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ABSTRACT: 
 
This contribution shows the generation of a benchmark dataset using historical images. The difficulties when working with historical 
images are pointed out and structured in three categories. Especially large viewpoint differences, image artifacts and radiometric 
differences lead to weak matching results with classical feature matching approaches. The necessity of publishing an own benchmark 
dataset is emphasized when comparing to existing datasets which are partly using synthetic data, well-known orientation or strictly 
categorized image differences. The presented image dataset consists at the moment of 24 images which are oriented in image triples 
using the properties of the Trifocal Tensor as a more stable image geometry. In the following, three different feature detectors and 
descriptors that have already been proven well on historical images (MSER, ORB, RIFT) are evaluated using the new benchmark 
dataset. Then, several outlier removal methods were applied on the detected features. The tests show that for the entirety of image pairs 
RIFT performs slightly better than the other two methods. Nonetheless, for some image pairs MSER significantly improves the 
matching score but even so, historical image pairs are difficult to be matched with the presented methods due to challenging outlier 
removal. Still, the estimated projective relative orientation could be used in an autocalibration approach to place the images in a metric 
scene. 
 

1. INTRODUCTION 

This contribution presents the generation of a benchmark dataset 
for the evaluation of different feature matching methods on 
historical images. The work is placed in the context of a 4D web 
application (3D models and related historical images and data) of 
the city of Dresden as an alternative media repository for e.g. art 
historians. Oriented images and methods to match historical 
images provide the basis for the placement of the images in such 
a 3D space. The presented images originate from the photo 
library of the Saxon State and University Library Dresden 
(SLUB), which contains about 1.8 million images of 80 
institutions at this point in time. The majority of images in this 
archive was taken between 1940 and 1990 (deutschefotothek.de). 
The images for the benchmark dataset were redigitized for this 
purpose and show various buildings. While the absolute 
orientation of these historical photographs is neither given nor 
easy to define, this approach focuses on the determination of the 
relative orientation between different historical images. 
 
This leads to diverse issues considering that extrinsic and 
especially intrinsic camera parameters are mostly unknown. 
Additionally, the images are taken by different camera types 
which vary in exposure and acquisition time. Consequently, the 
presented dataset is relatively oriented in a projective frame using 
a more stable triple image geometry (Hartley, 1997). The 
matches between the three images of one building view and 
additionally the relating Trifocal Tensor T are determined and 
given. This orientation data can then be used to evaluate different 
feature detectors, descriptors and feature matching methods on 
historical images.  In the following, it may be possible that an 
oriented image mosaic can be metrically spatialized in a three-
dimensional environment with the appropriate scale using 
autocalibration (Faugeras et al., 1992). The dataset consists of 24 
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images (2 image triples respectively for 4 buildings) and could 
be extended in the future. The images have different properties 
ranging from small viewpoint and radiometric changes to large 
differences. These properties can be summarized in the following 
three categories. 
  
1.1 Image differences based on digitization and image 
medium 

Even if an image would have been taken twice at the same 
moment in time, some differences concerning the digitized copy 
could occur during and even before digitization. This happens 
because historical images are mainly archived on photographic 
plates or photographic film. Any change on this original data is 
preserved during digitization. Especially, the conservative 
emulsion on the glass plates can deteriorate and additionally a 
glass plate is fragile and any crack will be pictured in the digitized 
image (Gillet et al., 1986). Scratches, dust and finger-prints may 
also be visible in the digital copy. 
 
Similarly, photographic film is vulnerable to damage e.g. by 
mold, photo-oxidation, air pollutants and improper handling 
(Slate, 2001). All of these image artifacts are transferred using 
digitization techniques and will interfere with the process of 
feature detection. One further image difference that may appear 
and is relevant for photogrammetry is the change of the principal 
point in the digital copy. It does not have to be necessarily the 
middle of the digital copy but it can shift, if only a part of the 
original image is digitized or if the original data has been 
cropped. It may be even possible that the principal point is not 
pictured on the digital copy. Additionally, when the digitization 
information (sensor, resolution, dynamic range, working area, 
accuracy, filters) is not available every metric data is lost in the 
process. 
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1.2 Image differences based on different cameras and 
acquisition technique 

When comparing various historical images, the main difference 
between them is the strongly changing representation of the 
depicted object. Photographs of the same object are taken in 
summer and in winter, in daylight and in nighttime and thus, the 
radiometric properties change. The historical images may be 
blurred, noisy, under- and overexposed and different light spots, 
reflections and shadows can appear in the same photographic 
scene and interfere with the feature detection. Sometimes, 
people, cars or other objects are in front of the depicted building 
and influence the feature matching. 
 
Additionally, on the one hand it is possible that there are extreme 
viewpoint changes between the images and on the other hand 
sometimes one building is solely photographed from similar 
perspectives, which makes a 3D reconstruction difficult. Since 
the camera types are mostly unknown and undocumented the 
inner orientation important for the reconstruction is not available 
and has to be estimated. 
 
1.3 Object differences based on different dates of acquisition 

A difficult topic is the dealing with object differences shown in 
the photographs. Building differences can vary between very 
small changes like on claddings, window frames or small statues 
to large ones considering destroyed or reconstructed buildings. It 
is not possible to assume that a historical building that is 
represented on various images did not change over time. 
Nonetheless, some valuable orientation information can even be 
determined using these destroyed or changed buildings. It will be 
difficult to decide whether an object changed so much that any 
metric information generated with photogrammetric methods is 
invalid. Furthermore, it is still discussed how to represent this 
error-prone data (Apollonio, 2016), (Kensek et al., 2004). It could 
be possible in a first step to categorize historical images using 
content-based image-retrieval on a very accurate scale and only 
use feature matching methods on image pairs of clearly the same 
building in the same state. 
 

2. RELATED WORK 

There exists already a numerous variety of image datasets in 
computer vision for different purposes like (people-)detection, 
classification, recognition, tracking, segmentation, multiview 
and many more. Famous datasets are e.g. the Caltech 256 dataset 
for classification purposes (Griffin et al., 2007) or the KITTI 
dataset used in autonomous driving and SLAM research (Geiger 
et al., 2013). The presented dataset could be integrated in the 
multiview category and closes a gap between different existing 
datasets. In contrast to datasets with a lot of images and their 
inner orientations (Moreels and Perona, 2007) it is not or only 
hardly possible to provide that many historical images including 
the proper inner orientation since the camera types are mostly 
unknown. 
 
Similar to the Affine Covariant Regions dataset (Mikolajczyk et 
al., 2005) the presented benchmark dataset consists of real data 
(= not synthetic data) with changes in illumination, viewpoint, 
blur and rotation. Some of the historical images even have large 
viewpoint or illumination changes like in the Extreme View 
Dataset or the Ultra Wide Baseline Dataset (Mishkin et al., 2015). 
These existing datasets are using the fact that “the images are 
either of planar scenes or the camera position is fixed during 

acquisition, so that in all cases the images are related by 
homographies [..] and this mapping is used to determine ground 
truth matches [..].” (Mikolajczyk et al., 2005). This is not 
(always) possible when using historical data, so the presented 
benchmark dataset is described by the predefined corresponding 
points and the Trifocal Tensor determining the relative 
orientation between image triples. At the time of this research no 
other freely available benchmark dataset with oriented images 
older than 40 years used for feature detection and matching could 
be found. 
 
However, many people are working with historical images and 
further data to reconstruct mostly buildings and sights. This 
includes e.g. the reconstruction of the great Buddha of Bamiyan 
(Grün et al., 2004), dinosaur tracks (Falkingham et al., 2014) or 
the orientation of historical images of Atlanta, GA (Schindler and 
Dellaert, 2012). But also recent research is done with historical 
data e.g. in combination with terrestrial laser scanning  (Bitelli et 
al., 2017), using old film negatives (Rodríguez Miranda and 
Valle Melón, 2017) or aerial images (Giordano et al., 2018). 
Though, those projects show a developing degree of automation 
in image processing a lot of work is still done manually in this 
field of research (Henze et al., 2009), (Gouveia et al., 2015). An 
oriented historical image dataset could help to improve 
automated approaches in image classification, image matching 
and image orientation. 
 

3. THE IMAGE DATASET 

Examples for the historical image dataset are shown below 
(fig.  1). The whole published dataset consists of 24 images with 
a maximum side length of 3543 pixels. It is mostly unclear, 
whether the original data is originated from photographic plates 
or film negatives. The images are grouped in two triplets 
respectively for 4 buildings (2 × 3 × 4 = 24).  Images were 
chosen with respect to their possible matching quality. The 
images show combined differences in illumination, field of view, 
viewpoints, blurring and slight rotation. Some of the images 
show building reflections in water or extreme shadowing. Thus, 
a very challenging dataset when using a single feature matching 
method is provided. 
 
Since the relative orientation of the image pairs cannot be easily 
described through a homography as explained before, the first 
step would be the description of the image pairs using a 
Fundamental Matrix F calculated out of at least 7 point 
correspondences, where F is defined by equation 1,  
 

 𝑥𝑥′𝑇𝑇𝐹𝐹𝑥𝑥 = 0  (1) 
  
where 𝑥𝑥′ and 𝑥𝑥 are at least 7 image correspondences in 
homogeneous coordinates. 
 
One must say, that this equation can hardly be used to test 
correspondences determined with feature matching methods 
because an estimated (e.g. using RANSAC) fundamental matrix 
F is only a projective map taking a point to a line. That means a 
point 𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧) in the first image defines a line (the 
corresponding epipolar line 𝑙𝑙′ = 𝐹𝐹𝑥𝑥) in the second image 
(Hartley and Zisserman, 2003). Additionally, the point transfer 
from image 1 to image 2 using the epipolar line can lead to false 
positives considering matches that lie randomly on the epipolar 
line but are no true matches. 
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Figure 1. All current images of the benchmark dataset showing the variety of historical images
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This leads to a more stable image configuration when using three 
images, because e.g. the epipolar lines from image 1 to image 3 
and from image 2 to image 3 of the same feature point intersect 
in image 3 in the homologue feature point (Maas, 1997). The 
matching can be simplified using the 3 × 3 × 3 Trifocal 
Tensor T and its properties for a point-point-point 
correspondence (eq. 2) (Hartley and Zisserman, 2003). 
 

 
[𝑥𝑥′]× ��𝑥𝑥𝑖𝑖𝑇𝑇𝑖𝑖

𝑖𝑖

� [𝑥𝑥′′]× = 03×3 (2) 

 
 
where 𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′ = image coordinates in the three images
 [𝑥𝑥]× = 3 × 3 skew-symmetric matrix of 3-vector
 𝑖𝑖 = number of 3 × 3 Tensor slice  
 𝑇𝑇 = Trifocal Tensor of the three images 
 03×3 = 3 × 3 null matrix 3-vector 
  
 
A point transfer from e.g. the first view to the third view can then 
be realized using equation 3 and the corrected Fundamental 
Matrices 𝐹𝐹12,𝐹𝐹13 and 𝐹𝐹23 extracted from the Trifocal Tensor 
(Hartley and Zisserman, 2003). 
 

 𝑥𝑥′′𝑘𝑘 = 𝑥𝑥𝑖𝑖𝑙𝑙′𝑗𝑗𝑇𝑇𝑖𝑖
𝑗𝑗𝑘𝑘 (3) 

 
 
where 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = indices   that  correspond to the entities 

in the first, second and third views respectively 
 
Since the Trifocal Tensor is not that easy to determine like a 
homography or the Fundamental Matrix, it is provided for every 
benchmark image triple. Additionally, the calculation of T is 
explained in the following. There are various methods that are 
used for the computation of the Trifocal Tensor namely e.g. the 
minimal parameterization by Faugeras and Papadopoulo 
(Faugeras and Papadopoulo, 1998) and by Nordberg (Nordberg, 
2009) or the constrained solutions by Ponce and Hebert (Ponce 
and Hebert, 2014) as well as Ressl (Ressl, 2002). Most 
approaches have already been tested and the constrained solution 
by Ressl has shown the most robust results leading to the smallest 
reprojection errors (Julià and Monasse, 2017). Using this 
computation method requires approximation values for the 
Trifocal Tensor and the Projection Matrices of the three images. 
These can be found by solving 𝐴𝐴𝐴𝐴 = 0 in a linear way. The 
matrix A is the Jacobian of the trilinearities and consists of the 
(𝑛𝑛 = 4) row-wise ordered sub matrices 𝐴𝐴𝑐𝑐 where c is the number 
of point correspondences (eq. 4) (Ressl, 2003). 
 

 𝐴𝐴𝑐𝑐 = �𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥′′) ⊗𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥′′′)� (𝑥𝑥′𝑇𝑇 ⊗ 𝐼𝐼9) (4) 
 
  
where 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = reduced axiator for point coordinates 

⊗ = Kronecker product for 4 linearly 
independent equations 

  
Afterwards, the approximation values can be calculated by 
minimizing the algebraic error using a singular value 
decompositon (SVD). It is recommended to use at least 10 
normalized point correspondences in all three images with a pixel 
noise of 1 to minimize the reprojection error with the subsequent 
constrained solution (Ressl, 2003). For the benchmark dataset at 
least 15 manual point correspondences were used in the image 
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triples and a pixel noise < 1 was targeted. The verified results for 
the different matching strategies show that this goal could be 
accomplished. The detailed description, the images, the matched 
points and the corresponding Trifocal Tensor are available on the 
website1. 
 
Since the Trifocal Tensor provides geometric relations between 
three views only in a projective frame independent of scene 
structure (Hartley and Zisserman, 2003) the resulting camera 
matrices 𝑃𝑃,𝑃𝑃′,𝑃𝑃′′ retrieved by eq. 5 could be introduced as a prior 
relative orientation into an autocalibration algorithm (Heinrich et 
al., 2011) allowing the estimation of inner and exterior 
orientation and in the following, the generation of simple 
structures in euclidean metric 3D space. 
 

 𝑃𝑃 = [𝐼𝐼|0] 
𝑃𝑃′ = �[𝑇𝑇1,𝑇𝑇2,𝑇𝑇3]𝑒𝑒′′|𝑒𝑒′� 
𝑃𝑃′′ = �(𝑒𝑒′′𝑒𝑒′′𝑇𝑇 −  𝐼𝐼)�𝑇𝑇1𝑇𝑇 ,𝑇𝑇2𝑇𝑇 ,𝑇𝑇3𝑇𝑇�𝑒𝑒′|𝑒𝑒′′� 

(5) 

 
where 𝑒𝑒′, 𝑒𝑒′′ = respective normalized epipoles 
 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3 = Tensor slices 
 
 

4. COMPARISON OF DIFFERENT FEATURE 
DETECTION AND DESCRIPTION METHODS 

 
In the following, the different feature detection methods used on 
the benchmark image dataset are briefly explained. Three distinct 
algorithms were chosen to process the images in full resolution 
and find point features. The comparison is done between image 
pairs but can be evaluated using the Trifocal Tensor. Thus, the 
number of correct matches in relation to the sum of all matches 
(= matching score) could be determined. Some of the common 
methods have already been tested on historical image data and a 
combination of the ORB (Oriented FAST and Rotated BRIEF) 
feature detector and the SURF (Speeded-Up Robust Features) 
feature descriptor produced decent results (Ali and Whitehead, 
2014). Another approach that generated a good matching ratio 
was the MSER (Maximally stable extremal regions) feature 
detector and descriptor (Wolfe, 2013). Additionally, those results 
are compared with a newer method called RIFT (radiation-
invariant feature transform), that neglects radiometric differences 
in images and thus, can be a good addition to existing approaches. 
For the first and second test the standard implementations of 
ORB, SURF and MSER in OpenCV were used. The third test 
used the implementation of RIFT in Matlab (Li et al., 2018). The 
results are presented without outlier removal using brute force 
matching, outlier removal using a symmetry test and as a third 
approach outlier removal using Fundamental Matrix calculation 
with the random sample consensus (RANSAC) (Fischler and 
Bolles, 1981). Additionally, for RIFT the native calculation using 
the fast sample consensus (FSAC) (Wu et al., 2015) is shown. 
 
4.1 Oriented FAST and Rotated BRIEF (ORB) 

ORB is a common alternative to SIFT and uses an intensity 
oriented FAST (Rosten and Drummond, 2006) for feature 
detection and an in-plane rotation invariant version of BRIEF 
(Calonder et al., 2010) for feature description (Rublee et al., 
2011). Since the hybrid version using the ORB detector and the 
SURF descriptor achieved better results on historical images (Ali 
and Whitehead, 2014) the presented approach chooses this as a 
first method for feature detection and description. The oriented 
FAST detects keypoints using the intensity threshold between the  
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Table 1. Results for different feature matching methods for 8 different image triples (=24 image pairs). Matching results are shown 
respectively for every dataset for the image pairs 1_2, 1_3 and 2_3 as ration in % between all found matches and correct matches 

(matching score). Good results are highlighted in green whereas bad results are shown in red 
 
 

 
Table 2. Results for different feature matching methods for 8 different image triples (=24 image pairs). The total number of correct 

matches is shown respectively for every dataset for the image pairs 1_2, 1_3 and 2_3. Good results are highlighted in green whereas 
bad results are shown in red 

center pixel and a circular ring around that center. The orientation 
of the keypoints is done using an intensity centroid (Rosin, 1999). 
The standard maximum value for the number of features retained 
was set from a maximum of 500 to 2500 to allow a better 
comparison with the other methods. In the following, SURF is 
used for the description of the features since it outperforms other 
descriptors by repeatability, distinctiveness and robustness (Bay 
et al., 2006). 
 
4.2 Maximally Stable Extremal Region Detector (MSER) 

As a second method the presented approach uses MSER (Matas 
et al., 2004). This algorithm is usually applied on image pairs 
with a wide baseline. Classical feature points are replaced by 
regions which are closed under projective transformation of 
image coordinates and monotonic transformation of image 
intensities (Matas et al., 2004). Those properties can be especially 
useful for historical images because of the already explained 
image differences. Regions described by a connected number of 
pixels are chosen by the property that all pixels inside one 
extremal region have either a higher or a lower intensity than all 
the pixels on its outer boundary (Mikolajczyk et al., 2005). 
Again, SURF is used for the description of the regions consisting 
of feature point sets. 
 
4.3 Radiation-invariant Feature Transform (RIFT) 

The third method used is called RIFT. The radiation-invariant 
feature transform is chosen because of its invariance to nonlinear 
radiation distortions (NRD) (Li et al., 2018) and the use of edge 
features in addition to corner features. Both effects can support 
the feature detection in historical images. The approach uses the 
Fourier transform to generate phase congruency maps. 
Independent maps for each orientation of a 2D log-Gabor filter 
are created and used for the detection of corner features as well 
as edge features. In the following, those features are described by 
a 216-dimensional feature vector calculated through a maximum 
index map based on a log-Gabor convolution sequence (Li et al., 

2018). RIFT is currently not scale invariant and so it should 
perform bad on large scale-changes. However, it has been 
observed that feature points in image pairs with small scale-
changes can still be matched correctly. 
 
4.4 Feature matching and outlier removal 

For the comparison of all methods, the presented approach uses 
a brute force matching (_bf) for all detected feature points, i.e. all 
feature points with their particular descriptors are matched (so 
every descriptor in image 1 is compared with every descriptor in 
image 2). In the following, two different outlier removal methods 
are evaluated. The first approach uses a symmetry test (_sym). 
So matches from image 1 to image 2 are only kept if these are 
also matches from image 2 to image 1. In the second approach 
the calculation of a Fundamental Matrix between both images 
based on the feature matching result using brute force matching 
is used to eliminate outliers. Therefore, the RANSAC algorithm 
(_RANSAC) was chosen (Fischler and Bolles, 1981). 
Additionally, for RIFT the already implemented outlier removal 
(_native) using the fast sample consensus (FSC) (Wu et al., 2015) 
is shown. 
 

5. RESULTS 

The results of the different feature detection and matching 
methods are shown in table 1. For every image triple the matches 
are shown respectively at first between image 1 and image 2, 
secondly between image 1 and image 3 and at last for image 2 
and image 3. Therefore, the number of correct matches 
(determined using the point transfer with the Trifocal Tensor) is 
compared with the absolute number of matches and given as ratio 
in % (also referred to as matching score) with respect to the 
feature matching method and the applied outlier removal. Good 
results (> 40 %) are highlighted in green whereas bad results 
(< 40 %) are highlighted in red. The transition from red to green 
around 40 % is coloured in white. Additionally, table 2 shows the 

Dataset Mb_1 Mb_2 Zw_1 Zw_2 So_1 So_2 Hk_1 Hk_2
Imagepair 1_2 1_3 2_3 1_2 1_3 2_3 1_2 1_3 2_3 1_2 1_3 2_3 1_2 1_3 2_3 1_2 1_3 2_3 1_2 1_3 2_3 1_2 1_3 2_3
Serial Number # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
MSER_bf 0,74 1,17 0,33 0,40 0,58 0,24 9,04 3,01 10,33 0,18 0,39 0,47 3,20 10,24 7,07 0,77 3,30 0,26 0,33 0,26 0,07 1,15 0,61 1,31
MSER_RANSAC 0,00 1,12 0,00 0,00 2,88 16,22 59,82 0,00 54,17 0,00 0,00 0,00 23,85 29,20 63,02 0,00 13,33 0,00 4,95 2,11 0,00 0,00 0,00 0,00
MSER_sym 0,81 1,38 0,40 0,60 0,41 0,20 17,05 5,00 20,89 0,23 0,44 0,77 5,75 18,10 17,79 0,74 8,19 0,62 0,61 0,24 0,06 1,12 1,46 2,06
ORB_bf 2,00 1,28 0,72 1,24 0,52 1,12 6,88 2,64 10,56 0,40 1,28 2,40 2,80 7,88 9,04 1,00 4,44 0,76 0,64 0,08 0,00 4,24 0,44 0,76
ORB_RANSAC 44,83 9,09 0,00 3,45 0,00 0,00 10,71 3,23 57,72 0,00 0,00 22,45 17,31 15,74 42,42 0,00 13,64 5,26 0,00 0,00 0,00 42,55 0,00 0,00
ORB_sym 2,38 1,79 0,58 2,19 1,19 2,37 17,36 6,34 22,34 0,48 2,42 3,89 6,73 14,67 20,97 2,46 7,30 1,39 1,11 0,00 0,00 9,28 0,39 0,70
RIFT_bf 6,44 7,80 4,88 0,92 1,92 1,76 4,92 1,56 16,45 1,40 4,24 4,52 3,12 12,53 9,68 0,80 7,48 0,40 3,72 0,96 0,48 0,84 1,96 3,56
RIFT_RANSAC 0,00 1,01 0,00 0,00 0,00 0,00 3,85 0,00 80,00 0,00 18,18 0,00 0,00 30,95 0,83 0,00 12,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00
RIFT_sym 18,51 26,71 18,18 1,65 5,77 5,15 15,24 4,34 36,49 3,71 10,86 17,80 16,09 27,07 34,30 1,13 16,33 1,15 17,09 2,80 2,94 2,42 10,00 11,46
RIFT_native 77,78 83,33 80,43 0,00 0,00 72,73 47,62 0,00 50,00 15,38 46,94 62,50 42,50 0,00 0,00 0,00 8,82 25,00 66,67 25,00 25,00 0,00 69,23 84,21

Serial Number # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
MSER_bf 60 95 16 60 86 42 1064 354 1742 24 51 63 707 2266 1904 123 530 43 14 11 9 95 50 102
MSER_RANSAC 0 1 0 0 3 18 329 0 942 0 0 0 150 2239 1554 0 28 0 5 2 0 0 0 0
MSER_sym 7 22 4 11 6 3 282 75 448 4 9 15 213 747 679 15 87 6 5 2 1 11 9 13
ORB_bf 50 32 18 31 13 28 172 66 264 10 32 60 70 197 226 25 111 19 16 2 0 106 11 19
ORB_RANSAC 26 4 0 1 0 0 12 1 142 0 0 11 9 172 154 0 9 2 0 0 0 20 0 0
ORB_sym 15 12 3 12 7 16 117 41 170 3 15 22 44 151 156 14 53 8 7 0 0 57 2 4
RIFT_bf 161 195 122 23 48 44 123 39 411 35 106 113 78 313 242 20 187 10 93 24 12 21 49 89
RIFT_RANSAC 0 1 0 0 0 0 1 0 20 0 2 0 0 39 1 0 1 0 0 0 0 0 0 0
RIFT_sym 87 125 72 4 18 17 80 16 316 15 63 89 60 281 213 3 104 3 61 7 7 7 28 33
RIFT_native 42 35 37 0 0 8 10 0 46 4 23 20 17 0 0 0 3 1 4 2 2 0 9 16
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Figure 2. Matching scores of every image pair for the four best performing algorithms MSER_RANSAC, ORB_RANSAC, 

RIFT_RANSAC, and RIFT_native 
 
 

 
Figure 3. Total number of correct matches shown on a logarithmic scale of every image pair for the four best performing algorithms 

MSER_RANSAC, ORB_RANSAC, RIFT_RANSAC, and RIFT_native 
 
 

number of all correct matches determined by the different 
approaches for the 24 image pairs. The total number of feature 
points is provided within the dataset. The image pairs are serially 
numbered from 1 to 24. It is easy to see that for example the 
image pair 16 could not be matched by any of the algorithms with 
a good result in opposite to e.g. the image pair 9 where every 
approach shows better results highlighted in the respective 
column in green. For an easier comparison the matching scores 
(ratio) and the number of correct matches of the four best 

approaches (MSER_RANSAC, ORB_RANSAC, RIFT_ 
RANSAC, RIFT_native) are shown in two different diagrams 
(fig. 2, 3). 
 
The table as well as the diagrams demonstrate that all three 
methods fall short of expectations. A small number of correct 
matches can almost always be found for every image pair with 
the brute force attempt but it is hardly possible to filter those out. 
Some exceptions exist like e.g. for image pair 7 and MSER only 
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around 9 % of the initial matches are correct but with the outlier 
removal method RANSAC it is achievable to reach a matching 
score of around 60 %. 
 
However, the native version of RIFT using the fast sample 
consensus produces better results than the other approaches. For 
a lot of image pairs, a matching score > 60 % could be attained. 
But regarding the total number of correct matches (tab. 2, fig. 3) 
these are very low compared to e.g. MSER but most of the times 
still enough to perform an estimation of a Fundamental Matrix. 
The combination of ORB and SURF doesn't outperform any of 
the other algorithms and is therefore not suitable for the feature 
matching of the depicted historical images. 
 
100 % correct matches could not be reached with the presented 
approaches. Consequently, it can be said that the crucial point 
when working with historical images is the outlier removal step. 
Since there always is a small number of feature points in the 
image pairs that could be matched it will be the objective to filter 
those correctly. The symmetry test only slightly improved the 
results of the brute force matching. RANSAC performs better but 
most of the times the exact Fundamental Matrix could not be 
found. It seems that a refined RANSAC algorithm like FSC that 
is used in the RIFT approach could improve the matching scores. 
 
A combination of all methods could result in higher scores and 
will be tested in the future. Multiple iterations when calculating 
the Fundamental Matrix or improved RANSAC algorithms like 
FSC, PROSAC (Chum and Matas, 2005) or MSAC (Torr and 
Zisserman, 2000) could improve the matching scores for all 
approaches. 
 
Summarizing, for all image triples of the benchmark dataset it is 
possible to find homologue points and match them almost only 
using RIFT. MSER generally finds the most feature points but 
most of the times RIFT shows the highest matching scores in 
combination with FSC. For some special image constellations, 
the other approaches could be more appropriate and a 
combination of methods could lead to better results (Mishkin et 
al., 2015). Historical images are still a challenge for classical 
feature detection and matching algorithms, thus a cautious outlier 
removal is inevitable. 
 

6. CONCLUSIONS AND FUTURE WORK 

The contribution shows the generation and evaluation of a dataset 
consisting of 24 historical images. Difficulties determining the 
relative orientation of the data arise due to large image 
differences and unknown camera parameters. Thus, a more stable 
image configuration using three images described by the Trifocal 
Tensor T has been established. Therefore, T is given for every 
image triple in the dataset. The Trifocal Tensor can be used to 
evaluate different feature detectors and matching methods on 
historical images and the dataset can be used as a benchmark set. 
In this research MSER, ORB and RIFT were used since these 
algorithms have already shown good results in other publications. 
For the presented dataset RIFT produced better results than the 
other two methods. FSC performed better in outlier removal than 
the symmetry test or RANSAC. 
 
It is planned to establish a more reliable workflow for historical 
image matching using multiple methods consecutively. Also 
other already developed approaches will be tested on the dataset 
in the future (Maiwald et al., 2018). Different outlier removal 
methods could still improve the matching scores. Additional 
oriented historical images will be added to the dataset to provide 
a challenging base for other researchers. 

 
Since the images are oriented with the Trifocal Tensor only in a 
projective space it is planned to use this estimated relative 
orientation as a base for a metric solution and calculate the inner 
and exterior orientation of the historical images. In the following, 
these images could be placed in the 3D/4D web application. 
Furthermore, simple features like single lines or planes could be 
generated in 3D space to create generalized historical 3D models. 
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