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ABSTRACT: 

 

Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) integration system have been widely applied in recent 

years. Unfortunately, it sometimes malfunctions and the performance heavily deteriorates, especially in urban area where signals from 

satellites may be blocked or reflected by modern buildings. In multipath or Non Light-of-sight (NLOS) environment, incorrect signal 

results in poor observability of GNSS measurement model in Kalman Filter (KF). For purpose of addressing the issue, we proposed 

an adaptive strategy-based tightly-coupled INS/GNSS integration system aided by odometer and barometer, targeting to mitigate the 

error from poor observability. In this method, tightly-coupled (TC) scheme is implemented as the fundamental system in order to 

increase the reliability and stability. TC is more suitable than Loosely-coupled (LC), the traditional scheme, in urban navigation because 

it requires less visible GNSS measurement and it overcomes the disadvantage of LC, and further enhances the navigation result. 

Furthermore, aiding sensors such as odometer and barometer are integrated in this system as well, serving as velocity and height 

constraints respectively. Since the precision of GNSS positioning depends on the properties of the environment, measurement model 

of KF must work adaptively. Thus, innovation-based Adaptive Scaled Estimation (IASE) and Residual-based Adaptive Scaled 

Estimation (RASE), are also implemented to improve navigation performance in this paper. Finally, from the experimental validation, 

the proposed adaptive sensor-fusion navigation algorithm significantly enhanced the performance. The improvement was approximate 

80% compared with the pure TC scheme; the RMSE can reach 6m in 3D and 2.5m in vertical. 

 

1. INTRODUCTION 

Due to the ever-increasing demand and application of geospatial 

information and Location-Based Service (LBS), positioning 

technology has become more and more popular in human daily 

lives and lots of researches were done to increase the accuracy 

and efficiency of navigation technique. The determination of 

position, velocity and attitude of an object is the definition of 

navigation (Farrell et al., 1998). With the position and other 

geospatial information of vehicles, application such as Intelligent 

Transport System (ITS) and smart city can be fulfil and achieved, 

which will increase the convenience and efficiency of human 

lives. Intelligent vehicle will be the most important key element 

for the future smart city and it requires high performance 

navigation technologies (Sun et al., 2016). To realize an 

intelligent vehicle, Global Navigation Satellite System (GNSS) 

and its integration with multi-sensors have been widely applied. 

Currently, the famous and commonly used navigation technique 

is Inertial Navigation System/Global Navigation Satellite System 

(INS/GNSS) integration system, which provides the precise and 

continuous positioning result with high sampling frequency, even 

when in GNSS signal outages. The combination of INS and 

GNSS is able to overcome the drawbacks of individual system. 

Therefore, INS/GNSS integration not only promotes the quality 

and performance of navigation but also increases the reliability 

(Roger, 2003).  

However, the performance of INS/GNSS integration depends 

heavily on the quality of Inertial Measurement Unit (IMU) 

adopted. The positioning accuracy will degrade rapidly while 

GNSS interruption and blockage if only low cost IMU is applied 

(M. Park and Y. Gao, 2008). Although adoption of high-end 

tactical IMU makes system more stable and reliable, the price and 

cost is the major difficulty to apply tactical IMU diffusely. As a 

result, one of the efficient ways to enhance the accuracy is to 

refine the integration scheme as well as to aid the navigator with 

complementary sensor such as odometer and barometer. 

For the core of INS/GNSS integration structure, Loosely-coupled 

(LC) integration scheme has been the most popular strategy due 

to its simplicity structure, easy feasibility and less computation 

burden. LC requires the position and velocity information from 

GNSS (i.e. navigation solution) to calibrate the error of INS.  

Since GNSS provides worldwide and drift-free absolute 

positioning result and service (Yang, 2008), many papers have 

present interests on the LC and its real-time applications 

(Petovello, 2003, Shin, 2005 and so on). The structure of LC 

scheme is shown Figure 1. Note that Figure 1 is simplified for the 

viewpoints of this paper, refer to (Chiang et al, 2013) for details. 

However, the fatal weakness of LC is that outage of GNSS 

solution makes it an INS stand-alone system especially in modern 

urban canyons. This troubles LC when in the harsh urban 

environments and make it unsuitable for future smart city and ITS 

application. 

 

 
Figure 1. Structure of LC scheme 

 

GNSS signal blockage takes place frequently in modern urban 

area due to severe signal obstruction in urban canyons. In 

addition, the height component of GNSS solution suffers from 

significant oscillation mainly resulted from the impact of 

multipath (Petovello, 2003), Non Light-of-Sight (NLOS) (Hsu et 

al., 2015) and poor geometry in vertical. The reflected or blocked 

signals will confuse the system by incorrect measurement and 
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then lead to degrade of positioning estimation and even no 

positioning solution. The multipath and NLOS effect is 

demonstrated in Figure 2.  

 
Figure 2. Multipath (blue) and NLOS (green) 

 

In order to reduce the frequency of absent GNSS solution and 

distorted one, another integration scheme called Tightly-coupled 

(TC) scheme is proposed and it is adopted as the fundamental 

core in this paper. TC scheme exploits the raw measurement of 

GNSS, pseudorange and pseudorange rate, directly, which means 

that TC keeps on-line calibrating INS error while any raw 

measurement is available. Even though the vehicles are in urban 

canyons, TC keeps update loops by receiving measurement of 

visible satellites with high elevation angle. The structure of TC 

scheme is shown Figure 3. Note that Figure 3 is simplified for the 

viewpoints of this paper, refer to (Chiang et al, 2013) for details. 

 

 

Figure 3. Structure of TC scheme 

 

Although TC scheme reduces the absence of GNSS update in 

Kalman Filter (KF), there is still another drawback of TC in harsh 

urban area (Chiang and Huang, 2008). Since TC directly exploits 

the pseudorange and pseudorange rate in measurement model, 

the accuracy of estimation is subject to the quality of raw 

measurement of GNSS, which will be affected by multipath and 

NLOS effect especially in urban canyons. To accurately adjust 

for the statistical characteristics of the system model, 

measurement model and noise, adaptive strategies for KF 

measurement model should be adopted for autonomous tuning 

(Almagbile et al., 2010; Pemg et al., 2013). KF with an adaptive 

strategy which is also known as Adaptive Kalman Filter (AKF) 

incorporates the uncertainty of covariance matrix of 

measurement error (R matrix) and covariance matrix of system 

noise (Q matrix) for adaptive model tuning, which can adjust the 

weight of each measurement. AKF is able to reduce the weight 

of bad measurements with poor geometry in KF update loops and 

therefore suppresses the impact of them on filtered solutions. 

In order to achieve reasonable balance of measurement model 

and system model, several adaptive strategies have been applied. 

Wu and Yang (2013) used amount of visible satellite and PDOP 

as index to enable adaptive method for TC scheme; Liu at al 

(2017) implemented AKF based on innovation sequence and the 

attenuation factor in a moving window; Hajiyev et al (2016) 

adopted innovation-based Adaptive Scaled Estimation (IBASE) 

and Residual-based Adaptive Scaled Estimation (RBASE) 

methods. Considering the robustness and statistical 

characteristics, IBASE and RBASE are implemented in this 

paper due to the more stable and healthier procedure. 

As for land vehicle navigations, odometer and barometer were 

widely used as aiding sensors (Sokolovic at al., 2013 Park et al., 

2015). An odometer is a velocity sensor and it is self-contained 

and it provides undisrupted velocity information continuously. It, 

in general, is more accurate and frequent velocity measurement 

than the GNSS. Odometer can serve as a continuous 

measurement to calibrate IMU error, no matter the change of 

outside environment. A barometer is a self-contained altitude 

sensor and it provides height information. As an aiding, 

barometer produces continuous height information with higher 

frequency than GNSS does as height constraints, mitigating the 

weakness of GNSS positioning in vertical direction.  

 

As a result, an adaptive strategy-based tightly-coupled 

INS/GNSS integration system aided by odometer and barometer 

for integrating low-cost MEMS sensors and GNSS for seamless 

land vehicular application is proposed in this study. For the 

system performance assessment and evaluation, field tests are 

conducted with many urban scenarios. The main objectives of 

this paper are to: (1) develop an INS/GNSS TC integration 

scheme for seamless intelligent land vehicular navigation; (2) 

implement and verify the odometer and barometer aiding 

schemes; (3) employ and implement adaptive strategies for 

INS/GNSS TC integration system and (4) analysis the 

effectiveness and performance of proposed TC AKF with aiding 

sensor.  

 

2. METHODOLOGY 

A proposed adaptive strategy-based tightly-coupled INS/GNSS 

integration system aided by odometer and barometer, targeting to 

mitigate the error resulting from poor GNSS signal observability 

in urban area is implemented in this paper. Figure 4 describes the 

structure of proposed navigation algorithm. First INS generates 

position, velocity and attitude with unbounded error through the 

INS mechanization (Titterton at al., 1994), and its estimation 

result can be used to do measurement prediction through KF 

measurement model. For GNSS part, it provides pseudorange 

and pseudorange rate, which is the actual measurement. Next, 

both predicted and practical measurements are then compared to 

calculate the innovation sequence, which is the amount of new 

information being introduced into KF from practical 

measurement (Petovello, 2003). With this innovation sequence, 

specific adaptive strategy for KF system noise model and 

measurement error model re-weights the measurement 

accordingly. In other words, AKF modifies the covariance matrix 

of system noise (Q matrix) and the covariance matrix of 

measurement error (R matrix) in accordance with outer 

environment. Furthermore, additional sensors including 

barometer and odometer provide height information and velocity 

measurement respectively, serving as aiding constraints for 

optimization of INS/GNSS integration system. Aiding sensors 

always bring more information into KF, which tremendously 

reduces the duration that INS is left stand-alone, even if under 

hard conditions such as no GNSS measurement available. The 

aiding sensors not only provide additional measurement when 

GNSS signal is available, but also keep calibrating and restricting 

the large growth of INS error when lack of GNSS signal such 

indoor parking lots. 

In this paper, we focus on the core of navigator, i.e. the AKF 

block in Figure 4. In AKF, all information are blended to 

optimize the solution through a series of prediction and update 

loops. Eventually, improved and enhanced navigation solution 

are generated. Following sections depict two main procedures of 

the proposed navigation algorithm, including tightly coupled 

integration scheme and adaptive strategy. Note that some parts of 

Figure 4 are simplified for the viewpoints of this paper. 
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Figure 4. Structure of TC aided AKF 

 

2.1 Tightly-Coupled Integration Scheme 

2.1.1 Kalman filtering 

The time-discrete dynamic equation which describes how the 

state vector evolves (Gelb, 1974) with time is given as Eq.1. On 

the other hand, the measurement model is given as Eq.2. In the 

measurement model, predicted measurement is generated 

through the design matrix and state vector. 

 

 xk+1 = Φ𝑘,𝑘+1𝑥𝑘 + 𝐺𝑘𝜔𝑘  (1) 

 

 zk = Hkxk + νk (2) 

 

where subscript “k” indicates the timestamp 

 x = the state vector 

 Φk,k+1 = transition matrix from epoch k to k+1 

 Gk = shaping matrix at epoch k 

 ωk = system noise at epoch k 

 zk = measurement at epoch k 

 Hk = the design matrix at epoch k 

 νk = the measurement error 

 

As mentioned before, KF executes a series of prediction and 

update stages. In the prediction stage, the state vector and the 

associated covariance matrix of system noise are predicted, based 

on state vector from last epoch and the transition matrix. The 

prediction procedure contains following equations: 

 

 x̂−
𝑘+1 = Φ𝑘,𝑘+1�̂�+

𝑘 (3) 

 

 Pk+1
− = Φ𝑘,𝑘+1 𝑃𝑘

+Φ𝑘,𝑘+1
𝑇 + 𝑄𝑘 (4) 

 

where variables with a hat “^” is estimated value 

 superscript “-” is Kalman predicted quantity  

 superscrip “+” is Kalman update quantity 

 Pk = covariance matrix of state vector at epoch k 

 Qk = covariance matrix of system noise at epoch k 

 

The other stage depicting the measurement update of system 

model is update stage and the procedure is given as follows. 

 

 Kk = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 (5) 

 

 x̂ 𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘�̂�𝑘
−) (6) 

 

 Pk = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (7) 

 

where Rk = covariance matrix of measurement error at k 

 Kk = Kalman gain matrix 

 I = identity matrix. 

 

The overall work flow (Godha, 2006) is shown in Figure 5. 

 

 
Figure 5. Flow chart of time-discrete KF stages 

 

2.1.2 System model and measurement Model 

 

In this paper, two kinds of single frequency GPS (Global 

Positioning System) measurements, code phase measurement 

and Doppler measurement, were used as observation. Code phase 

measurement is also known as pseudorange, and it is the 

observed distance between satellites and antenna. It is derived by 

calculating the time delay between GPS signal transmission and 

the reception, multiplied by the speed of signal (equal to the 

speed of light). Unfortunately, the theoretical range is heavily 

subject to the external environment and the hardware component, 

for example, atmospheric fraction and the imperfect time 

synchronization ability of the receiver. These error terms 

deteriorate the signal quality, and then put impact on the 

performance and the ranging accuracy. Error like receiver clock 

bias, distortion caused by ionosphere and troposphere delay must 

be considered and compensated correctly. Thus, the general code 

phase measurement equation comes as follows, 

 

 Ρ = r + 𝐶(𝑑𝑡 +  𝑑𝑇) + 𝑑𝑖𝑜𝑛𝑜 + 𝑑𝑡𝑟𝑜𝑝 + 𝜖 (8) 

   

where P = pseudorange measurement 

  r = theoretical distance between satellite and receiver 

 C = speed of light 

 dt is satellite clock bias 

 dT = receiver clock bias 

 diono = ionospheric delay 

 dtrop = tropospheric delay 

 ϵ = other error term 

 

On the other hand, the Doppler measurement represents the shift 

rate of carrier phase. This shift occurs because of relative 

movement between satellites and antenna (Chen, 1994). The 

relative velocity can be derived, as the Doppler Effect says, with 

prior knowledge of signal frequency. In the statement of GNSS, 

Doppler Effect is applied in order to estimate the rover velocity 

with given satellite velocity (Misra et al., 2001). The Doppler 

shift is derived based on the transmitted and received frequency 

and the equation comes as Eq.9. 

 

Di = 𝑓𝑖
𝑟𝑒𝑐𝑒𝑖𝑣𝑒 − 𝑓𝑖

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 

=  −
𝑓𝑖

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

𝐶
[𝑒𝑖 ⋅  (𝑣𝑠𝑣𝑖

− 𝑣𝑟𝑜𝑣𝑒𝑟)] 
(9) 

 

where fi
receive = received signal frequency 

 fi
transmit = transmit signal frequency 

 vsvi
 = velocity of the ith observed satellite 

 vrover = velocity of the rover 

 ei = line-of-sight vector 

 

Note that the operation in the square bracket between ei  and 

(vsvi
− 𝑣𝑟𝑜𝑣𝑒𝑟) is the dot product. Petovello et al (2003) said that 

the Doppler shift represents the frequency difference according 

to the relative motion and it is exactly a scale away from the 
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pseudorange rate measurement. Hence, the measurement of 

pseudorange rate is written as Eq.10. 

 

ρ̇𝑖 = [ei ⋅ (vsvi
− vreceiver)] + 𝐶(𝑑�̇� − 𝑑�̇�) + 𝜖 (10) 

 

where ρ̇𝑖 = the ithpseudorange rate measurement 

 𝑑�̇� = the satellite clock drift 

 𝑑�̇� = the receiver clock drift. 

 

In order to derive the measurement model of tightly-coupled 

scheme, the theoretical values of pseudorange and pseudorange 

rate should calculated first, thus, the general code phase and 

Doppler measurement model comes as follows, 

 

 ρINS,i = |𝛾𝐼𝑁𝑆
𝑒 − (𝛾𝑆𝑉

𝑒 )𝑖| (11) 

 

 
�̇�𝐼𝑁𝑆,𝑖 =

𝐶𝑒
𝑛{(𝛾𝐼𝑁𝑆

𝑒 − 𝛾𝑆𝑉,𝑖
𝑒, ) ⋅ (𝜈𝐼𝑁𝑆

𝑒 − 𝑣𝑆𝑉,𝑖
𝑒 )}

(𝜌𝐼𝑁𝑆)𝑖
 (12) 

 

 
ZTC = [

 𝜌𝐼𝑁𝑆,𝑖 − 𝜌𝑖

�̇�𝐼𝑁𝑆,𝑖 − �̇�𝑖
]

2𝑛−3

 (13) 

 

where 𝜌𝐼𝑁𝑆,𝑖 = distance between receiver and the ith satellite 

 γINS
𝑒  = position vector of receiver in e-frame 

 𝛾𝑆𝑉,𝑖
𝑒,

 = the position vector of ith satellite in e-frame 

 Ce
n = the rotation matrix from e-frame to n-frame 

 𝜈INS
𝑒  = velocity vector of receiver in e-frame 

 𝑣𝑆𝑉,𝑖
𝑒  = the velocity vector of ith satellite in e-frame.  

 

Besides, TC can estimate the receiver clock bias and drift. The 

state vector and the system model come as follows (Chiang at al., 

2013). 

 

δx11×1

= [𝛿𝛾1𝑥3 𝛿𝜈1𝑥3 𝛿𝜖1𝑥3 𝐶𝛿𝑡𝑐𝑙𝑜𝑐𝑘 𝑏𝑖𝑎𝑠 𝐶𝛿𝑡𝑐𝑙𝑜𝑐𝑘 𝑑𝑟𝑖𝑓𝑡]
𝑇

 
(14) 

 

 

C ⋅ [
𝛿�̇�𝑐𝑙𝑜𝑐𝑘 𝑏𝑖𝑎𝑠

𝛿�̇�𝑐𝑙𝑜𝑐𝑘 𝑑𝑟𝑖𝑓𝑡
] = [

1 0
0 1

] [
𝐶𝛿𝑡𝑐𝑙𝑜𝑐𝑘 𝑏𝑖𝑎𝑠

𝐶𝛿𝑡𝑐𝑙𝑜𝑐𝑘 𝑑𝑟𝑖𝑓𝑡
] + v (15) 

 

The design matrix of TC is shown in Eq.16. 

 

HTC = [
(𝑒𝑖)𝑛×3 0𝑛×3 0𝑛×3

0𝑛×3 1/𝜆(𝑒𝑖)𝑛×3 0𝑛×3
     

1 0
0 1

]
2𝑛×11

 (16) 

 

where λ = the signal wavelength depending on application 

e = the line-of-sight vector 

 

ei =
[(𝑋𝐼𝑁𝑆 − 𝑋𝑆𝑉𝑖

) (𝑌𝐼𝑁𝑆 − 𝑌𝑆𝑉𝑖
) (𝑍𝐼𝑁𝑆 − 𝑍𝑆𝑉𝑖

)]

(𝜌𝐼𝑁𝑆)𝑖
 (17) 

 

Where XINS, YINS, ZINS = position of IMU in e-frame 

 XSVi, YSVi, ZSVi = position of ith satellite in e-frame 

 

2.2 Adaptive strategy 

Covariance matching, one of the parametric methods for 

adaptive problem, makes all elements of innovation-based or 

residual-based covariance matrix consistent with their theoretical 

values (Dimirovski, 2016; Almagbileet al., 2010). The unknown 

noise covariance of Kalman Filter can be determined by the 

statistical analysis of innovation or residual series, under 

assumption that the estimated covariance matrix of innovations 

or residuals should match their expected value. The flowchart of 

adaption strategy is demonstrated in Figure 6. 

 

 
Figure 6. Flowchart of IBASE and RBASE 

 

Innovation,v− and residual,v+ mentioned here are computed by 

Eq.18 and Eq.19, respectively.  

 

 𝑣− = 𝑧 − 𝐻�̂�− (18) 

 

 𝑣+ = 𝑧 − 𝐻�̂�+ (19) 

 

Innovation vector serves as the foundation of Innovation-based 

adaptive scaling estimation (IASE), one of schemes of AKF. 

IASE method modifies Q, covariance matrix of system noise, and 

R, covariance matrix of measurement error of Kalman Filter, 

based on the innovation covariance matrix, namely the outer 

environmental condition. Adaptive mechanism is enabled while 

the real value exceeds the expected one due to the significant 

change in operation condition of measurement (Dimirovski, 

2016). The covariance matrix of innovation, Ĉ𝑣−  is calculated 

through averaging inside the moving window as Eq.20. 

 

 
�̂�𝑣− =

1

𝑁
Σ𝑗=𝑗0

𝑘 vj
−𝑣𝑗

−𝑇 (20) 

 

where N = the size of moving window 

j0 = initial time of moving window, equal to k – N + 1 

 

By comparing the real and theoretical innovation covariance 

matrix (Hajiyev et al., 2016; Fu-Mei et al., 2010), IASE modifies 

the Kalman gain, under the assumption of IASE, in the Kalman 

update stage, once the measurement model dissatisfies the 

assumption. As a result, the Kalman gain becomes as Eq.21. 

Moreover, the measurement error scale factor can be determined 

by Eq.22. 

 

 𝐾 = 𝑃−𝐻𝑇(𝐻𝑃−𝐻𝑇 + 𝑆𝑅)−1 (21) 

 

 𝑆 = (�̂�𝑣− − 𝐻𝑃−𝐻𝑇)𝑅−1 (22) 

 

The scale factor of measurement error is equal to an identity 

matrix in a common Kalman Filter, while in an Adaptive Kalman 

Filter it becomes a diagonal matrix responsible for enlarging the 

elements in R matrix. In other words, S balances the system by 

giving another scale to adjust the elements in R matrix, weighting, 

depending on the configuration of measurement, the importance 

of each elements in covariance matrix of measurement error. As 

a result, elements in S matrix must be larger than one, because it 
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is not able to improve the accuracy of measurement, just reduce 

the influence of distorted ones. Unfortunately, S sometimes 

becomes a non-diagonal matrix or elements are smaller than one, 

or even are negative, which violates the assumption and makes 

the adaption meaningless (Dimirovski et al., 2016).  In avoidance 

of above unwanted condition, another modification must be 

applied to the scale factor matrix as shown in Eq.23. 

 

𝑆∗ = 𝑑𝑖𝑎𝑔(𝑠1
∗, 𝑠2

∗, … 𝑠𝑛
∗), 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖

∗ = max{1, 𝑆𝑖𝑖}, 
 𝑖 = 1, 2, … 𝑛 

(23) 

 

On the other hand, in the system stage of Kalman filter, adaption 

for Q matrix is as well indispensable. A fading matrix is exploited 

for the adaption of Q matrix (Hajiyev et al., 2016). The concept 

of Q matrix adaption is like that for R, they scale the elements of 

corresponding matrix. In the case of Q matrix adaption, the 

covariance matrix of innovation �̂�𝑣− and the fading matrix Λ are 

derived as follows. 

 

�̂�𝑣𝑘
− = 𝐻𝑘(Φk𝑃𝑘−1

+ Φ𝑘
𝑇 + Λ𝑘𝐺𝑘𝑄𝑘𝐺𝑘

𝑇)𝐻𝑘
𝑇 +  𝑅𝑘 (24) 

 

Λ𝑘 

= (�̂�𝑣𝑘
− − 𝐻𝑘Φ𝑘𝑃𝑘−1Φk

T𝐻𝑘
𝑇) × (𝐻𝑘𝐺𝑘𝑄𝑘𝐺𝑘

𝑇𝐻𝑘
𝑇)

−1
 

(25) 

 

In the eq.24 and Eq.25, symbols with subscript k means that 

information at k time and k-1 means that at k-1 time. The 

timestamp is specifically presented here reveals that some 

information at last time is necessary in this method. Furthermore, 

in avoidance of incorrect fading matrix generated, the fading 

matrix is also modified after being generated as shown in Eq.26. 

 

Λ∗ = 𝑑𝑖𝑎𝑔(𝜆1
∗ , 𝜆2

∗ , … 𝜆𝑛
∗ ), 𝑤ℎ𝑒𝑟𝑒 𝜆𝑖

∗ = max{1, Λ𝑖𝑖}, 
 𝑖 = 1, 2, … 𝑛 

(26) 

where Λ𝑖𝑖  = Diagonal elements of Λ matrix 

 

After the modification of Q matrix, the covariance matrix of state 

vector in the prediction stage in Kalman Filter changes as: 

  

 𝑃𝑘
− = Φ𝑘𝑃𝑘−1

+ Φ𝑘
𝑇 + Λ𝑘

∗ 𝐺𝑘𝑄𝑘𝐺𝑘
𝑇  (27) 

   

The other covariance matching adaptive method based on the 

residual sequence is Residual-based adaptive scaling estimation 

(RASE). This approach is almost same as IASE method both 

compare the difference between actual value and estimated value 

and modify the covariance matrix of system noise or of 

measurement error by weighting elements of the matrices, 

balancing the importance of real configuration. In this scheme, 

the covariance matrix of residual vector is determined in Eq.28 

and the scale matrix is formed as in Eq.29. 

 

 
�̂�𝑣+ =

1

𝑁
Σ𝑗=𝑗0

𝑘 vj
+𝑣𝑗

+𝑇
 (28) 

 

 𝑆 = (�̂�𝑣+ + 𝐻𝑃+𝐻𝑇)𝑅−1 (29) 

 

The scale matrix of this scheme follows the same rules mentioned 

in Eq.23. In the procedure of Q adaption of RASE scheme, much 

inverse matrix calculation is included, causing increase of 

computation burden and inefficiency of whole system. 

Consequently, the adaption of covariance matrix of system noise 

is not presented and discussed in this paper.  

 

3. EXPERIMENT SETUP 

A field test was carried out in the Taipei City, Taiwan, a large 

and busy city where hundreds of modern buildings are located for 

the purpose of evaluating the performance and the efficacy of 

proposed integration scheme. In the field test, navigation mission 

had met several tough challenges in this scenario. The testing 

system contains a low cost Microelectromechanical System 

(MEMS)  IMU and a single frequency GNSS receiver.  For INS 

part, a STIM 300 from Sensonor, which is featured with three-

axis gyroscope and accelerometer was used, and its specifications 

are listed in Table 1. For GNSS antenna, GPS-702-GG from 

NovAtel is equipped on the top of land vehicle. In addition, a 

barometer and an odometer were used as aiding sensors. 

About the ground truth system for performance validation was 

equipped with a higher grade IMU to generate reliable reference 

solution. For high tactical-grade IMU, NovAtel SPAN®  LCI is 

applied and its specifications is also listed in Table 1. The 

specifications of GNSS is same for both system and the detail are 

skipped because it is not the major work in this paper. Both IMUs 

were placed on the top of the land vehicle in order to be as closer 

to GNSS receiver as possible, eliminating the lever arm effect 

which would cause system error between IMU and the receiver. 

Figure 7 shows the configuration of experiment platform on the 

land vehicle. 

 

Item LCI 

Reference 

STIM300 

Target 

 

  
Gyroscope 

Data rate 250 Hz 250Hz 

Scale Factor 100 500 

Bias Instability 0.05  

Angular Random 

Walk 

0.012 0.15 

Accelerometer 

Date rate 250 250 

Scale Factor 100 300 

Bias Instability 0.1 0.05 

Velocity Random 

Walk 

0.06 0.07 

Table 1. Specification of LCI and STIM300 

 

 

 
Figure 7. Experiment platform on vehicle 

 

The fieldwork was in downtown of Taipei City and the satellite 

image of experiment area captured on Google Earth pro is shown 

in Figure 8. The experiment route started in open area for initial 

alignment and then entered the urban area. This area was full of 

harsh and GNSS-unfriendly environments such as overpasses, 

urban canyon, thread-of-sky and half-of-sky. The street view of 

these scenarios is illustrated in Figure 8. Under the challenging 

condition, the land navigator suffered from the poor observability 

of satellite signals, because they were sheltered, reflected and 

distorted by the surrounding buildings. 
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Figure 8. Experiment trajectory (left) and street views (right) 

 

GNSS result also depends on the number of visible satellite, as 

just mentioned, the amount of available satellite decreases 

significantly, resulting worse positioning result and even no 

positioning solution if the number of available satellite is less 

than 4.  

 

4. RESULT AND ANALYSIS 

The result evaluation compares the performance of 4 integration 

schemes, pure TC scheme, proposed scheme based on innovation 

(IBASE), proposed scheme based on residuals (RBASE) and 

ground truth system to be a reference solution. IBASE and 

RBASE are proposed to verify the performance of different 

mechanism in adaptive strategies. Besides, these two schemes 

will be compared with pure TC integration structure to assess the 

promotion and enhancement issued by the new algorithm in 

Kalman Filter. The navigation trajectories are compared together 

on Google Earth Pro. As shown in Figure 9 and Figure 10, 2 

practical cases in urban area are presented. With the adaptive 

strategies and aiding sensors, navigator is able to prevent the 

positioning result from contamination of multipath effect. In the 

Figure 9 and Figure 10, there are obvious abnormal jumps in 

trajectory segment while the vehicle passed though high 

buildings. 

 

 
Figure 9. Urban canyon case - I 

 

 
Figure. 10 Urban canyon case – II 

 

One of the most important elements is height information, which 

is required to be accurate in many future ITS applications, 

especially for precise 3D positioning and location finding in 

urban area. Figure 11 shows the series of solution in vertical for 

4 solution. Obviously, the oscillation of pure TC is significant 

due to the bad signal observability of urban canyons. Some large 

offsets appear frequently during field test and most of them are 

larger than 50m; as for the two proposed scheme, it seems and 

adaptive and aiding sensors help to reduce the maximum offset 

and make it more stable. Both proposed algorithms improve the 

height estimation result, though there are offsets remained. 

 

 
Figure 11. Height information result 

 

It can be seen that in Figure 11, although both RBASE and 

IBASE schemes is able to suppress the oscillation of height 

component during the whole trip, there are some peaks that can 

not be eliminated. The possible reason is the parameters setting 

for the adaptive scheme and the bad measurement detection. 

Compare with the high-end reference system, the proposed 

method need more improvement and test. Besides, series of 

estimation result, the statistical index was applied to evaluate the 

statistical characteristics as well. Table 2 shows the maximum 

error during experiment while Table 3 presents the RMSE result 

compared to reference solution. In Table 2, after adoption of 

proposed navigation algorithm on pure TC, the maximum error 

is reduced by a large level. The proposed scheme prevents the 

navigation resolution from heavy deterioration. The sensor 

fusion structure efficiently lower the opportunity of GNSS outage 

and keep frequently calibrating the IMU error, which also avoids 

the maximum error growing up within short time. 

 

Max Error (m) TC RBASE IBASE 

East 481.085 28.462 39.750 

North 88.760 11.679 19.850 

Horizontal 489.205 30.765 44.431 

Up 56.584 7.096 35.775 

3D 489.794 29.759 50.321 

Table 2. Max error of TC RBASE and IBASE scheme 

 

RMSE (m) TC RBASE IBASE 

East 29.101 4.871 3.516 

North 5.857 3.385 2.238 

Horizontal 29.685 5.932 4.168 

Up 11.906 2.489 7.247 

3D 31.984 
6.433 

(80%) 

8.360 

(74%) 

Table 3. RMSE of TC RBASE and IBASE scheme 

 

In Table 3, RMSE is another important index for the evaluation 

of urban area positioning, navigation solution. The smaller 

RMSE value means more stable of navigation. The RMSE were 

calculated compared with the reference result. In Table 3, pure 

TC gets large RMSE value both in horizontal and vertical 

directions, and then resulted in 30m RMSE in 3D; RBASE and 

IBASE lead to tremendous improvement in overall direction. 

RBASE shows 6m in horizontal, 2.5m in vertical and 6m in 3D 

positioning; IBASE presents 4m in horizontal, 7m in vertical and 

8m in 3D. In addition, RBASE reaches 80% improvement from 

pure TC and IBASE reaches 74% in 3D positioning result. 
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5. CONCLUSION 

To enhance the performance of INS/GNSS integration system 

with external aiding sensors and adaptive strategies is developed 

in this paper. In the field test, about 80% improvement in 

positioning solution is reached. Besides, maximum errors are 

significantly limited, indicating proposed AKF does INS error 

calibration more frequently than traditional ones. Positioning 

accuracy can reach around 6m in horizontal direction, 2.5m in the 

vertical and 6m in 3D assessments. 

 

Since the quality of measurement differs quickly and degrades 

significantly due to the fast--changing outer environment, 

especially in urban area. The proposed INS/GNSS scheme not 

only replaces the traditional LC with TC, but also integrates 

aiding sensors into Kalman Filter. Furthermore, in this paper 

adaptive method for TC structure is implemented as well. In 

order to achieve the high demand of accuracy for intelligent city, 

authors modified system model, measurement model and update 

loop in KF, trying to make a great balance in Kalman Filter. 

Despite the 3D accuracy is not good enough for future application, 

large improvement and aiding sensors make it a best beginning 

to achieve seamless navigation. 

 

For the future work, the fusion structure of proposed algorithm 

will be further investigated with a view to achieving a better and 

stricter integration structure. Vehicular constraints, Zero 

Velocity Update (ZUPT) and Non Holonomic Constraint (NHC), 

will be implemented to enhance the reliability and accuracy for 

seamless land navigation. 
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