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ABSTRACT:

The proliferation of machine learning applied to 3D computer vision tasks such as object detection has heightened the need for large,
high-quality datasets of labeled 3D scans for training and testing purposes. Current methods of producing these datasets require first
scanning the environment, then transferring the resulting point cloud or mesh to a separate tool for it to be annotated with semantic
information, both of which are time consuming processes. In this paper, we introduce Augmented Annotations, a novel approach to
bounding box data annotation that solves the scanning and annotation processes of an environment in parallel. Leveraging knowledge of
the user’s position in 3D space during scanning, we use augmented reality (AR) to place persistent digital annotations directly on top of
indoor real world objects. We test our system with seven human subjects, and demonstrate that this approach can produce annotated 3D
data faster than the state-of-the-art. Additionally, we show that Augmented Annotations can also be adapted to automatically produce
2D labeled image data from many viewpoints, a much needed augmentation technique for 2D object detection and recognition. Finally,
we release our work to the public as an open-source iPad application designed for efficient 3D data collection.

1. INTRODUCTION

Access to human-labeled data is a necessary component in train-
ing supervised models on computer vision tasks. As the per-
formance and robustness of these models increase, so do their
demands for greater amounts of training data. It’s imperative
that methods for capturing and producing this data continue to
evolve and improve alongside the algorithms that use them, lest
researchers run into the problem of having innovative ideas but
not enough data to evaluate them properly.

In the 2D domain, image data is commonplace. Smartphoneswith
high quality cameras are ubiquitous in many parts of the world,
and as a result huge numbers of pictures and videos are taken ev-
ery day. Accompanying this are social media platforms such as
Instagram 1 or image hosting sites such as Imgur 2, which make
it easy to aggregate these images and take advantage of their ex-
isting metadata. As an example, Hays and Efros took a million
pre-tagged pictures from Flickr to build a scene completion solu-
tion for arbitrary images (Hays and Efros, 2007) - no manual data
collection or annotation was necessary.

In the 3D domain, however, properly annotated data remains rel-
atively scarce. 3D information is physically more difficult and
expensive to capture. Depending on the format of representa-
tion, the sparse nature of most 3D environments causes the data
to take up significantly more storage and can be harder to pro-
cess. Finally, there is little incentive for consumers or industry to
capture and annotate such data; data repositories such as Thingi-
verse3 and GrabCAD4 exist, but are much less popular than their
2D counterparts, and focus more on 3D modeled scenes rather
than of captures of real-life 3D environments. As a result, many
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publications rely on datasets that were generated for the sole pur-
pose of research. In this paper, we address one of the bottlenecks
limiting the availability of 3D data: the time consuming process
of 3D data annotation for the purposes of training and testing.

Current state-of-the-art methods for producing 3D datasets adopt
a two-step approach. First, the environment is scanned, often
through some sort of tripod-mounted or handheld depth camera
system. Next, the scans are uploaded to a server and accessed
through a program orweb app designed for data annotation. Users,
using a mouse and keyboard, manually draw bounding boxes and
apply text labels to objects in the scans through this interface.
This is inefficient, as it requires two detailed passes over the same
environment, once for scanning and once for annotating, whereby
both steps of the process can be laborious and time consuming. It
would be ideal to develop a procedure that eliminated this redun-
dancy.

We point out two key insights that guide our solution to this prob-
lem. The first is that real-time Simultaneous Localization and
Mapping (SLAM) algorithms have become accurate enough to
play a role in generating ground-truth data. Under normal us-
age conditions, the error introduced by drift or other factors in
many modern SLAM implementations is second-order compared
to the error from human variance in annotating ground-truth data.
This opens up the possibility for the user to interactively anno-
tate the 3D environment in real-time, while the scanning is still
in progress. The second insight is that depth cameras have be-
come more accessible in recent years; newer models are cheap
and compatible with smartphones, allowing us to take advantage
of well-established mobile UI paradigms when designing tools.

In this paper we present Augmented Annotations, an iOS appli-
cation that uses a depth sensor to consolidate the scanning and
annotation processes for indoor scenes. Our application outputs
high quality meshes of the environment alongside a list of la-
beled bounding boxes surrounding objects of interest. Users of
our app use an iPad to scan the environment while simultane-
ously placing virtual bounding boxes that are localized relative to
the real world. We show that through our method, users can pro-
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duce fully-annotated data at a faster rate than through traditional
methods. We also show that the same procedure can be used to
quickly capture annotated 2D images as well.

The outline of this paper is as follows. In Section 2, we review
relatedworks; Section 3 includes the workflow and user interface.
Section 4 covers experimental results and Section 5 is conclusions
and future work.

Figure 1: Screenshot from SUN RGB-D’s annotation tool. Taken
from Song et al.’s supplemental material (Song et al., 2015).

2. RELATEDWORKS

Existing methods for annotating datasets rely primarily on the
desktop computer. Russell et al. introduce a feature-rich program
for annotating images called LabelMe, which allow users to draw
polygons and query large-scale databases of images (Russell et
al., 2008). Their work has inspired many others research groups
to build their own annotation tools in a similar style. As annota-
tion is a parallelizable task and requires relatively little training,
these tools are also commonly made to work with crowd-sourcing
platforms such asMechanical Turk (Strickland and Stoops, 2018)
or oDesk (Wenkart, 2014), which provide a way for researchers
to connect to and distribute needed data to potential workers for
an affordable cost.

In the 3D computer vision field specifically, one popular dataset
is Silberman et al.’s NYUv2, a collection of 1449 RGB-D images
taken of indoor scenes (Couprie et al., 2013). Their annotation is
done in the 2D domain in that each image has a per-pixel labeling
done through Mechanical Turk, allowing them to to take advan-
tage of more well-developed 2D annotation procedures. Another
popular dataset is SUN RGB-D, which contains 10,355 RGB-
D images (Song et al., 2015). Unlike NYUv2, SUN RGB-D
provides 3D bounding box annotation, also collected through a
custom-made application on Mechanical Turk. Song et al.’s an-
notation tool, shown in Figure 1, presents scanned 3D scenes to
each worker from various orthogonal perspectives. These work-
ers then follow a procedure to create, modify, and label bounding
boxes for each object of interest. Themore recent ScanNet dataset
uses a similar system to produce semantic segmentations on 3D
scans (Dai et al., 2017). These tools are streamlined to minimize
the amount of training required.

Augmented Reality (AR) as an interaction paradigm is still in its
nascent stages, but nevertheless presents interesting implications
for the computer vision community. Most new mobile devices
have either multiple cameras or a depth sensor that allow them to
perform SLAM. Industry developer SDKs such as 6D.AI (6DDe-
velopment Team, 2017) and Placenote (Placenote Development
Team, 2017) use AR to support persistent annotations for human

consumption, allowing users to leave virtual, localized notes for
for others or themselves, among other use cases. These notes re-
member their location in the physical world, even as the device
itself moves. This style of interaction scheme naturally lends it-
self towards the goal of developing annotation tools.

There are cases where AR has been used to help further the com-
puter vision field. For example, Alhaija et al. uses AR to generate
realistic urban driving datasets (Abu Alhaija et al., 2018). They
take real scenes of urban environments and augment them with
virtual models of cars and other objects, thus producing endless
variants of data from a much smaller library. That said, AR is still
relatively new and we see great potential for further exploration
on the subject.

Figure 2: Occipital Structure Sensor attached to an iPad. Image
taken from (Hoffman, 2014).

Figure 3: Screenshot of the application in action: A scanned
mesh, shown in white, is superimposed on top of camera feed in
real-time. A bounding box, shown in translucent blue, has been
placed around the chair.

3. METHODOLOGY

Our proposed system uses an iPad connected to anOccipital Struc-
ture Sensor, shown in Figure 2. The Structure sensor contains a
depth camera and processing unit that coordinates with the iPad’s
camera to perform hybrid RGB-D SLAM (Occipital Develop-
ment Team, 2012). During the scanning process, the sensor pro-
vides our application a dense mesh of the environment, which
gets rendered over the camera’s view of the real world, as shown
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Figure 4: Overview of Augmented Annotations.

in Figure 3. A gizmo-style toolkit allows users to insert bound-
ing boxes relative to the world and the mesh; an example of one
is shown in Figure 3. Once the process is completed, the po-
sition, orientation, extents, and labels of the bounding boxes are
exported alongside the mesh itself, where they can then be used as
labeled ground truth data for training and testingmachine learning
models. An overview of the Augmented Annotations procedure
is shown in Figure 4.

It is important to note that our system is not coupled tightly to the
implementation of the underlying localization and mapping algo-
rithms. As sensors become cheaper, more efficient, and higher
quality, the Structure Sensor can be upgraded to take advantage
of those improvements, with minimal changes to the software.
Similarly, as RGB monocular SLAM approaches get more and
more robust - or as smartphone manufacturers begin to integrate
depth sensors in next-gen mobile devices such as the Samsung
Galaxy S10 5G (Swider and McCann, 2019) - the external sen-
sor will eventually become redundant and our system will work
entirely off of suitably-equipped smartphones and tablets.

3.1 User Interface

The user interface for Augmented Annotations, shown in Figure
5, provides means of creating andmanipulating annotations while
the scan is ongoing. The supported functionality includes adding,
removing, labeling, and transforming bounding boxes. The inter-
face is operated entirely through intuitive taps and drags. Since
the Occipital sensor performs SLAM for us, we can poll the po-
sition/rotation of the iPad relative to the physical environment at
any time during the scanning process. This allows us to carry out
the aforementioned operations in a coordinate frame that’s locked
to the real world.

When a user creates a new bounding box, it is initialized one me-
ter in front of iPad. By default, the pitch and roll of the box are
set such that the bottom face is perpendicular to the direction of
gravity, since this is the most likely alignment of any physical
object. The yaw is set to be the same angle as the yaw of the de-
vice, so that the edge of the box is parallel to the user at time of
initialization. The size of the box is defaulted to 1 meter cubed.

After its creation, a bounding box can be manipulated through
the use of tools called gizmos, shown in Figure 6. Gizmos are
independent interaction schemes commonly used for 3D manip-
ulation in CAD/CAM, animation, and game development work-
flows. Gizmos map 2D interactions on the screen (through single
and multi-touch taps and drags) to corresponding transformations
in three dimensions. Our primary three gizmos for scale, posi-
tion, and rotation cover all possible 6DOF poses in space. As
mentioned above, bounding boxes are positioned relative to the

Figure 5: Augmented Annotation’s user interface. Gizmo buttons
have been labeled with their corresponding functionality.

real world environment, and maintain their positions even as the
iPad moves. This enables users to physically adjust themselves in
order to view the scene or a particular box from a better perspec-
tive. Tapping the label button brings up a text box which allows
the user to assign a label to the selected bounding box, using the
on-screen keyboard.

Figure 6: Gizmos for the scale, position, and rotation tools re-
spectively.

The process of accurately positioning bounding boxes requires
viewing the placed boxes from multiple angles. This has the
added benefit of ensuring that the scanner observes the objects
of interest from many angles. As a result, the resulting scan is
complete, and there are few holes from occluded viewpoints. The
quality of the mesh is especially good around the labelled objects,
since the user spends the most time looking around those objects.
In object recognition tasks, these are the most important parts of
the mesh, so it is desirable to obtain high resolution at these loca-
tions.
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3.2 Automatic 2D Bounding Box Generation

Given a 3D bounding box, our system can also generate a 2D
bounding box around the object from any perspective, even after
the capture is complete. This is done by taking the vertices of
the 3D box, projecting them to the camera’s image plane, and
determining the minimum area rectangle that encapsulates those
points as shown in Figure 7. This process requires no additional
input from the user after creating the initial 3D bounding box,
and unique perspectives can be generated as fast as the user can
move the iPad. Although we do not go further than developing
this feature in this paper, we believe this capability is invaluable
in generating viewpoint variation of objects in the augmentation
of 2D recognition datasets.

Figure 7: 2D bounding boxes created around a synthetic 3D
bounding box. The same 3D box is used in each image, with
only the camera perspective changing between images.

4. EXPERIMENTAL RESULTS

To evaluate the efficacy of our tool, we compare it to SUN RGB-
D, a scanning and annotation system used to generate the epony-
mous dataset. In SUN’s system, the environment is first scanned
ahead of time using an RGB-D sensor. The mesh of the scan is
then uploaded to the desktop tool, where workers annotate ob-
jects within the scene. For the purposes of comparison, we build
a replica of that annotation tool, shown in Figure 8, based off of
their description of the tool in (Song et al., 2015), using the Struc-
ture Sensor for RGB-D capture. This replica is evaluated along-
side our Augmented Annotation system. Below we describe the
procedure for our study and the results it produced.

Figure 8: A screenshot from our replica of the SUN RGB-D an-
notation tool displaying environment 1. Top left: an arbitrary
perspective view. Top right: bird’s eye view. Bottom left and
right: orthogonal side views.

4.1 Experimental Procedure

In our experiment, seven subjects are presented with three indoor
environments, along with a list of notable objects in each scene.

The area and number of objects for each environment is shown
in Table 1, and pictures of each environment are shown in Fig-
ure A1 of the Appendix. Subjects are tasked with scanning each
environment and annotating the listed objects. They accomplish
this twice via two separate procedures: once using our replica of
the SUN RGB-D tool, and once using the Augmented Annota-
tions system. The total time to completion for each environment
is recorded. To minimize bias, half of our participants start with
the SUN tool first, while the other half start with the AA tool. To
familiarize participants with the tools, they are instructed to prac-
tice scanning and annotating their nearby area at the beginning of
the study. The times from this practice run are not recorded.

Environment Area (sq. ft.) No. of Objects
1 189 7
2 71 8
3 85 11

Table 1: The area and number of required objects for each of the
environments used in the experiment.

For the SUN RGB-D procedure, an environment is first scanned
with the Occipital Structure Sensor and iPad. The scan is then
imported into our replica of SUN’s annotation tool. The time it
takes to import is not included, since with large-scale datasets
this step is heavily batched and takes relatively little time. In this
tool, the user is presented with four quadrants, each presenting a
different view of the environment. Subjects click to draw out a
rectangle in the top-down view, which initializes a bounding box.
They then label the object using the center text box, and adjust
the bounding box’s height in one of the side views.

For the Augmented Annotations procedure, participants use our
app on the Structure sensor and iPad. They make use of the tools
and gizmos described above to create bounding boxes in the en-
vironment while simultaneously generating a scan of the environ-
ment.

4.2 Results

The resulting times of each participant and averages per room
are shown in Table 2. We find that our system completes the
scanning and annotation process significantly faster than SUN’s
approach in environments 2 and 3, and is only slightly slower in
environment 1.

We see especially significant gains in environments that are clut-
tered. This is because such a scene projects poorly to 2D, making
it difficult to distinguish and thus annotate objects using the 2D
perspectives afforded by SUN’s annotation tool. In large, unclut-
tered environments such as environment 1, we observe perfor-
mance on par or slightly worse than the baseline desktop system.
That is because such scenes can be described sufficiently well in
2D, as there is no variance along the top-down axis. From Fig-
ure 8, it is apparent that in environment 1, bounding boxes can be
determined from the top-down view alone. On the depth axis the
bottom and top faces are all uniform, and there is no overlap of
objects. This effect is amplified in large rooms, because the user
is forced to walk larger distances for relatively little viewpoint
variation. Therefore, our system works best in small, cluttered
environments comprised of irregular geometries with variance in
all three dimensions. An example of one is environment 3, shown
in Figure A2 of the Appendix, which is also the environment we
see the most improvement in.

We also find variance produced as a result of differing familiar-
ity with the technology. For example, subject A had significantly
more experience with AR applications than subject D, and as a
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Environment
Participants

A B C D E F G Average
SUN AA SUN AA SUN AA SUN AA SUN AA SUN AA SUN AA SUN AA

1 3:25 2:59 3:28 3:12 4:09 4:25 3:25 3:29 3:17 2:53 4:43 4:35 3:21 4:40 3:41 3:44
2 3:56 2:30 4:00 3:40 3:55 3:35 3:57 4:19 4:26 3:37 4:12 4:40 3:57 2:51 4:03 3:36
3 6:49 5:15 5:54 4:30 5:27 5:01 5:38 5:01 5:20 4:07 5:25 5:33 4:56 3:45 5:38 4:44

Table 2: The times taken for subjects to scan and annotate the environments shown in Figure A1. For SUN trials, the time required to
scan and time required to annotate are summed together. All times are given in minutes and seconds.

result their Augmented Annotations trial times differed greatly.
In contrast, all subjects had plenty of experience with mouse-
based desktop applications, which can be seen from how the SUN
trial times are much more tightly distributed per environment.
This suggests that further user studies more rigorous than this one
would be required to characterize the performance of our system
in more depth.

While we did not quantitatively evaluate our 2D bounding box
generation, examples of it used in physical scans can be found
in Figure 9. We believe that one can expect significant speedups
from this feature. Since the localization algorithm runs at approx-
imately 30 frames per second on our hardware, we can generate
30 labelled 2D bounding boxes for every second of footage. As
the user moves around the object and the environment, each 2D
image would capture a different perspective of the object. Of
course, not all 30 frames could be used; many frames would have
to be discarded to prevent overfitting. Therefore the exact per-
formance would depend on the architecture of the model being
trained, characteristics of the data augmentation techniques ap-
plied, size of the training set, etc. Nonetheless, we expect this to
be quite useful for 2D object recognition tasks.

Figure 9: Screenshots of our app generating 2D bounding boxes
around a stack of books. The orange wireframe is the outline of
the 3D bounding box, and the shaded green rectangle is the 2D
one. The computer mesh is shown in white, superimposed on top
of the real world objects.

5. CONCLUSIONS AND FUTUREWORK

In this paper we introduce Augmented Annotations, a system for
creating annotated 3D datasets that consolidates the scanning and
annotation processes to save on time and effort. We build an
iPad + Structure Sensor app that uses augmented reality to enable
the real-time creation of bounding boxes relative to the physical
world. Our experiment shows that our system outperforms or re-
mains on-par with traditional methods in generating 3D and 2D
bounding box data, with greater improvements seen in cluttered
or irregular environments.

There are many potential improvements that could further im-
proveAugmentedAnnotations. One participant suggested having
a ”ghost box” that showed where a new box would be created. In
general, we believe that the initialization process is key to mak-
ing this process even faster - annotation would be significantly
expedited if the system could make intelligent guesses about the
initial placement of the bounding box. Some simple heuristics

would be to align the bottom of the bounding box with the floor
of the mesh, or scale the box based off of the camera’s current
perspective. Going further, the system could make live predic-
tions about where potential objects of interest might be based off
of the contour or color of the mesh.

We also must consider hardware affordances of the system. Most
obviously, our setup would not work with non-portable sensors.
Next, we noticed some participants struggled to type on the on-
screen keyboard, and believe that voice input would be a more ef-
ficient modality for object labeling. While the iPad + sensor per-
forms SLAM and scans well at an affordable price, it also lacks a
vital feature of higher-end AR headsets: depth perception, which
would be extremely helpful in judging the depth of 3D objects
and bounding boxes without having to switch perspectives.

On the UI/UX side, we designed the interface to be as intuitive
and familiar to the user as possible by basing it off of pre-existing
tools and interaction schemes. However, we potentially sacrificed
efficiency to achieve this. Considering that most serious users of
this application would have ample time to learn how to use the
tool, gizmos with a harsher learning curve but higher skill ceiling
might result in better performance.

Finally, bounding boxes are not the only form of annotation in
the 3D domain. Other annotation tasks such as semantic segmen-
tation could be improved through the mobile AR workflow pre-
sented by Augmented Annotations.
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APPENDIX

Figure A1: The three environments scanned and annotated for the study. The numbers on the picture correspond to the numbers in
Tables 1 and 2.

Figure A2: Screenshot of environment 3 after a user completed scanning and annotation using Augmented Annotations. Note the high
amount of clutter and occlusion in multiple dimensions.
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