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ABSTRACT:

We introduce a new autonomous path planning algorithm for mobile robots for reaching target locations in an unknown environment 
where the robot relies on its on-board sensors. In particular, we describe the design and evaluation of a deep reinforcement learning 
motion planner with continuous linear and angular velocities to navigate to a desired target location based on deep deterministic policy 
gradient (DDPG). Additionally, the algorithm is enhanced by making use of the available knowledge of the environment provided by a 
grid-based SLAM with Rao-Blackwellized particle filter algorithm in order to shape the reward function in an attempt to improve the 
convergence rate, escape local optima and reduce the number of collisions with the obstacles. A comparison is made between a reward 
function shaped based on the map provided by the SLAM algorithm and a reward function when no knowledge of the map is available. 
Results show that the required learning time has been decreased in terms of number of episodes required to converge, which is 560 
episodes compared to 1450 episodes in the standard RL algorithm, after adopting the proposed approach and the number of obstacle 
collision is reduced as well with a success ratio of 83% compared to 56% in the standard RL algorithm. The results are validated in 
a simulated experiment on a skid-steering mobile robot.

1. INTRODUCTION

Autonomous navigation of robots in unknown environments from
their current position to a desired target location without collid-
ing with obstacles represents an important aspect in the field of
mobile robots. In literature, traditional methods do exist in case
a complete knowledge of the environment is available including
cell decomposition and potential filed approaches. However, this
is not the case in real-life applications where a complete knowl-
edge about the environments can be hardly obtained due to its
intrinsic stochasticity.
The challenge of navigation in unstructured environments can be
formulated as a reinforcement learning (RL) problem where the
agent learns the optimal path through a straightforward trial and
error process by interacting with the environment. During the in-
teraction, the agent perceives the environment through its sensors
and affects the environment through actions performed by its ac-
tuators. By applying an action, the agent is able to change its own
state and the state of the environment and consequently it receives
a reward or a penalty for being in that state. The reward is the way
of teaching to the agent whether the action taken in that state is
good or bad. Accordingly, the optimal action for each state can
be discovered by maximizing a predefined accumulated reward
that reflects the quality of the trajectory taken by the robot. In
(Zhang et al., 2017a), a successor feature DQN based reinforce-
ment learning is proposed to solve the navigation problem when
a map of the environment is known a priori. The main focus
was to transfer the knowledge from one environment to another
where the input is depth images obtained through a kinetic sen-
sor and the output is four discrete actions for robot’s navigation.
In (Brunner et al., 2018), Asynchronous Advantage Actor-Critic
(A3C) approach was proposed to help a robot moving out of a
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random maze for which a map is given. The input to the sys-
tem includes 2D map of the environment, the robot’s heading and
the previous estimated pose whereas the output is the navigation
actions such as move (forward, backward, right and left). Fur-
thermore, in (Zhang et al., 2017b), an external memory acting
as an internal representation of the environment for the agent is
fed as an input to a deep reinforcement learning algorithm. In
this way, the agent is guided to make informative planning de-
cisions to effectively explore new environments. The work pre-
sented in this paper is built upon the algorithm proposed in (Tai
et al., 2017) where a mapless navigation is proposed based on an
asynchronous deep deterministic policy gradient algorithm.
The purpose of this paper is twofold. On one hand, it is aimed
to enhance the navigation capabilities to navigate a skid-steering
mobile robot (SSMR) with non-holonomic constraints in an un-
known environment without collisions and with the least amount
of feasible actions. This goal is achieved by implementing a
deep deterministic policy gradient (DDPG) through an off-policy
actor-critic algorithm where the input is sparse laser data extracted
from a laser range finder and the output is continuous navigation
actions. The main advantage of utilizing DDPG algorithm is due
to the fact that following policy gradient to solve reinforcement
learning tasks only slightly modifies the parameters of the policy
in contrast to value based methods where large jumps between
estimated policies are possible (Deisenroth et al., 2013). On the
other hand, Simultaneous Localization and Mapping, also known
as SLAM, technique is integrated with reinforcement learning in
an attempt to improve the learning rate by defining a reward func-
tion based on the (partial) knowledge of the map and by providing
more accurate estimation of the robots states. In addition, a com-
parison is made, in terms of the learning performance, in case a
partial map is available to the robot as an output from a SLAM
algorithm and when no map is available at all.
The rest of the paper is organized as follows. In section 2, the
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theory behind DDPG and Rao-Blackwellized particle filter is dis-
cussed. In section 3, the motion planner design is presented. Sec-
tion 4 describes the experiments performed. Furthermore, sec-
tions 5 and 6 carry respectively the discussion of the results and
the conclusions.

2. THEORETICAL BACKGROUND

2.1 Deep Deterministic Policy Gradient

The actor-critic framework, deep deterministic policy gradient
(DDPG) provides an improvement to deep Q-networks (DQN) by
making it tractable for continuous action spaces. Both the actor
and the critic are described by two separate neural networks. The
current state is given as input to the actor network which outputs
a single real value representing an action chosen from a contin-
uous action space A. On the other hand, the critics output is the
estimated Q-value based on the current state and the action given
by the actor. The deterministic policy gradient theorem provides
the update rule for the weights of the actor network whereas, the
critic network is updated from the gradients obtained from the
TD error signal.

2.1.1 Actor Network: In order to update the parameters of
the actor neural network, the following equation is applied:

θπt+1 = θπt + α∇θπJ(πθ), J(πθ) = Eπ

(
∞∑
k=0

γkrk

)
(1)

where Eπ[.] denotes the expected value with respect to the policy
π. The main advantage of following policy gradient to solve rein-
forcement learning tasks is that it slightly modifies the parameters
of the policy which guarantees smooth transition between states
(Deisenroth et al., 2013). As shown in equation (1), it is required
to evaluate the gradient of the expected return ∇θπJ(πθ). The
policy gradient theorem (Sutton et al., 1999) states that the cor-
responding gradient of the return, using likelihood-ratio trick, in
case of stochastic policy can be given as

∇θJ(πθ) =
∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a)dads

= Es∼ρπ,a∼πθ [∇θlogπθ (a|s)Qπ(s, a)]
(2)

The above equation shows that the gradient is an expectation of
both states and actions. Therefore, large number of samples from
both action and state space is required, in principle, in order to
evaluate a good estimate of the gradient. However, by utilizing
a deterministic policy instead, the mapping from state space to
action space becomes fixed and accordingly there is no need to
integrate over the whole action space. (Silver et al., 2014) in-
troduces deterministic policy gradient algorithm that defines the
gradient of the expected return subjected to deterministic policy.
For the deterministic case, the gradient is given as

∇θπJ(πθ) =
∫
S
ρπ(s)∇θππ (s|θπ)∇aQ

(
s, a|θQ

)
ds

= Es∼ρπ
[
∇θππ (s|θπ)∇aQ

(
s, a|θQ

)
|a=π(s|θπ)

]
(3)

where ρπ(s) is the state distribution under policy π, θπ is the pa-
rameter vector for the policy π and θQ is the parameter vector
for Q-function (critic network). The deterministic policy gradi-
ents can be computed more efficiently than the stochastic case
and these algorithms show significantly better performance than

their stochastic counterpart (Silver et al., 2014) since they re-
quire fewer data samples to converge. As depicted in equation
(3), it is required to get the gradient of the action-value function
Q
(
s, a|θQ

)
. For this reason, an estimate of it can be evaluated

through a critic network that is discussed in the next subsection.

2.1.2 Critic Network: Q-learning is one of the prominent re-
inforcement learning algorithm that can be considered as a vari-
ant of temporal difference (TD) algorithm. In the simplest case,
Q-learning algorithms employ a table to store each state-action
pair. However, that makes these algorithms applicable only to
environments with small number of states and actions. Typi-
cally, the problem is not only related to the amount of memory
required to store the table, but also the time required to estimate
each state-action pair accurately. For this reason, non-linear func-
tion approximators, e.g. (deep) artificial neural networks (ANN),
are introduced in order to generalize Q-learning algorithms to
larger state-action space which is called deep Q-learning (DQN).
However, it was shown that utilizing neural networks as function
approximators directly to Q-learning algorithms without further
modifications leads to an unstable behavior and the convergence
is no longer guaranteed (van Hasselt et al., 2016) . The main
cause of this issue is that when using neural networks for rein-
forcement learning, it is assumed that the samples are indepen-
dently distributed. However, this is not the case when the sam-
ples are generated sequentially since they are temporally corre-
lated which results in high variance in the estimation. In order
to tackle this problem, an experience replay is used to break the
temporal correlation between the consecutive transitions where
the agent’s experience at each time step et = 〈st, at, rt, st+1〉 is
stored in a replay buffer Dt = {e1, ..., et}. At each time step,
a fixed number of samples, a mini-batch, is extracted randomly
from the replay buffer and used to train the network. When the
replay buffer is full, the oldest samples were discarded. This way,
gradient descent methods from the supervised learning literature
can be safely used, to minimize the TD-error squared.
The learning of the value-function in deep reinforcement learning
is based on the adjustment of the neural network weights by min-
imizing the loss function, which corresponds to the mean squared
error between the TD target and the current value function

L
(
θQ
)
= Es∼ρπ(.),a∼π(.)


Q(st, at|θQ)− yt︸ ︷︷ ︸

TD error


2 (4)

where yt = r(st, at) + γQ
(
st+1, at+1|θQ

)
. To minimize the

loss function, the gradient of the loss function is computed with
respect to the weights. In (Mnih et al., 2015), it is shown that
implementing equation (4) directly results in divergence in many
cases. The reason is that the updatedQ(s, a|θQ) is also used with
the same weights in calculating the TD target yt which makes the
optimization appears to be chasing its own tail which introduces
instability. One possible solution is to introduce a second net-
work called target neural network that is proposed in (Mnih et al.,
2013) to calculate target Q-values Q′(s, a|θQ

′
) where the target

network parameters θ′ are only updated with the Q-network pa-
rameters θ every certain number of steps. The target-network and
the Q-network share the same network architecture, but only the
weights of the Q-network are learned and updated. Here it should
be pointed out that concepts of experience replay and target net-
work are also applied to the actor network. For target actor and
critic networks, the parameter θQ

′
and θπ

′
are updated respec-
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tively by:
θQ

′
= τθQ + (1− τ)θQ

′

θπ
′
= τθπ + (1− τ)θπ

′ (5)

The employment of target networks converts the problem of learn-
ing the optimal Q-function into a supervised learning problem
which improves the stability of the algorithm immensely.

2.2 Grid-Based SLAM with Rao-Blackwellized Particle Fil-
ter

SLAM depicts the process of a robot creating a map of an envi-
ronment while simultaneously estimating its location within the
self-created map (Thrun et al., 2005). Currently, numerous SLAM
approaches have been suggested and applied to a multitude of ap-
plications using different sensors, different algorithmic steps and
different platforms.
In this section, a grid-based SLAM with Rao-Blackwellized par-
ticle filters introduced in (Murphy, 1999) is briefly discussed in
order to provide an accurate estimate of the robot’s pose and a
partial map of the environment that can be utilized in the reward
shaping of the reinforcement learning in an attempt to speed-up
the learning rate.
The key idea of Rao-Blackwellized particle filter (RBPF) is to
estimate the joint posterior p (x1:t,m|z1:t, u1:t−1) about the tra-
jectory of the robot, that is the sequence of its poses, x1:t =
x1, ..., xt and the mapm given the odometry measurements u1:t−1 =
u1, ..., ut−1 and a set of observations zt = z1, ..., zt obtained by
the mobile robot. Thus, it incrementally processes the sensor ob-
servations and the odometry readings as they are available. The
Rao-Blackwellized particle filter makes use of the following fac-
torization of the conditional probability

p(x1:t,m|z1:t, u1:t−1) =

p(m|x1:t, z1:t).p(x1:t|z1:t, ut−1) (6)

The advantage of this factorization is the fact that it is possible
to estimate the trajectory of the robot firstly using a particle filter
where every particle represents a potential trajectory of the robot
and then use this trajectory in order to estimate the map using
mapping with known poses (Moravec, 1988) since z1:t and x1:t
are known from the previous step.
The intuition behind particle filters is to approximate the belief
of the robot’s pose bel(xt) by a set of particles Xt. The next
generation of particles Xt+1 can be obtained from the previous
generation Xt by sampling from a probabilistic odometry motion
model p(x(i)t+1|x

(i)
t , ut) where i represents the ith particle in the

particle set X . Then, by integrating the probabilistic observation
model p(zt+1|x(i)t+1), an individual importance weight w(i)

t+1 is
assigned to every particle. After that, particles are drawn with re-
placement proportional to their assigned importance weight. This
step is called a resampling step. As a matter of fact, after re-
sampling, all particles have the same weight. By incorporating
the importance weights into the resampling process, the distribu-
tion of the particles changes where particle with low importance
weights are depleted. In (Grisetti et al., 2007), an adaptive resam-
pling technique is proposed in order to reduce the risk of particle
depletion while learning an accurate map. For each particle, the
corresponding map estimate p(m(i)|x(i)t , z1:t) is computed based
on the estimated trajectory x(i)1:t from the output of the particle fil-
ter and the history of observations z1:t. The map considered in
this paper is an occupancy grid map.

Occupancy grid maps address the problem of generating consis-
tent maps from noisy and uncertain measurement data, under the
assumption that the robot pose is known (Thrun et al., 2005). The
occupancy grid map divides the worksapce into evenly spaced
cells where a probability distribution is assigned to each cell in
the grid indicating whether it is occupied or free. If the cell is not
in the range of the sensors, it is considered as unknown. The pos-
terior over maps given the trajectory of the robot x1:t and all the
observations z1:t up to time t is given as p(m|z1:t, x1:t) where
the controls u1:t play no role since the path of the robot is al-
ready known. The certainty of the estimation of the entire map
can be broken down into the problem of estimating the posterior
of every grid cell mi in the map and then the posterior over the
entire map can be approximately estimated by:

p(m|z1:t, x1:t) =
M∏
i=0

p(mi|z1:t, x1:t) (7)

where M is the number of grid cells in the map.

3. METHODOLOGY

This section presents in details how the information extracted
from the map can be utilized in the reward shaping of the DDPG
algorithm in order to improve the convergence rate.

3.1 Motion Planner Implementation

We propose an end to end learning strategy, for which a robot
learns to navigate through an unknown environment towards its
desired goal by using only raw 10-dimensional sensory data from
a laser range finder. The algorithm integrates SLAM with DDPG
off-policy actor-critic algorithm to improve the performance of
the agent’s learning. As mentioned previously, the aim of this
paper is to find the optimal path from the starting point of a skid-
steering mobile robot to the target through DDPG algorithm pro-
posed in (Lillicrap et al., 2016). Then, to integrate the (partial)
knowledge of the map, obtained by the SLAM algorithmm, in
the reward function to assess how much it speeds up the conver-
gence rate. To achieve the first purpose, two neural networks are
constructed to represent the the actor and the critic respectively.
The actor network represents the policy and thus it is responsible
for mapping states into actions at = π(st). For the navigation
problem, the states are selected to be the observation from the
laser range finder that can be represented as 10-dimensional laser
beams with 180◦ field of view (FOV) xt, the relative distance be-
tween the target and the agent represented in polar coordinates pt
and the last action executed by the agent vt−1.

vt = π(st) = π(xt, pt, vt−1) (8)

The actor’s neural network is composed of three fully-connected
hidden layers with 512 nodes each which are activated by a rec-
tified linear unit (ReLU) activation function. The output of the
actor’s network is a 2-dimensional vector representing the linear
and angular velocities of the robot respectively. For this purpose,
a sigmoid activation function is used to constrain the linear mo-
tion of the robot in the range between [0,1]. The reason why the
backward motion of the robot is restricted is due to the chattering
behavior of the robot observed at the early experiments due to
the stochasticity of the behavioral policy. To constrain the angu-
lar velocity of the robot in (-1,1), a hyperbolic tangent function
(tanh) is employed. The layout of the actor neural network is de-
picted in Figure 1. In addition, the output of the actor network
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Figure 1. Layout of the actor network for DDPG. The networks has three
fully connected layers with 512 neurons each with ReLU activiation.

The network receives a 14-dimensional state vector and outputs a
2-dimensional continuous actions vector. The linear velocity is

constrained in [0,1] using a sigmoid while the angular velocity is
constrained in [-1,1] using a hyberbolic tangent

is further multiplied by hyperparameters to limit the maximum
linear velocity of the robot to 0.25m/s and the maximum angu-
lar velocity to 1rad/s. The actor outputs, thus the actions, are
then sent to the low-level controller to control the motion of the
robot’s actuators. The critic network estimates the Q-value of a
state-action pair and thus it takes both the state and the action as
inputs; however, the action input skips the first layer. The output
of the critic is an estimation of the reward. Based on the out-
put of the critic network, the weights of both the actor and critic
are updated accordingly. Again, the hidden layers are activated
by a ReLU function whereas the Q-value is activated by a linear
activation. Figure 2 shows the architecture of the critic network.

st
a
te

 |
 1

4

Figure 2. Layout of the critic network for DDPG. The networks has
three fully connected layers with 512 neurons each with ReLU

activation. The states are fed through the network from the first layer
while the actions only from the second one. The output layer has linear
activation function and outputs the estimated Q-value given the current

state and the action taken.

The parameters of the actor and critic neural networks are up-
dated according to,

δt = rt + γQ(st+1, π(st+1))−Q(st, at)

θQt+1 = θQt + αθQδt∇θQQ(st, at)

θπt+1 = θπt + αθπ∇θππ(st)∇aQ(st, at)|a=π(s)

(9)

A major challenge of learning in continuous action spaces is ex-
ploration. Since DDPG algorithm uses a deterministic policy gra-
dient in updating the weights of the policy network, an off-policy
reinforcement learning algorithm is used where a stochastic be-
havioral policy is employed while the agent learns a deterministic

one in order to guarantee adequate exploration of the environ-
ment. For this reason, an exploration policy π′(st) is constructed
by adding noise sampled from a noise processN to the output of
the actor network,

π′(st) = π(st|θπt ) +N (10)

In this work, the noiseN is sampled from a temporally correlated
Ornstein-Uhlenbeck (OU) process.
A 2D occupancy grid map of the surrounding is generated while
the robot is exploring the unknown environment, using data ex-
tracted from laser range finder and the robot’s odometry informa-
tion. Every cell inside the occupancy grid is classified as (occu-
pied, free, unknown) based on a predefined threshold value that
determines the occupation probability of each cell. Furthermore,
the occupation probability of every cell is being updated while
the robot keeps exploring the environment.

3.2 Reward Shaping

Reward function is the most important aspect in reinforcement
learning problem since the actions are selected in such a way that
the cumulative reward is maximized. The reward signal is the
mean by which the goal of the learning is specified for the agent.
It is a designed application-specific function that, given the action
of the agent and the state of the system, returns a single real num-
ber indicating how good or bad that action was. It corresponds to
pleasure and pain in biological systems. Designing a good reward
signal for a robotic reinforcement learning task can be challeng-
ing in different ways. This area of reinforcement learning, known
as reward designing or shaping, is considered an art rather than a
well-established science (Sutton and Barto, 2017). Reward func-
tions can be a simple bonus when the agent reaches a target and,
consequently, a penalty in case it hits an obstacle. This ”sparse
reward” is assigned to prioritize actions that make the agent reach
the goal and penalize actions that make the agent colliding. On
the other hand, it can be more sophisticated and depend on the
distance between the agent and the target. This is called ”dense
reward”.
In this work, two different reward functions are selected and a
comparison of the performance of the agent based on each func-
tion is made.

3.2.1 Reward based on RL only: The reward function (11)
doesn’t integrate the available knowledge of the environment and
it is formulated based on the exponential Euclidean distance be-
tween the agent and the target position. Moreover, a bonus is
given in case the agent reaches the target rreached with some pre-
defined tolerance. This additional sparse reward term is necessary
in particular when obstacles are located close to the target loca-
tion to encourage the robot to navigate towards the goal even if it
gets some negative immediate reward due to the fact that it gets
close to these obstacles. Furthermore, if the robot gets too close
to an obstacle, it would receive a high negative reward (penalty).
Here it should be pointed out that the episode is terminated in
three scenarios: i) the agent reaches the goal with some toler-
ance dmin, ii) the agent get closer to an obstacle with a minimum
threshold, iii) the agent exceeds the maximum number of allowed
time-steps T in every episode without either reaching the target
or hitting an obstacle. The maximum number of iterations is a
hyperparameter that is tuned based on the average number of ac-
tions required by the agent to reach the goal observed during the
early experiments. The reward r(s, a) is given after executing ev-
ery navigation action at and can be, mathematically, formulated
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as:

r(st, at) =


rreached, d < dmin.

rcrashed, sts

1− eγd, otherwise
(11)

where d is the euclidean distance between the agent and the tar-
get, γ is a hyper-parameter that can be tuned and sts represents
an undesirable terminal state including getting too close to an ob-
stacle or exceeding the maximum number of steps allowed in an
episode.

3.2.2 Reward based on RL and SLAM: In this section, the
reward function is shaped based on the available knowledge about
the environment gained through the robot’s experience. This knowl-
edge is provided by a 2D occupancy grid map built by the SLAM
algorithm discussed in section 2.2. In that sense, the reward func-
tion does not only depend on how far the agent is from the target
but on the distance to the multi-obstacles inside the workspace as
well. The incorporation of the environment’s knowledge should
be weighted by the level of certainty of the map’s posterior. This
can be formulated as follows:

r(st, at) =



rreached, d < dmin

rcrashed, sts

1− eγd − p(m|z1:t, x1:t)
k∑
i=0

e−cmin︸ ︷︷ ︸
MAP-dependent term,

otherwise

(12)

where k is the total number of occupied cells in the vicinity of the
robot, cmin is the distance between the robot and the occupied
cell. Here it should be noted that the last term in equation (11)
has only an effect on the reward when the robot approaches the
occupied cell with a minimum threshold.

4. SIMULATED EXPERIMENTS

The main objective of the proposed algorithm is to find the short-
est trajectory from the current location of the robot to the tar-
get with minimum executed actions. The actor-critic algorithm
is experimented on a gazebo simulator representing the 3D envi-
ronment. The experiments were conducted on an Ubuntu 16.04
machine with an Intel Core i7-8550 CPU and a NVIDIA Jetson
TX2 GPU. The algorithm is implemented using OpenAI pack-
age provided by the Robot Operating System (ROS) middleware.
The simulated environment contains cuboid objects representing
the obstacles and a target for the agent to reach, rendered as red
& white circle, as shown in Figure 3. The simulated platform
is a Husarion mobile robot with skid-steering model. The ac-
tor and critic networks are initialized with two neural networks
having three hidden layers with 512 hidden neurons that are ac-
tivated by ReLU activation function, as described in section 3.1.
For training the model, stochastic policy gradient with ADAM
(Kingma and Lei Ba, 2015) optimizer is employed and the learn-
ing rates are taken to be 0.0001 and 0.001 for the actor and critic
respectively. A discount factor of γ = 0.99 and target update,
τ = 0.001 is used. The initial weights and biases of the hid-
den neurons are chosen from a uniform distribution [− 1√

f
, 1√

f
]

where f is the number of inputs to the layer. The weights and
biases for the output layer are taken from a uniform distribution
[−3 × 10−3, 3 × 10−3] to ensure that the outputs at the start

Target 1

Target 2

Figure 3. The virtual training environment simulated in gazebo. A
Husarion robot is used as the platform

of training are close to zero. The exploration noise is modeled
as an Ornstein-Uhlenbeck process with parameters, σ = 0.2 and
θ = 0.15. The outputs of the policy are clipped to lie between the
actuator limits after the addition of noise. The maximum dimen-
sion of the replay buffer is selected to be 100000, which means
that, in the worst case, the buffer can store 100 episodes since
the maximum number of iterations in every episode is limited to
1000 time-steps. The update of the weights of the networks are
executed with a mini-batch of dimension 64. It is worth mention-
ing that a small batch size could lead the algorithm to get stuck
into specific portion of the environment (local minima) whereas
large batch-size can make the training period much longer since
the network would be trained for more data. Thus, a good trade-
off of 64 is selected so as not to elongate the training period and to
ensure training on larger areas of the environment. In this work,
the robot is trained in a 4 × 4m2 area with multiple obstacles.
In order to simultaneously map the environment and estimate the
robot pose, the ROS gmapping SLAM package was used. The in-
puts for mapping included wheel odometry and laser rangefinder
data and a 2D occupancy grid map representing the environment
is one of the outputs. The grid size of every cell is 1cm × 1cm
resulting in 400 × 400 cells. A probability value is assigned to
each cell based on whether it is occupied or free according to
the laser sensor and odometry readings. An occupancy threshold
is assigned a value of 0.65 which means if the probability value
of the cell is greater than this value, this cell is occupied and,
consequently, free otherwise. Since, a single obstacle is repre-
sented by multiple occupied cells,based on its size, it is better to
prepossess this data by selecting only a certain number of grids
in order to avoid iterating over redundant cells. Besides that, to
avoid higher computational complexity of the calculations, the
map is only updated after certain change occurs to the probability
of the posterior of the map p(m|z1:t, x1:t) within a threshold of
0.2. The map-dependent term in equation (12) has an impact on
the immediate reward when the minimum distance between the
robot and the obstacle becomes smaller than 0.5m.
The robot subscribes to laser readings with a scanning range from
0.2m to 1.3m. The position of the robot is evaluated through Rao-
Blackwellized particle filter, instead of using raw odometry data,
in order to calculate the polar coordinates from the target posi-
tion that is fed as an input to the policy network. The agent is
free to select any angular and linear velocities from a continuous
space as long as they are feasible by the physical constraints of
the robot. These velocity commands are directly sent to the low-
level controller where the algorithm waits until the command gets
executed. After the termination of every episode, the environment
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is reset and the robot returns back to its initial configuration. For
the sake of comparison, in the following experiments, the agent
is trained to reach different target locations with and without in-
corporating the map knowledge inside the reward function.

5. RESULTS

To evaluate the proposed algorithm, the results of different sce-
narios are discussed here. For every scenario, the performance of
the algorithm is analyzed through the average cumulative reward
that is given by

R′ =

∑N
n=1R(n)

N

whereR′ is the average cumulative reward at the end of the episode,
N is the number of time-steps experienced by the agent before
the episode is terminated and R(n) is the reward at the consid-
ered time-step n. This analysis criterion is useful to verify if the
agent follows an optimal policy since the main aim is to reach
the desired target with the least amount of actions and without
collisions. In the first scenario, the target (Target1) location lies
0.6m behind one of the obstacles as shown in Figure 3. The re-
sults show that incorporating map knowledge inside the reward
function dramatically outperforms the standard DDPG algorithm
as shown in Figure 4, where the mean value of the accumulated
reward is calculated every 30 episodes. As depicted in Figure 4,
the combined algorithm takes about 560 episodes before it con-
verges to the optimal path compared to about 1450 episodes that
are required by the standard algorithm. The reason is that, with a
single sparse penalty on the collisions, the agent needs to collide
with the obstacle in front many times in order to execute a turning
maneuver as it can only realize that there is an obstacle after hit-
ting it. On the other hand with the proposed reward function (12),
since the reward is a dense function around the known obstacles,
the agent realizes the optimal path much faster. Furthermore, the
success ratio in case of the combined approach is approximately
83% compared to 56% that is achieved by the standard algorithm.
This is another clear indication that the number of obstacles’ col-
lisions during training has decreased significantly as well. Here,
it should be noted that, we compared the number of episodes re-
quired to converge to the optimal value rather than the value of
the reward when the algorithm has converged, since the reward
functions for both algorithms are different. This aspect can be no-
ticed in Figure 4, where in the last 400 episodes the median value
of the cumulative reward not dependent on the map is slightly
higher than the cumulative reward defined based on the knowl-
edge of the map. This is due to the fact that the goal is located
next to an obstacle and the negative map-dependent penalty acts
by reducing the total value reward.
In addition, to guarantee that the proposed approach is not target-
based, the robot was trained to reach a different target, labelled as
Target 2 in Figure 3. The results of this experiment are illustrated
in Figure 5. Even in this case, the combined approach still gives
better results. The difference is not as significant as it is in the first
scenario, but this is reasonable since the maneuver, in this case,
does not involve too much interaction with the surrounding obsta-
cles. The combined approach converges after about 125 episodes
whereas the standard one converges after nearly 520 episodes. It
is also obvious that at the beginning of the training, the combined
approach achieved quite low rewards because of the high uncer-
tainties about the map. However, once the knowledge is obtained,
the performance improves significantly which proves the impor-
tance of incorporating the online-acquired map knowledge in the
reward shaping function.

Figure 4. Normalized reward per episode for the trained agent (Target 1).
The proposed reward function (red) guarantees drastically improved the
convergence rate with respect to a reward function that doesn’t use the

knowledge of the map (green). Notice that because the reward functions
are different, the median value of the reward is not taken into account

when making the comparison.

Figure 5. Normalized reward per episode for the trained agent (Target 2).
Even when the path doesn’t require go around an obstacle, the proposed
reward function (red) outperform a reward function that doesn’t use the

knowledge of the map (green).

6. CONCLUSION

In this study, a reinforcement learning and SLAM-based com-
bined approach is proposed for mobile robot’s navigation in an
unknown environment. The algorithm makes use of DDPG to ob-
tain continuous velocities for the robot. A grid-based SLAM with
Rao-Blackwellized particle filter algorithm was incorporated with
the RL algorithm in order to improve the performance of the lat-
ter. The performances of the proposed algorithm were assessed
based on a comparison with the most commonly used and effi-
cient reward function for navigation tasks (11) in the state of art.
It has been proven that shaping the RL reward function RL based
on the knowledge of the map improves drastically the conver-
gence rate, in terms of the number of episodes required to con-
verge and decreases the number of collisions with obstacles. The
key benefit of the proposed method lies in the possibility to re-
ceive negative rewards several steps before the effective collision
with the obstacles even in cases of partial knowledge of the map.
This aspect gives the possibility to the network to learn, in earlier
stages, to avoid getting too close to obstacles. As a future work,
the generalization properties of the proposed algorithm, during
the testing phase (so without training the network parameters),
needs to be evaluated in the case of different target and obstacles
locations.
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