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ABSTRACT:

The performance of an indoor positioning system is highly related to the placement of the transmitting nodes that are used as
references for the positioning estimations. In this paper, we propose a methodology that can be used to optimize such a deployment
and thus, increase the performance of an indoor positioning system that a) is based on Received Signal Strength (RSS) fingerprinting
and b) is orientated towards providing location or zone estimations instead of exact positioning. The optimization process involves
4 fundamental components. Firstly, the modelling of the obstructions in the indoor environment and also the zone modelling.
Then, the definition of the performance metric that can be used to evaluate each different deployment scenario, in which case, our
proposed metric considers the separation area and distances between the zones in the RSS vector space. The third component is the
radio propagation model, required for simulating the RSSs from each node, where a model based on the ray tracing technique is
selected. Finally, the last component is the selection of the optimization function that will control and drive the whole optimization
process by selecting which deployment schemes to evaluate. For that, the utilization of a Genetic Algorithm is proposed. Although
the evaluation of this methodology is outside the paper’s scope, the key factors affecting the optimization performance the most,
are expected to be a) the accuracy of the used indoor model and radio propagation model and b) the exact implementation of the

optimization function.

1. INTRODUCTION

Since the development of the Bluetooth Low Energy (BLE)
standard, this technology has been constantly gaining attention
in various fields, such as Health-care, Home Automation,
Internet of Things, etc. However, yet another BLE application
of great importance would be in indoor positioning systems.
Such a system typically suggests the deployment of a
network of broadcasting nodes and a receiver that is able to
“listen” to the transmitted signals. Then, depending on the
positioning technique being used (triangulation, trilateration,
fingerprinting, etc.), these signals are processed to finally
produce an estimation of the receiver’s position. As it has been
noted (Faragher , Harle, 2015)), Received Signal Strength (RSS)
fingerprinting is the de facto localization technique for indoor
positioning on consumer devices today. This specific approach
involves matching sensed patterns with already known ones
that have been georeferenced and stored within a database. It
received this specific name, since these patterns are as unique
as a fingerprint can be.

Every mesh/network deployment could be evaluated based on
some performance metric. On the contrary, knowing this metric
beforehand could enable the deployment of the network in a
way that its performance becomes optimal. An example of such
an optimization can be the distribution of cellular antennas in a
way that maximizes the total coverage or the deployment of
Wi-Fi APs in a university so that the disconnections of walking
users are minimized. In the case of a network of 2.4GHz nodes
(e.g. Wi-Fi APs or BLE Beacons) used for fingerprint-based
positioning, this performance is directly related to the accuracy
of the positioning estimations that the system can offer.

A considerable amount of research has already been done
for finding the optimal placement that would maximize
the performance of an indoor positioning system like the
aforementioned one. Although in each case, the optimization
objective varies, two general approaches can be distinguished.
In the first one, the goal is to minimize the expected error of
the positioning estimation (Baala et al., 2009, Sharma et al.,
2010, He et al., 2011l |Ficco et al., 2013, [Li1 et al., 2015, [Laitinen
, Lohan, 2016} |Voronov, 2017). However, it can be argued
that making an accurate prediction of the error of a positioning
estimation is quite challenging due to the complexity of
properly modelling the error’s sources themselves. The second
approach is based on the perception that in fingerprint-based
positioning applications the more discrete the estimations are
the better, since statistical uncertainty cannot be avoided.
According to that, the optimization process tries to maximize
the vector distance of RSS fingerprints in the area of interest.
Although this idea has been favoured by the latest papers on
this field (Meng et al., 2012, |Chen et al., 2013, |Chen et al.,
2014, |Du , Yang, 2017} |Alsmady , Awad, 2017, Eldeeb et al.,
2018), it may still have some points of criticism, mainly related
to the way this distance is measured. It is worth mentioning
that in many cases, the objective of the studies was to also
optimize the number of nodes needed to be deployed (and thus
the installation cost) (He et al., 2011}, [Ficco et al., 2013} |Chen!
et al., 2014} |L1 et al., 2015} [Laitinen , Lohan, 2016)).

Thus far, the leading interest of the associated research has
been essentially the improvement of the general accuracy of the
positioning estimations in terms of numerical coordinates, or
in other words, the minimization of the difference between the
coordinates of the estimated position and the actual position.
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However, in practice, a fingerprint-based indoor positioning
system can often offer only broader area/proximity estimations,
instead of specific positioning estimations of high accuracy. In
such systems, where basically area or zone approximations are
being offered, the benefits of the so far proposed optimizations
are not maximal, since the optimization process will highly
be consumed at enhancing aspects that have limited effect.
Therefore, in this paper, a new optimization methodology
targeting those exact systems is proposed. More specifically,
a methodology to adjust the placement of positioning nodes
used in fingerprint-based indoor positioning systems, with the
goal to increase the location prediction among different area
sections (e.g. room A, B, etc.). Besides the improvement
in both the localization accuracy and navigation functionality,
such an optimization also increases the cost-effectiveness ratio.
That, can ultimately lead to lower deployment costs, since less
transmitting nodes might be needed to reach sufficient levels of
performance.

The paper continues having the following structure: Section 2]
discusses the notion of zone partitioning in an indoor
positioning system, along with how to suitably model the
indoor space for such an optimization. Section [3] presents
the performance metric that will be used to evaluate each
different deployment scenario. Section [d] describes how this
process may be executed for ultimately finding the optimal node
placement. Finally, Section [5] will present our conclusions and
also suggestions for future work.

2. MODELLING THE INDOOR ZONES

Often, when the subject of study is to identify where an entity
is situated within space, the leading interest is essentially
the numerical coordinates of its physical position in some
reference system. Although this notion is highly applicable
to various scientific fields (e.g. Surveying Engineering, Radio
Navigation, GNSS Tracking, etc.), there are still cases such as
Indoor Positioning and Navigation, where a numeric position
may need some spatio-symbolic enrichment before it becomes
valuable. This importance and generally the difference between
localization and positioning aspects, has been acknowledged
even from plainly technical sources (Karl , Willig, 2005).

Even for indoor positioning systems offering highly accurate
positioning coverage (e.g. sub-meter), it is easy to depict
the value of grouping different points in space, into distinct
spatial sets (or zones) of specific semantic properties. For
example, a university student searching for the "Lecture Hall
B3", would prefer making a lookup based on the room’s name
in a hypothetically provided indoor positioning system App,
instead of some specific coordinates. In a similar way, other
users having mobility impairments would recognize the worth
of an indoor positioning system that support space semantics
as described by (Liu et al., 2019), to be able to search for
navigation routes via zones that are accessible by them.

In a zone-aware indoor positioning system, the more correctly
the system can estimate the zone within which an entity is
located, the better this is for its performance. This, requires the
radio identity of each zone to be as distinct as possible and so,
proposing an optimization method to achieve that is, essentially,
the scope of this paper. Such an optimization mechanism has to
begin with properly modelling the indoor environment, along
with the zones of interest; a space subdivision process, which is
a known problem in literature and has comprehensively been

discussed (Worboys, 2011l |Zlatanova et al., 2014, |Diakité ,
Zlatanova, 2018). With respect to that, there are two aspects
needed to be considered. The geometry part, which is required
for the signal propagation simulation and the semantics part,
which will define the zones.

Starting with the first aspect, a major decision needs to be
taken regarding the dimensions of the model. As mentioned,
to maximize the radio distinctiveness among different zones
by adjusting the node placement, one needs to be able to
simulate the radio propagation within the indoor environment.
Therefore, since an accurate radio propagation model requires
the utilization of an accurate representation of the propagation
space, the more detailed this indoor model is, the better. In
theory, a point cloud based 3D model that would include
even furniture surfaces, would perform the best. However,
since the model its complexity affects highly the speed of the
optimization, a more efficient approach is needed.

In a similar work of node placement (Dalla’Rosa et al., 2011),
where both 2D and 3D indoor models where examined, it was
shown that the results between the two cases were similar.
However, the 3D case took (for a small model) 500% more time,
while additionally, this percentage gets exponentially higher as
the model gets enlarged. Therefore, we opt to use a 2D indoor
model. Nevertheless, this also means that we neglect the exact
geometry of any windows, doors, or half wall openings, and
that, should be noticed.

The need to decompose the geometry of the 2D model defined
above, into different zones, introduces the second aspect; the
semantics. Dividing a small indoor-space (e.g. a house) into
distinct zones, might sound intuitively straightforward. For
example, one could distinguish a living room, a kitchen, a
bathroom, etc., being separated by walls. However, what
happens if walls were not present (e.g. a kitchen being
connected with the living room, with no walls in between)? A
problem becoming even more evident as the area increases (e.g.
airports, train stations). At the same time, quite often we might
be interested in merging sections that are physically separated.
For example, a museum might want to cluster different rooms
into thematic zones (e.g. Paleolithic, Mesolithic, etc.). On the
other hand, the zone subdivision process may also include some
constraints. Therefore, considering that the zoning process may
not always be straightforward, it needs to be defined.

With respect to the aforementioned, we apply the following 3
rules:

e Zones must not overlap: A physical position or area should
not belong to different zones, since that would contradict
with the zone distinctiveness notion.

e The interior of each zone must be continuous: Having
zones that are discontinuous introduces impracticality to
their utilization and thus, it should be avoided.

e Zone’s borders must be perpendicular to the reference grid:

During the optimization process, the indoor model (i.e.
the obstructions along with the zones) need to be spatially
indexed into a reference grid. Ensuring that the borders of
the zones are perpendicular (or parallel) to the axes of this
grid is crucial to the optimization’s speed, due
to the reduction of the geometrical calculations needed to
be done during the radio propagation modelling.
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Figure 1. Perpendicularity of the zone’s borders

It is worth mentioning that these rules would allow scenarios
where the zoning is not watertight (each white cell in[Figure 1)),
or zones that do not follow the physical obstructions of the
indoor model (e.g. north & west cells of pink zone in[Figure T).

The actual value and worth of the optimization methodology as
a product being proposed in this paper, can only be seen through
its implementation in an indoor positioning system which,
as a final-product, would be utilizing the spatially optimized
BLE nodes for positioning or navigation purposes. Between
these two products, the geometry and, most importantly, the
semantic aspects need to be linked. For example, let us
assume that the aforementioned museum was offering an indoor
positioning service that the visitors could use to identify their
locations. If the indoor model that was being utilized by this
final-product (and offered to the visitors), was not aware of this
zoning, it could not take advantage of the enhancement that the
optimization-product could offer (i.e to optimally distinguish
the Paleolithic zone to the Mesolithic zone). With that said, it is
required that the indoor spatial model used in the final-product,
can also support semantics.

Although the development of a custom (and proprietary) model
is always an option, there are already several well-established
standards that could be used for modelling an indoor space.
These include formats like Keyhole Markup Language (KML),
being mostly oriented towards integrations with earth browsers;
Shapefile, which is a very popular GIS data format by ESRI;
GeoJSON; Industry Foundation Classes (IFC), offering an
extensive data schema for applications in the Architecture,
Engineering and Construction industry domain; CityGML
(OGC, 2012), designed for bigger scale modelling (cities); and
also, IndoorGML (OGC, 2016). Each one of them has its
strengths and weaknesses, however, among all, the IndoorGML
seems to be the most powerful and suitable to be used in a
final-product that could take advantage of our optimization.

IndoorGML respects several critical to our case, notions.
These are the "Cellular space" which defines how the
entire indoor space shall be decomposed (namely, into a
set of distinct cells); the "Topological representation” which
is essential for unlocking the potential of the zones for
routing based on semantics (Liu et al., 2019); and the
"Semantic representation”, "Geometric representation” and
"Multi-Layered representation". The importance of these
notions for an indoor model has been thoroughly discussed in
(Li et al., 2019) and without doubt, it is also directly applicable
to our aforementioned needs.

3. DEFINING THE PERFORMANCE METRIC

To improve the accuracy of the zone predictions, one needs
to consider the way this prediction is made. A positioning
algorithm based on RSS-fingerprints is typically a distance
check between a new (unclassified) set of RSS measurements
and a number of other (classified) sets of RSS measurements,
which have been gathered during a training phase. Each one
of these sets can be considered as a vector of RSS values
and thus, this distance is essentially a vector distance. In an
indoor positioning system that offers awareness of the location
(or zone) to which a physical position belongs (e.g. kitchen,
corridor, etc), all vectors corresponding to the same zone, form
a single distinct class. This notion can be illustrated through
the following figures, where an example of a 2-node setup
within an indoor environment has been used to illustrate how
these vectors of RSS values (in symbolic units), form the
different classes. More specifically, the left part of
shows 4 different zones being divided by a grid of sub-space
cells, having a total resolution of 10x10. At the corners, 2
transmitting nodes (blue & red) have been installed and their
radio coverages have been simulated (based on a simplistic
radio propagation model) and presented on the right parts.
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Figure 2. Signal coverage across the zones,
under an obstructed propagation

At each sub-space cell, the combination of the signals produces
a distinct vector of 2 RSS values. Plotting these vectors results
in where each dimension corresponds to a single
node. Therefore, illustrating a 3-node setup would result in
a 3-dimensional graph, while a bigger setup would require a
hyper-dimensional representation. Grouping all RSS vectors
by their zones can help us determine the different class regions.
In these can be found colored respectively using
an approximated alpha shape. Every point within a shape
belongs to the corresponding class (i.e. zone), however, all
points outside these shapes (separation space) belong to no
class.

To accurately model a radiomap is quite difficult due to
random noise and that, has direct impact to the accuracy
of the class borders. With that said, let us assume that
the cell grid became continuous (which is the reality) and
that we measured the RSS vector at a new physical position
within a specific zone. Then, the probability that this vector
would lie within the corresponding class region (in RSS vector
space), would be higher if the physical position was in the
center of the zone, and not its borders. On the contrary, if
its physical position was close to the zone’s borders, there
is even a chance that this vector would now lie closer to
a neighbour class, which fundamentally characterizes the
difficulty in classification. Ultimately, the more separated these
class regions are (Separation Area in [Figure 3), the less this
problem exists and so, this metric can be used to measure the
distinctiveness among different zones.
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Figure 3. Class separation areas

An indoor positioning system may often involve hundreds
of reference nodes and so, determining the n-dimensional
separation area, would require a series of highly demanding
hyper-shape calculations. Consequently, an alternative
approach which would still respect the class-separation notion,
is also proposed. Namely, the minimum (to ensure sufficient
levels of accuracy per zone) and the combined separation
distances, which are presented in These distances
can be considered as the class interconnections, having direct
correspondence to the borders of the zones in the physical

propagation environment (Figure S)).
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Figure 4. Class separation distances
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Figure 5. Class interconnections

4. OPTIMIZING THE NODE PLACEMENT

Having defined the performance metric for measuring the zone
distinctiveness, the next step is to execute the optimization
process, during which, various node placement scenarios will
iteratively be evaluated to ultimately select the one offering the
maximum performance. This process requires the utilization
of a) a radio propagation model for simulating the RSS values
within the indoor environment and b) an optimization function
to control which node placement scenarios to evaluate. In
each case, several options exist, offering different trade-offs
between computational complexity and accuracy. Nevertheless,
this section presents our recommended approaches.

4.1 Simulating the Signal Propagation

One of the most crucial parts of the optimization mechanism
is the radio propagation model, since its accuracy is directly
affecting the final optimization’s worth. Self-evidently, a
generic radio propagation model (e.g. free-space path loss) that
does not consider the physical obstructions in the propagation
environment, would not suffice for accurately simulating the
RSS values within that. The radio energy is highly affected
by phenomena such as reflection and absorption (caused by
obstructions like walls and doors) and so, a deterministic
radio propagation model is required, taking these into account.
Therefore, we propose the utilization of a ray launching
model (Luo, 2013), since it offers the best trade-off between
computational complexity and accuracy for this demanding
(due to its iterative nature) process.

Based on the Geometrical Optics phenomena of reflection
and absorption, ray launching considers analytically
both the electromagnetic properties and the propagation
environment. More specifically, assuming that all nodes
transmit omnidirectional, a sufficient number of rays is
evenly (in terms of angle) generated and traced (Figure 6)),
for estimating the associated power fields at every sampled
cell. The term sufficient is used to denote the importance
of delivering ultimately (even after many reflections and
absorptions) the generated ray to every cell, which in reality
would indeed receive the corresponding signal. In the end,
the attenuation of each ray will be the result of a) the distance
path-loss during its propagation in free space, b) the attenuation
due to reflections and c) the attenuation due to absorptions.

During the simulation, the attenuation coefficient of each
obstruction type needs to be used. Although generic estimations
can be found in literature, an even better approach would be to
compute the optimal ones, based on the specific characteristics
of the propagation environment. To achieve that, one could
deploy first several nodes across the area at known positions Py,
and then, sample at known positions P; their signal strengths
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Figure 6. Ray Launching and Tracing Example

(ground truth). After that, the signal transmission from the
nodes at the P, positions will be iteratively simulated, testing
through an optimization algorithm different coefficients. In the
end, the optimal combination of coefficients would be the one
that minimizes the aggregated error at the P positions, between
the simulation and the ground truth.

After finding the optimal coefficients for the radio propagation
model, the next challenge is to utilize it efficiently. An
optimization scenario could well exceed trillions of ray
intersection checks in total. Therefore, the more these checks
are reduced without sacrificing the accuracy, the better. For that,
several enhancing approaches exist, such as Spatial Indexing
(e.g. this obstruction lies within those cells or, vice versa,
this cell includes those obstructions), visibility pre-calculations,
hierarchical clustering, reduction in the resolution of the grid,
parallelization of the process, etc..

4.2 Selection of the Optimization Function

Having defined a) the metric to evaluate the performance
of each different node placement scenario and b) the radio
propagation model needed for the simulation of the signal
propagation within the indoor environment, the last step is to
choose a function to control and drive the whole optimization
process by selecting which specific placement scenarios to
examine. Undoubtedly, simulating in a brute-force approach,
all possible cases, would certainty return the best scenario.
In practice, however, such a computational load renders this
approach highly impractical. For example, if we had 100
different nodes, there are countless combinations of how these
could be deployed within a building. Therefore, decreasing the
number of the evaluation cases is crucial for this optimization
problem.

While various optimization algorithms exist that are suitable for
solving the problem of an optimal node placement (e.g. Ant
Colony Optimization, Particle Swarm Optimization, Simulated
Annealing, etc), the ones that have been recognized and applied
the most, are the Genetic Algorithms (GAs). In our case,
they remain as the suggested approach. Although GAs have
been comprehensively discussed in literature when utilized for
node placement optimizations (Yoon , Kim, 2013), it can be

said that their general goal is to translate the principles of
Charles Darwin’s natural selection, into an iterative procedure
for solving the optimization problem.

As shown in[Figure 7] this procedure is mainly the repetition of
3-steps: the selection, crossover and mutation steps. Initially,
a population of individual chromosomes (or optimization
solutions) is generated. Then, the strongest chromosomes
(or best solutions) are selected in order to be preserved or
mixed in pairs, producing the next generation of chromosomes.
Some of these new chromosomes are then randomly mutated
(producing again a slightly different solution) to ensure that the
vast search-space is explored better. This 3-step process is then
repeated, until some threshold is reached.

Do random mutations

A KKK

/i/m/
/‘ Select best

Chromosomes

Generate initial
Chromosomes

RRRR

Breed new
Generation

KK
,,,7/:’,

Figure 7. The life cycle of a Genetic Algorithm

5. CONCLUSIONS

A new performance metric has been proposed that can be used
to evaluate and increase the performance of an indoor position
system, where Received Signal Strength fingerprinting is used
as the localization technique. Since the scope of this paper was
primarily to suggest a general methodology on how to use this
metric to perform such an optimization, its evaluation is still
needed. For that, we could compare the localization accuracy
between 2 different node deployment scenarios. The first one
would be based on the optimal solution that the proposed
optimization methodology would produce, while the second
one would be based on an unbiased regular node deployment, or
even based on the intuition of an already experienced installer.

This new metric has been formulated according to the
usual way the signals are utilized during the localization
process. Therefore, the key factors affecting the optimization
performance the most, are expected to be a) the accuracy of the
used indoor model and radio propagation model and b) the exact
implementation of the optimization function. These are subject
to individual research and stand as ideas for supplementary
future work. Nevertheless, besides the evaluation and the
improvement of the optimization performance in terms of speed
and accuracy, other suggestions for future work include the
introduction of weights during the zoning process and the
reduction of the number of nodes needed, until sufficient levels
of performance have been achieved.
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