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ABSTRACT: 

 

Building Information Models (BIMs) are of paramount importance in lifecycle management of buildings as they enable collaboration 

among various stakeholders at different phases of a construction project, from planning to maintenance and operation. However, there 

is usually inconsistency between the as-is condition of the building and its existing BIM, because BIMs are generally not updated to 

reflect changes in the environment. Monitoring the changes during a building’s lifecycle and keeping the BIM up-to-date is useful for 

a variety of applications. Yet this process often involves manual surveying inspections, which are very time-consuming, error-prone, 

and laborious. In this paper, we present an automated approach for building change detection through a comparison between the BIM 

and a point cloud of the building indoor environment. The approach is based on point classification and surface coverage to identify 

discrepancies between the BIM and the point cloud. Experiments on a synthetic dataset and an ISPRS Benchmark dataset show the 

potential of the proposed approach not only for change detection and identifying discrepancies, but also for locating the removed and 

new structures of the building in comparison with the BIM. The results are useful for updating the BIM to represent the as-is condition 

of the building and for temporal analysis of changes during a building’s lifecycle. 

 

 

1. INTRODUCTION         

                                                                                                                                                                                                                                                                                                                                  

Building Information Modelling is recognized as a key in 

digitalization of construction management. An as-is BIM of a 

building potentially increases collaboration, transparency and 

efficiency of information management as well as improvement in 

the decision-making process during the whole lifetime of the 

building, from planning to maintenance and operation (Hossain 

et al., 2018). However, it is common knowledge that an existing 

BIM may not be up-to-date and is not always consistent with the 

real environment.  

 

BIM is now mostly available for new buildings at the design 

stage (EU BIM Task Group, 2017). However, during a building’s 

lifetime, there are changes in the building structures introduced 

during the construction and the operation periods. While the 

construction phase often comprises various modifications of the 

design such as room dimensions, location and thickness of walls, 

and size of doors and windows (Choudhry et al., 2017), the 

maintenance and operation period involves renovation of 

building structures for different uses. In practice, the changes in 

one building part (e.g., interior structures) are likely to lead to 

modifications in other parts of a building (e.g., building façades 

and utilities). Hence, there is a need to manage and monitor the 

changes of a building during its lifecycle. Yet these discrepancies 

are often not well documented and continuously updated in the 

existing BIM. Therefore, there is a gap of information 

management across different periods of a building lifecycle. 

Additionally, monitoring the changes often involves manual 

surveying inspections, which are tedious, time-consuming, and 

error-prone (Wang et al., 2015). Consequently, the gap and 

inconsistencies between the existing BIM and the real building 

usually lead to errors and late deliveries and therefore increase 

the cost of the construction project.  

 

                                                                 
*  Corresponding author 

 

Spatial data acquisition techniques, i.e. photogrammetry and 

laser scanning, enable effective capture of building interiors. 

Photogrammetric sensors capture and merge still images to 

generate 3D representations of the interior of buildings. The 

photogrammetric technique is generally efficient in time and 

cost. However, this technique suffers from shadows, changes of 

illumination conditions, and the presence of poorly textured 

surfaces (Khoshelham, 2018; Becker et al., 2018), which are 

common features of indoor environments and can cause failures 

in generating their 3D representation. The laser scanning 

technique is commonly more expensive than the 

photogrammetric solution. However, it allows direct generation 

of a point cloud as a 3D as-is representation of a building interior 

(Khoshelham, 2018). Laser scanning can produce highly accurate 

data (millimeters to a few centimeters) and is the preferable 

technique for capturing building interiors.  

 

In the literature, Nikoohemat et al. (2018) proposed a method for 

change detection of a building interior by comparing the point 

clouds captured at different periods. However, a point cloud of a 

building is not always available, especially at the design stage. 

Meanwhile, the changes at the construction phase are significant, 

and monitoring the changes is necessary in order to eliminate 

errors and delay in the whole project. Khoshelham et al. (2018) 

introduced a method for comparison between two BIMs of an 

interior environment. This method enables identification of the 

missing and additional elements of the BIMs as well as the 

position discrepancies between them (Tran et al., 2019). 

However, despite intensive research on 3D indoor modelling 

(Khoshelham and Díaz, 2014; Díaz et al., 2015; Mura et al., 2016; 

Previtali et al., 2018, Tran et al., 2017, 2018), the generation of 

an as-is BIM for a complex interior building still requires a 

considerable effort and is known to be a time-consuming process.  

 

In this paper, we propose a method for identification of 

discrepancies between an indoor environment and its existing 
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BIM based on a comparison between the BIM and a point cloud 

of the environment. The method facilitates not only discrepancy 

detection, but also locating the missing and redundant elements 

of the BIM with respect to the as-is condition of the indoor 

environment. The main contributions of this work are as follows: 

 

- An automatic method for comparison between a BIM and a 

point cloud of an indoor environment, which enables 

identification of the differences between them and facilitates 

change detection of an indoor environment; 

 

- A method for effectively locating redundant and missing 

elements of a BIM in comparison with the as-is condition of 

the indoor environment, which is useful for updating the BIM 

and can be applicable to temporal analysis of buildings. 

 

 

2. METHOD FOR COMPARISON OF A BIM AND A 

POINT CLOUD OF A BUILDING INTERIOR 

 

We propose a method for comparison between a BIM 𝑀 and a 

point cloud 𝑃 of a building interior through identification of 

whether each point in the point cloud represents an element in the 

BIM, and likewise, whether each surface of the BIM is covered 

by points in the point cloud.  

 
To facilitate the comparison, the BIM 𝑀 and the point cloud 𝑃 

are first registered into a common coordinate system. The 

registration can be done automatically with available software 

(CloudCompare Development Team, 2019) by picking at least 

three corresponding points between them. Intuitively, the points 

of the point cloud 𝑃 representing a surface in the BIM 𝑀 are 

likely to be close to the surface. Likewise, a surface of the model 

𝑀 which is existing in the building interior is mostly covered by 

the points. Therefore, to compare a BIM and a point cloud, we 

propose a method consisting of two main steps:  

 

Point classification: the point classification process classifies 

each point 𝑝𝑖 of the point cloud 𝑃 into two types: existing (0) and 

new (1). The existing points (𝑡𝑦𝑝𝑒 = 0) represent surfaces in the 

BIM M, while the new points (𝑡𝑦𝑝𝑒 = 1) belong to new 

elements of the building interior in comparison to the model 𝑀. 

The classification is based on a point-surface distance, which is 

the orthogonal distance between each point 𝑝𝑖 to the closest 

corresponding surface 𝜋𝑗  of the model 𝑀 (Khoshelham, 2015, 

2016). The point is classified as 𝑡𝑦𝑝𝑒 = 0 if the orthogonal 

distance is less than a cut-off threshold r and the orthogonal 

projection of the point on the surface falls within the surface 

boundary (Oude Elberink et al., 2013; Oude Elberink and 

Khoshelham, 2015). Otherwise, if the point-to-surface distance is 

larger than the cut-off threshold r or its orthogonal projections do 

not fall within any surface boundary of the BIM, the point is 

labelled as 𝑡𝑦𝑝𝑒 = 1 accordingly.  The threshold r is set 

according to the noise of the point cloud P and the error of the 

registration between the point cloud P and the BIM M. We 

formulate the classification of a point 𝑝𝑖 in the point cloud 𝑃 as: 

  

𝑡𝑦𝑝𝑒 (𝑝𝑖) =  {
0        𝑖𝑓 ∃𝜋𝑗  |𝜋𝑗

𝑇𝑝𝑖| ≤ 𝑟 𝑎𝑛𝑑 𝐼𝑛(𝑝𝑖 , 𝜋𝑗)
 

1      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

 

 

(1)  

where |𝜋𝑗
𝑇𝑝𝑖| is the absolute orthogonal distance between the 

point 𝑝𝑖 and the surface 𝜋𝑗  of the BIM M. 𝐼𝑛(. ) denotes the 

operation on whether an orthogonal projection of the point is 

within the boundary of the corresponding surface.  

Using the point classification method, any new elements of a 

building interior which are missing in the BIM will be identified 

in the point cloud as clusters of points of type 1. Meanwhile, the 

existing elements of a building which are recorded in the BIM 

will only contain points of type 0. The computation of the point-

to-surface distance at this step is not only useful for labelling of 

the points, but also provides information about location deviation 

of each point in the point cloud P and its corresponding elements 

in the BIM. 

 

Surface coverage measurement: The coverage 𝑀𝑐𝑜𝑣 of a 

surface 𝜋𝑗  in the BIM M is measured based on the surface area 

that is covered by the point cloud 𝑃. The existing points are taken 

into account in the computation of the coverage of the 

corresponding surface. The points are first orthogonally 

projected on the corresponding surface in order to construct a 2D 

alpha-shape 𝛼, which can be derived from the Delaunay 

triangulation of the projected points on the condition that the 

circumradius of each triangle face is smaller than an alpha radius 

𝑟∝ (Edelsbrunner, 1992; Edelsbrunner and Mücke, 1994). The 

coverage 𝑀𝑐𝑜𝑣 of a surface 𝜋𝑗  is the ratio of the area of the alpha-

shapes 𝛼 to the area of the surface: 

 

𝑀𝑐𝑜𝑣 (𝜋𝑗) = 
𝑎𝑟𝑒𝑎(𝛼)

𝑎𝑟𝑒𝑎(𝜋𝑗)
 (2) 

 

where 𝛼 denotes the alpha-shape reconstructed from the 

orthogonal projections of the existing points on the 

corresponding surface and 𝑎𝑟𝑒𝑎(. ) denotes the area of a surface.  

 

Figure 1 shows an example of coverage measurement of a surface 

(orange), which is partially covered by a point cloud. The alpha-

shape 𝛼 (green) is reconstructed with the alpha radius 𝑟∝ <
0.2𝑚 from the projections of the point cloud on the surface. The 

coverage of the surface is 𝑀𝑐𝑜𝑣 = 0.56, indicating that 56% of 

the surface area is captured in the point cloud. 

 

  
(a) (b) 

Figure 1. An example of surface coverage: (a) a surface 

(orange) and its corresponding point cloud; (b) a 2D alpha-

shape (green), which is constructed from the projection of the 

point cloud on the surface, cover up 56% of the surface 

(𝑀𝑐𝑜𝑣 = 0.56). 

 

The coverage 𝑀𝑐𝑜𝑣 (𝜋𝑗) of a surface ranges from 0 to 1. Using 

the surface coverage measure any redundant surface in the BIM 

M, which is not present in the point cloud 𝑃, will be identified by 

a low coverage (𝑀𝑐𝑜𝑣 (𝜋𝑗) ≈ 0) as there are no existing points 

(𝑡𝑦𝑝𝑒 = 0) corresponding to the surface. The surfaces with 

higher coverage are most likely to be present in the real 

environment. 

 

 

3. EXPERIMENTS AND RESULTS 

 

3.1 Experiments 

 

Experiments with both a synthetic dataset and the ISPRS 

benchmark data were conducted to evaluate the feasibility of the 

proposed method for comparison between a BIM and a point 
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cloud of an indoor environment.  

 

The synthetic dataset comprises a BIM and a point cloud of a 

synthetic environment. We assume that the BIM represents the 

previous stage of a building, which consists of a room and a 

corridor. Meanwhile, the point cloud captures the current stage 

of the building with two new walls and one removed wall in 

comparison with the existing BIM. The point cloud has no noise 

and is created by random space sampling on surfaces of the 

current building. Therefore, the cut-off distance can be set close 

to zero (here r ≈ 1mm). The synthetic dataset is shown in Figure 

2. 

 

  
(a) (b) 

Figure 2. The synthetic dataset: (a) the BIM; (b) the point 

cloud. 

 

Figure 3 shows the BIM and the corresponding point cloud of the 

TUB1 dataset from the ISPRS benchmark on Indoor Modelling. 

The point cloud was captured by a Viametris iMS3D mobile 

scanning system - with 3 cm data accuracy (Khoshelham et al., 

2017). Meanwhile, the BIM, which contains visible (light grey) 

and interpreted surfaces (dark grey) is created from the point 

cloud by an expert. The visible surfaces are captured in the point 

cloud, while the interpreted ones are unobservable and 

interpreted from the visible surfaces (Khoshelham et al., 2018). 

In this experiment, we compare the visible building elements 

(i.e., walls, ceilings, and floors) in the BIM with the point cloud, 

which contains data points of not only the visible building 

elements but also open and closed doors, windows, and a low 

level of clutter. The cut-off threshold is set at 10 cm (r = 10 cm), 

which corresponds to the errors of the data, the registration 

process of the BIM and the data, and the error in the 

reconstruction of the BIM. The ceilings are removed for better 

visualization.   

 

 
(a) 

 
(b) 

Figure 3. The ISPRS Benchmark dataset – TUB1: (a) the BIM 

with the visible surface marked as light grey; (b) the point 

cloud. 

 

3.2 Results 

 

Synthetic dataset: Figure 4 shows the result of point 

classification based on the point-surface distance between the 

point cloud and the BIM of the synthetic dataset. Changes are 

detected in the building in comparison with the BIM as there are 

clusters of points in the point cloud with large point-surface 

distances. As can be seen in Figure 4(a), the points belonging to 

the new elements of the building have a large distance from the 

existing BIM, up to 2.5m, while the remaining points of the point 

cloud have very small distances (close to 0) from the 

corresponding surfaces in the BIM. The points with a distance 

smaller than r=1mm are classified as existing points (blue) 

representing existing elements in the BIM as shown in Figure 

4(b). Points classified as new points (yellow), which have larger 

point-surface distances, represent the new walls, which are not 

present in the existing BIM. 

 

 
(a) 

 
(b) 

Figure 4. Comparison results of the synthetic dataset: (a) the 

point cloud colorized according to point-surface distances; (b) 

the point cloud with the result of point classification.   
 

The coverage 𝑀𝑐𝑜𝑣 of each surface of the BIM is computed based 

on the result of the point classification. Figure 5(a) shows the 

surfaces colorized according to the coverage, which ranges from 

𝑀𝑐𝑜𝑣  ≈ 0 , indicating that there is no point in the point cloud 

representing the surface, to 𝑀𝑐𝑜𝑣  ≈ 1, indicating that the surface 

is fully covered by points. The redundant and existing surfaces of 

the BIM in comparison with the point cloud are then derived from 

the coverage as shown in Figure 5(b). The redundant surfaces of 

the BIM, which do not exist in the real environment as 

represented by the point cloud, are identified as those surfaces 

that have a coverage smaller than a certain threshold set by the 

user (here 𝑀𝑐𝑜𝑣  ≤ 0.3), while the coverages of all correct 

surfaces which exist in the point cloud are larger than the 

threshold (𝑀𝑐𝑜𝑣 > 0.3). 
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(a) 

 
(b) 

Figure 5. Comparison results of the synthetic dataset: (a) the 

BIM with surfaces colorized according to the coverage 𝑀𝑐𝑜𝑣; 

(b) the BIM with the location of redundant elements (blue) and 

existing surfaces (yellow). 

The updating of the existing BIM to represent the current stage 

of the building can be guided by the locations where the changes 

are detected. This will facilitate efficient generation of an as-is 

BIM of the indoor environment. 

The ISPRS benchmark dataset: The results of point 

classification for the comparison between the BIM and the point 

cloud of the TUB1 building of the ISPRS benchmark dataset are 

shown in Figure 6. As can be seen in Figure 6(a), the data points 

belonging to building structures (i.e., walls, ceilings, and floors) 

are close to the BIM surfaces (≤ 10 𝑐𝑚), while the points 

representing doors and windows, which were not reconstructed 

in the BIM, and the clutter (e.g., people, furniture) have larger 

point-surface distances. The data points are then classified based 

on the point-surface distance. The points are labelled as existing 

points (𝑡𝑦𝑝𝑒 = 0) if their point-surface distances are smaller than 

the cut-off threshold (𝑟 = 10𝑐𝑚). Otherwise, the points are 

classified as new (𝑡𝑦𝑝𝑒 = 1) due to their larger point-surface 

distance as shown in Figure 6(b). 

 
(a) 

 
(b) 

Figure 6. Comparison results of the TUB1 dataset: (a) the point 

cloud colorized according to point-surface distances; (b) the 

point cloud with the result of point classification.   

Figure 7 presents the colorization of the BIM surfaces according 
to the coverage, and the location of redundant and existing 
surfaces of the BIM with respect to the point cloud. Figure 7(a) 
shows that several BIM surfaces are reconstructed with less 
supporting points than others. Users are enabled to identify the 
redundant surfaces in the BIM based on the surface coverage. 
Figure 7(b) and (c) demonstrate the ability of the proposed 
method in locating the redundant surfaces based on coverage 
thresholds of 0.2 (𝑀𝑐𝑜𝑣 > 0.2) and 0.3 (𝑀𝑐𝑜𝑣 > 0.3)  
respectively. The thresholds are set empirically. The surfaces 
which do not reach the coverage threshold are classified as 
redundant surfaces in the BIM.  As can be seen in Figure 7(c), a 
surface with 𝑀𝑐𝑜𝑣 ≈ 0.3 is wrongly classified as redundant. This 
is due to the presence of furniture in the building, which leads to 
gaps in the point cloud. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Comparison results of the TUB1 of the ISPRS 

benchmark dataset: (a) the BIM with surfaces colorized 

according to the coverage 𝑀𝑐𝑜𝑣; (b) and (c) the BIM with the 

location of redundant elements (blue) and existing surfaces 

(yellow) with 𝑀𝑐𝑜𝑣  ≈ 0.2 and 𝑀𝑐𝑜𝑣  ≈ 0.3, respectively. 

 
 

4. CONCLUSION AND FUTURE WORK 

 
In this paper, an approach to building change detection through 
comparison between a BIM and a point cloud of an indoor 
environment is presented. The experiments on both a synthetic 
dataset and the ISPRS benchmark dataset demonstrates that the 
proposed approach can detect the discrepancies and locate the 
new elements of the building as represented by the point cloud, 
which are missing in the BIM, as well as redundant elements in 
the BIM, which do not exist in the point cloud. This enables the 
proposed approach to detect changes of an indoor environment 
and update the BIM, which is useful in a variety of applications 
such as temporal analyses of changes during a building’s 
lifecycle and maintaining an as-is BIM of a building. 
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The limitation of the current approach is the lack of semantic 

information (e.g., clutters, building elements, utilities, etc.) about 

the detected changes as such semantic information is not 

available in the point cloud of the building. Future work will 

focus on classification of building changes. Another direction for 

future research is to investigate the effect of clutter and occlusion 

on the change detection. We will also further evaluate the 

proposed method with more complex environments, which 

contains glass walls/windows and non-planar surface structures. 
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