as a criteria is not 

included in the scope of this study. For the objects that 

influence movement, we have to avoid them when we carry out 

indoor path plan. And for the objects that do not influence 

movement, we need not to avoid them. The detail discussion of 

possible priori rules are as follows: 

 

First, we have two indicators, which are the shortest distance D 

from the wall and the volume Vt of the space occupied by the 

object. (1) All point clouds after indoor scene recognition can 

be divided into three types. The first type includes doors and 

walls, and belongs to the two major parts of the obstacle 

element map. The second type mainly includes tables, chairs, 

and bookcases etc. that are easily recognizable. The third type is 

referred to as others, and such objects will not be counted in the 

production process of the obstacle element map. (2) When 

classifying according to the shortest distance from the 

recognized indoor object to the wall, we need to calculate the 

shortest distance D between the object and the wall, and setting 

an appropriated threshold D'. (3) For the calculation of the 

volume V of the object, first, we create a grid on the XOY plane, 

and the area of each grid is set to S, and then the point clouds 

are projected onto the XOY plane. For each grid, if it contains 

points, it will be marked as 1, and if there is no point, it is 

marked as 0. Finally, the number of grids with the value of 1 is 

represented as N'. Now, the maximum and minimum values of 

the Z values in the cloud cluster are determined as Zmax and 
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Zmin respectively, and the corresponding difference Z' = Zmax 

– Zmin is calculated. Hence, the formula for calculating the 

volume of the object is as shown in equation (2). (4) In the z-

axis direction, the minimum value z for a point cloud cluster is 

compared with the minimum value Zmw of the wall class point 

cloud, the difference is recorded as Zc, and this operation’s 

formula is as shown in equation (3). Now a threshold Zy is set. 

If Zc > Zy, the point cloud cluster will belong to other class and 

henceforth ignored. 

 

 ''V ZSNt =  (2) 

 

 Zmwz −=cZ  (3) 

 

Based on the above two criteria, we conclude four possible 

cases: 

D<D’ and Vt>Vt’; 

D<D’ and Vt<Vt’; 

D>D’ and Vt>Vt’; 

D>D’ and Vt<Vt’; 

Where Vt’ is set as the volume threshold. Finally, based on the a 

priori rules we have obtained, we can make the following 

judgments. If there is the first to third condition, the object will 

be classified as an object that influence movement, and the 

object needs to be circumvented during path planning and 

navigation. If there is a case of the fourth condition, the object 

will be classified as non- influence movement. At the same time 

in path planning and navigation, we do not need to avoid this 

obstacle. In this paper, the data we use belongs to the office 

building scene, thus, we could use the third prior knowledge 

and derived criteria to determine objects. 

 

       

       

       

       

(a)Hospital (b)Classroom (c)Office 

building 

(d)Shopping 

mall 

(e)Family room (f)Restaurant (g)Station 

Fig. 2 The image data of collecting 

 

Based on the above multiple criteria, the point cloud 

experimental data finally can be divided into five classes (doors, 

walls, influence movement obstacle, non-influence movement 

obstacle and other class), and then complete the final judgment 

of object classes in complex indoor environments. 

 

2.2.2 Generation of Obstacle Element Map: In this section, 

we will use the point cloud experimental data that has classified 

elements to generate obstacle element map. First, we put the 

point cloud experimental data after finishing the element 

classification in an XOY plane. Second, the experimental data 

with doors and walls semantic information are grouped together 

and completed by RANSAC fitting (Pfister, 2003; Qian and Ye, 

2014). Third, we group the data with semantic information of 

influence movement obstacle and non-influence movement 

obstacle together, and complete the work of cluster by 

Euclidean Cluster Extraction (Yu et al., 2015; Sparks and 

Algorithm, 1973). Finally, we used black lines for walls, green 

lines for doors, red planes for influence movement obstacles, 

and green planes for non-influence movement obstacles.  
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3. EXPERIMENTATION AND ANALYSIS 

In this section, the main discussion is the evaluation and 

analysis of the experiment. To ensure the validity of the 

experiment, we selected multiple experimental evaluation 

indicators to evaluate the experiment. 

 

3.1 Experimental Data and Evaluation Indicators 

In this paper, we considered S3DIS data set of Stanford 

university (Dai et al., 2017) as the experimental data, and the 

data set was collected using the Matterport Camera. The whole 

data set can be divided into 6 areas covering over 6000 square 

meters, and including a total of 695,878,620 colour points. The 

entire dataset mainly includes 13 object classes (structural 

elements: ceiling, floor, wall, beam, column, door, window and 

movable elements: table, chair, sofa, bookcase, board and other 

elements) and 11 scene categories (Office, conference room, 

hallway, auditorium, open space, lobby, lounge, pantry, copy 

room, storage room, and toilet). In this paper, we used an office 

point cloud data as the test data in the experiment, and took 

nine rooms as training data to perform indoor scene recognition. 

During the indoor scene recognition experiment, we selected a 

total of five indicators to evaluate the experimental results, i.e., 

global accuracy, classification accuracy, average classification 

accuracy, IoU and mean IoU. 

 

 
GT

TP
=racyGlobalaccu  (4) 

 

 
i
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i
GT

TP
=acyClassaccur  (5) 
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+
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C

c

i

i
== 1

IoU

IoUMean  (8) 

where TP and GT denote the total number of points of true 

positive and ground true respectively, TPi , GTi and FPi denote 

the number of points of true positive, ground truth and false 

positive in a class i respectively. C denotes the number of class. 

 

3.2 Experimental analysis 

Due to the limitations of the network, the traditional PointNet 

not being able to yield better recognitional accuracy when 

performing large-scale recognition and coupled with MRF 

being a widely accepted model, we proposed the idea of 

combining MRF with the traditional PointNet model. Fig. 3 

shows the raw data in our experiment, and Fig. 4 shows the 

result of classification point data. From Table Ⅰ and Table Ⅱ, we 

can infer that the recognition accuracies of some classes are 

lower than those of the PointNet, but the accuracies of most 

classes are greatly improved. From a holistic point of view, 

compared to global accuracy, mean class accuracy and mean 

IoU of PointNet, our proposed method has improved 

significantly. We are able to obtain the elements (wall, door) of 

the obstacle element map by classifying the point cloud data. In 

addition, our classification approach is robust in discriminating 

the different types of point clouds even when they are really 

close together. 

 

We combined the point cloud data after completed scene 

recognition, with the actual application to generate an obstacle 

element map for indoor path planning and navigation. From the 

final obstacle element map, we can infer that the generation of 

this map does not require particularly any better recognition 

accuracy, so long as the average accuracy of the recognition is 

above 80%. From the perspective of indoor path planning and 

navigation, the elements in this element map are simple and 

avoid many messy and unwanted elements. 

 

Class 

Class accuracy 

(%) 
IoU (%) 

PointNet 
Proposed 

method 
PointNet 

Proposed 

method 

bookcase 51.47 34.44 37.78 26.51 

chair 79.88 94.18 47.92 86.23 

clutter 61.41 82.01 52.99 66.48 

door 77.40 90.07 74.18 85.67 

table 62.26 56.40 56.72 51.26 

wall 98.97 96.79 70.34 82.30 

window 87.42 89.92 84.87 84.46 

Table Ⅰ Comparison of classification accuracy of each class, the 

best performance is marked with BOLD fonts. 

 
Fig. 3 Experimental raw data scene of point cloud 

 

 
Fig. 4 Classification result of experimental data 
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Fig. 5 The final obstacle element map 

 

Method Data 
Global 

accuracy 

Mean 

classaccuracy 

Mean 

IoU 

PointNet 
Point 

cloud 
75.09 77.33 60.68 

Proposed 

method 

Point 

cloud 
84.92 82.84 68.99  

Table Ⅱ Accuracy comparison of overall classification accuracy, 

the best performance is marked with BOLD fonts. 

 

4. CONCLUSION 

We proposed a method for constructing an obstacle element 

map based on indoor scene recognition. In this paper, we used 

point cloud data as experimental data, and using PointNet 

network combined with MRF method to perform scene 

recognition. This new method is robust and can improve the 

accuracy of scene recognition effectively. The result of the 

scene recognition is used to determine whether the semi-moving 

objects influence movement or not. After the determination of 

the required elements in the obstacle element map is complete, 

we could construct the obstacle element map and obtain the 

desired results. The final obstacle element map, presented in a 

two-dimensional plannimetric view is as shown in Figure 5. 

This indoor obstacle element map can be mainly used for indoor 

path planning and navigation, and its integration into our real 

lives has great practical significance. 
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