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ABSTRACT: 

 

In this paper, we proposed a novel 3D deep learning model for object localization and object bounding boxes estimation. To increase 

the detection efficiency of small objects in the large scale scenes, the local neighbourhood geometric structure information of objects 

has been taken into the Edgeconv model, which can operate the original point clouds. We evaluated the 3D bounding box with high 

resolution in the RGB-D dataset and acquired stable effectiveness even under the sparse points and the strong occlusion. The 

experimental results indicate that our method achieved the higher mean average precision and better IOU of bounding boxes in SUN 

RGB-D dataset and KITTI benchmark. 
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1. INTRODUCTION 

 

Recently, great achievements have been made in 2D object 

detection and instance segmentation. Compare the 2D image 

understanding task, the 3D understanding was more challenge 

and have signification on the fields such as autonomous driving 

and augmented reality. With the popularization of various 3D 

sensors, how to represent objects in space is an open question.  

We focus on the 3D point clouds captured from RGB-D and 

using deep neural networks for 3D object detection and 

estimating the oriented 3D bounding boxes. 

 

The most common 3D data representation formats are point 

clouds, voxel and mesh.  Point clouds record the position of the 

object surface and other information which can be augmented 

such as multispectral and colours, etc. 3D voxel and Mesh data 

can be obtained by transformation of point clouds through 

various of algorithms. Previous many works proposed that the 

projection (H. Su et al. 2015 and C. R. Qi et al. 2016) from 

point clouds to image and then leverage convolutional networks 

to detect objects. The invariance and patterns of 3D point 

clouds are often obscure in those algorithms. 

 

PointNet (C. R. Qi et al. 2017) is a major turning point which 

presents a deep neural network that takes raw point clouds as 

input and get a good effect. The operation successfully worked 

on unorder point sets by deep learning encourage many 

researchers to turn their work to deal with the raw 3D data. 

Since then, the field of directly consume irregular point clouds 

become active and deep learning approaches have been 

developed. Thanks to the availability of large-scale dataset and 

available GPU computing resources, the researcher can target 

more complex and tricky problem when detecting objects of 

hundreds of categories from point clouds. Many researchers 

have started toward effort concentrating multisource from 

different sensors for 3D shape representation. The main 

challenge is how to combine two kinds of input and learned 

better 3D shape representation robustly and to ensure the highly 

accurate of objects detection. 

 

In contrast to previous work that treats RGB-D data as 2D maps 

for CNNs, the F-PointNet (Qi et al. 2018) is more 3D-centric as 

lift depth maps to 3D point clouds and process them in 3D 

space. In order to reduce the search space, F-PointNet extract 

the frustum of an object by extruding 2D bounding boxes from 

mature image detection primarily. While the architecture deeply 

limits its performance by 2D object detection for 2D bounding 

box and 3D instance segmentation for the 3D bounding box. 

PointNet lacked the local structure limits its ability to recognize 

fine-grained patterns and generalizability to complex scenes. 

We can find that we missed some object due to the 3D instance 

segmentation improperly. Therefore, we apply the graph 

Convolution to enforce the effect of instance segmentation for 

3D object detection. Our main contribution is proposing a 

method for instance segmentation which considers the local 

neighbourhood geometric information and use it to 3D object 

detection for solving multiple instances overlap. 

 

 

2. RELATED WORK 

 

2.1 3D Object Detection from RGB-D Data 

Various methods have been proposed for 3D object detection 

from RGB-D data.  We review the related methods and discuss 

in the following two categories. 

 

2D based methods: (B. Li et al. 2016) project LIDAR point 

clouds to the front view, which is used as an input to a fully 

convolutional neural network to directly generate dense 3D 

bounding boxes. (X. Chen et al. 2016) takes monocular RGB 

images and shape priors or occlusion patterns to infer 3D 

bounding boxes. MV3D (X. Chen et al. 2017) extends the 

image based region proposal network (S. Ren et al. 2015) to 3D 

by corresponding every pixel in the bird’s eye view feature map  
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Figure 1. 3D instance segmentation for object detection. 

 

to multiple prior 3D anchors. However, the method drops 

behind in detecting small objects and cannot easily adapt to 

scenes with multiple objects in a vertical direction. 

 

3D based methods: (S. Song et al. 2014) learns to classify 3D 

bounding box proposals generated by a 3D sliding window 

using synthetically-generated 3D features. (M. Engelcke et al. 

2017) extends (D. Z. Wang et al. 2015) by replacing SVM with 

3D CNN on voxelized 3D grids. (G. Riegler et al. 2016) is 

using 3D convolution for object detection by representing 3D 

data. Computation cost for those methods is usually quite high 

due to the expensive cost of 3D convolutions and large 3D 

search space. Recently, (C. R. Qi et al. 2017) proposes a 

flexible and effective solution with deep 3D feature learning 

(PointNet) predicts an (oriented and amodal) 3D bounding box 

for the object from the points in the frustum. 

 

2.2 Deep Learning on Point Clouds 

A lot of work has been done on photometric data by deep 

learning methods. However, the vast successful deep learning 

architecture are ineffective for 3D point clouds because of the 

unstructured and irregular data. In order to enable convolutional 

network plays an important role in 3D data, most researchers 

resort the 3D data to regular represent data such as 3D voxel 

grid before feeding the networks at the beginning. The (Zhou. Y 

et al. 2017) has successfully applied the convolution network on 

voxelization data. The author proposed the representation that 

enables a geometric 3D shape as a probability distribution of 

binary variables works on a 3D voxel grid, using a 

Convolutional Deep Belief Network. However, due to the 3D 

voxel have some disadvantage like unnecessarily large 

representation and loss spatial information, various researcher 

transfers their work on directly using deep architectures to 

unstructured point set. PointNet is a successful model that takes 

raw point as input and get a good effect, but it loss the local 

structure for more complex scene. (Yu Wang et al. 2018) 

proposed graph convolution operation which captures local 

geometric structure while maintaining permutation invariance. 

We improved the 3D architecture by reducing the layers of the 

Edgeconv and eliminating the spatial transform to identify fine-

grained point clouds of the Frustum, which is got a good effect. 

 

 

3. 3D DETECTION WITH FRUSTUM EDGECONV 

 

Our method mainly works on the 3D Instance segmentation 

parts of F-PointNet. Since occlusion often appear in dense areas, 

3D deep learning for instance segmentation is required to 

distinguish different objects. We improve the performance of 

instance segmentation and it more robust to detect small objects 

in the large-scale scenes. 

 

3.1 Frustum Proposals 

Similar to F-PointNet method, we build the candidate region of 

the target which can quickly be found through 2D target 

detection firstly.  Then each candidate region is transformed 

into frustum by a given camera projection matrix. We normalize 

the frustums by rotating them toward to the center view due to 

frustum may have different directions. For each object, we use 

the ground truth 2D bounding box to extract correspond 

frustum for training our neural networks. We chose a certain 

number of point clouds for each frustum ( n c  with n points 

and c channels of XYZ, intensity, etc.) and randomly sample to 

certain number when higher a certain number. 

 

3.2 Object Detection 

3D instance segmentation predicts a probability score for each 

point cloud that indicates how likely the point belongs to the 

object of interest. After getting the one instance from each 

frustum, we transform the point clouds to local coordinate to 

boost the translation invariance of the algorithm. Note that 

objects may be obscured when object partially overlap and how 

to distinguish each point belonged to a different instance. It is a 

difficult problem and a key challenge in this case. We 

normalized its coordinate after obtaining the object instance  

 
Figure 2. Influence of instance segmentation. Artificial points 

are shown to illustrate, the red point is false segmentation, blue 

point is true segmentation point. (a) False segmentation and 

predict 3D bounding box. (b) True segmentation and predict 3D 

bounding box. 
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Figure 3. Precision recall (PR) curves for 3D object detection on KITTI val set. 

 

point clouds and separated different terms to optimize the 3D 

bounding box parameterization. Subsequently, the 3D mask 

coordinate has been influenced by the instance segmentation 

and further effect predicted the true center and angle of the 

entire object. Fig. 2 shows one example of the segmentation 

result influences on the final 3D bounding box estimation 

illustrated. 

 

In order to decrease the influence of instance segmentation for 

learning the true center of the object, we use our neural network 

to improve the 3D object detection performance. We choose a 

certain amount of point of each point by KNN and use 

EdgeConv to learn neighbouring edge features. Consider the 

speed and runtime, we adjust our neural network for the 

different dataset. Specifically, we choose the 20 neighbour 

points for each set when learning feature from KITTI (SUN-

RGBD) dataset. Figure 1 shows the architecture of instance 

segmentation for getting the point clouds of the object. We 

remove the one-hot when learning a feature of the object for 

instance segmentation. For amodal 3D box estimation, we use 

PointNet to regress its center position, size and heading angle.  

 

 

4. EXPERIMENTS 

 

In the experiment, we trained our network on an NVIDIA 

GeForce GTX TITAN Z using ADAM optimizer with an initial 

learning rate 0.001, the batch size of 16. First, we compare with 

state-of-art methods for 3D detection on SUN-RGBD (S. Song 

et al. 2015) and KITTI (A. Geiger et al. 2012). Second, we 

show some results of our method and have deep discussion of 

its strengths. 

 

4.1 Evaluation on KITTI 

KITTI The object detection benchmark in KITTI contains both 

2D and 3D annotations of vehicles, pedestrians, and cyclists in 

urban driving scenarios by the wide-angle camera and Velodyne 

HDL-64E LiDAR. The training set contains 7,481 frames and 

an undisclosed test set contains 7,581 frames. In our own 

experiments (except those for test sets), we follow (X. Chen et 

al 2016) to split the official training set to a train set of 3,717 

frames and a validation set of 3769 frames such that frames in 

train/valid sets belong to different video clips. We choose the 

ground truth 2D bounding box to get the frustum point clouds 

and evaluate different methods. We report model performance 

on the validation set for all three object categories. 

 

Benchmark Easy Moderate Hard 

Pedestrian(v2) 70.00 61.32 53.59 

Cyclist(v2) 77.15 56.49 53.37 

Pedestrian(v1) 65.05 55.69 49.10 

Cyclist(v1) 75.74 56.50 52.77 

Pedestrian(our) 67.84 59.10 51.60 

Cyclist(our) 78.17 57.21 53.53 

 

Table 1. Performance on KITTI val set for pedestrians and 

cyclists. 

 

Tab. 1 shows the performance of our method on the KITTI val 

set. Our method gets the higher AP than F-PointNet(v1) on 

Pedestrain and Cyclist.  And achieve the highest AP compare 

with F-PointNet(v1) and F-PointNet(v2). The point clouds of 

cyclist are sparser but our method get the best results. Therefore, 

our method is robust for the small object. 

 

Method Easy Moderate Hard 

Mono3D 2.53 2.31 2.31 

3DOP 6.55 5.07 4.10 

VeloFCN 15.20 13.66 15.98 

MV3D 71.29 62.68 56.56 

F-PointNet(v1) 83.26 69.28 62.56 

F-PointNet(v2) 83.76 70.92 63.65 

our 84.64 71.15 63.68 

 

Table 2. 3D object detection AP on KITTI val set (cars only)  

 

Tab. 2 shows the different methods performance on KITTI val 

set. our method has the best performance of different level 3D 

detection task for the car. What’s more, our parameter quantity 

has lower than F-PointNet(v2). 

 

Fig. 3 reports the 3D AP curves of our method and F-PointNet 

on KITTI val set. the top is our method and bottom are F-

PointNet. We can see the tasks with different levels of difficulty 

for three class. For the car we get the best performance and have 

high recall than F-PointNet. 
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Figure 4. Visualization of results on SUN-RGBD val set. 

 

4.2 Evaluation on SUN-RGBD 

SUN-RGBD The data set consists of 10,355 RGB-D images 

captured from various depth sensors for indoor scenes 

(bedrooms, dining rooms, etc.). The training and testing sets 

contain 5285 and 5050 images, respectively. We follow the 

same train/val splits as (S. Song et al. 2015) for experiments. As 

to strong occlusion and tight arrangement of the objects in 

indoor scenes, it is more challenge for detection. We get several 

results for object detection. Due to F-PointNet without release 

the there own 2D detection and the result also deep rely on the 

2D box bounding to get the proposed region. We choose the 

ground truth of 2D bounding box to get the frustum point 

clouds and evaluate different methods on it. In this task, we 

show the performance of our architecture for small object 

detection and strong occlusion of object detection. 

 

Fig. 4 visualizes the results on SUN-RGBD val set. First 

column: 2D ground true bounding boxes. Second column:  the 

predicted 3D bounding boxes results from F-PointNet. Third 

column: our method detection results and predicted 3D 

bounding boxes. Fourth column: 3D ground true bounding 

boxes. Green boxes are true positive and red boxes are false 

positives. Compared to F-PointNet, we can find that our 

algorithm has the success detection of the bookshelf and has 

higher accuracy segmentation ability for the table (successful 

separate two close tables). The second example shows our 

method have more fine-grained segmentation results (our 

method has a more accurate box size that F-PointNet). 

 

     

     

Figure 5. Precision recall (PR) curves for 3D object detection on SUN-RGBD val set. 

 

 bathtub bed bookshelf chair desk dresser Night stand sofa table toilet map 

F-PointNet 82.1 88.5 51.1 78.3 72.9 66.2 80.9 79.0 62.0 85.3 74.6 

our 79.9 86.1 60.0 83.2 78.6 64.0 83.4 81.8 70.0 88.6 77.6 

 

Table 3. 3D object detection AP on SUN-RGBD val set. 

 

Tab. 3 reports the different category 3D average precision and 

mAP. Compared with state-of-the-arts F-PointNet our method is 

3.0% to better in mAP. 

 

Fig. 5 shows the PR curves of our method on SUN-RGBD val 

set. Our method has high recall for different class. 

 

 

5. CONCLUSIONS 

 

We have presented a remarkably accurate 3D instance 

segmentation method which has better IOU of 3D bounding box 

estimation. Even at strong occlusion, we also get better result 

than previous methods on the two datasets we used. Our method 

has lower complexity and gets a good result. To some extent, 
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we have solved the segmentation result of output blending when 

multiple instances occurred. Experiments on the SUN-RGBD 

dataset shows the high accuracy on the 3D localization and 

category classification tasks. To a certain degree, we improve 

the 3D object detection even when have strong overlapping. 
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