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ABSTRACT: 

 

Point cloud classification is quite a challenging task due to the existence of noises, occlusion and various object types and sizes. 

Currently, the commonly used statistics-based features cannot accurately characterize the geometric information of a point cloud. This 

limitation often leads to feature confusion and classification mistakes (e.g., points of building corners and vegetation always share 

similar statistical features in a local neighbourhood, such as curvature, sphericity, etc). This study aims at solving this problem by 

leveraging the advantage of both the supervoxel segmentation and multi-scale features. For each point, its multi-scale features within 

different radii are extracted. Simultaneously, the point cloud is partitioned into simple supervoxel segments. After that, the class 

probability of each point is predicted by the proposed SegMSF approach that combines multi-scale features with the supervoxel 

segmentation results. At the end, the effect of data noises is supressed by using a global optimization that encourages spatial consistency 

of class labels. The proposed method is tested on both airborne laser scanning (ALS) and mobile laser scanning (MLS) point clouds. 

The experimental results demonstrate that the proposed method performs well in terms of classifying objects of different scales and is 

robust to noise. 

 

1. INTRODUCTION 

Point cloud classification, which aims to assign each point a 

proper class label, is a basic problem in 3D scene understanding 

for intelligent robots, digital cities and unmanned vehicles 

(Nguyen and Le, 2013). Extracting the discriminative features of 

ground objects from noisy, sparse, unstructured data is a key step 

in producing accurate classification results. Currently, the 

mainstream features for point cloud classification are statistics-

based, which can be derived from the local covariance matrix at 

a point’s neighbourhood. However, because of the uneven 

density of point clouds obtained by different sampling intervals 

and ranges of laser scanners, these features may not sufficiently 

characterize the geometric information of point clouds. For 

instance, the statistical features extracted at the intersection of 

two planes (e.g., building corner) are likely to be similar to those 

of a bunch of scattered points (e.g., vegetation points) in a local 

neighbourhood. Therefore, it leads to confusions in places like 

corners of buildings, and cannot accurately characterize complex 

objects in the point cloud. 

 

These problems have been extensively studied for many years. 

Several researchers tried to improve the classification accuracy 

by extracting features of point cloud at different scales (Chen and 

Maggioni, 2011; Wang et al., 2015; Zhang et al., 2016). In the 

training stage, multi-scale processing of point cloud is carried out, 

which is similar to the scale-invariant feature transform (SIFT, 

Lowe, 2004) pyramid. Technically, point clouds are resampled 

into different scales. Then the neighbourhoods at different scales 

are applied for neighbouring points searching and feature 

extraction (Brodu and Lague, 2012). The advantage of this 

method is that it can be adapted to various sizes of objects. But it 
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is sensitive to noise and is difficult to accurately characterize the 

features of points at the boundary of multiple objects or planes. 

 

Another way to address these issues is supervoxel segmentation. 

Just as superpixel in 2D image processing, it can be leveraged to 

substantially reduce the number of points to work with. Most 

importantly, this provides a more natural and compact 

representation of 3D point clouds, which enables the operations 

to be performed on regions instead of the scattered points (Lin et 

al., 2018). Therefore, supervoxel segmentation can well adapt to 

the situation with curvature changes (e.g., building corner). 

However, many existing methods of supervoxel segmentation 

employ fixed resolution for each voxel. Meanwhile, the accuracy 

of segmentation result is excessively dependent on the 

initialization of the seed points. Besides, as the principle of 

supervoxel segmentation is based on the similarity of low-level 

geometrical features, the segmentation results are always 

piecemeal and have no meaningful object information. 

 

In this paper, a novel point cloud classification approach, 

SegMSF, is proposed that combines the supervoxel segmentation 

and multi-scale features. The local statistical features are fused 

with the supervoxel segments to leverage both of their 

advantages to achieve a better performance. At the end, a global 

energy function which encourages the spatial consistency among 

neighbouring labels is optimized to supress the impact of the 

inevitable noises. In order to demonstrate the superiority of this 

method, we use both airborne laser scanning (ALS) and mobile 

laser scanning (MLS) point clouds which contain objects of 

different sizes and scanning densities to validate its good 

stability and self-adaptability. Finally, the proposed method is 

proved to be able to distinguish objects of various sizes and 

handle the effect of occlusion to the ground objects.  
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2. RELATED WORK  

In this section, we will discuss the related prior works in terms of 

two aspects: point cloud feature extraction and point cloud 

classifier. 

 

Point cloud feature extraction.  Good feature is important for 

high-precision point cloud classification. Commonly used point 

cloud features can be generally divided into point-based 

(Blomley et al., 2014; Weinmann et al., 2015; Zhang et al., 2016), 

segment-based (Aijazi et al., 2013; Xiang et al., 2018; Zhou et al., 

2012) and learning-based (Graham et al., 2018; Tchapmi et al., 

2017) levels.  

 

Point-based feature describes the local properties of a point cloud 

according to its neighbourhood, such as the surface normals, 

curvatures, and eigenvalues of the covariance matrix (Guinard 

and Landrieu , 2017; Wang et al., 2015). However, such local 

descriptors are sensitive to the scale of neighbourhood as objects 

often present different properties at different spatial scales. To 

avoid the influence of scale, the multiscale or multi-resolution 

spatial feature descriptors (Chen and Maggioni, 2011; Wang et 

al., 2015) are proposed to describe the objects across different 

scales. Segment-based feature first partitions the point cloud into 

small segments and then calculates the properties of each 

segment, such as length ratio, surface ratio, volume ratio, and so 

on (Landrieu and Simonovsky, 2018; Xiang et al., 2018). 

However, as the segments are partitioned according to the local 

geometrical similarity, the segments are always piecemeal and 

has no meaningful object information.  

 

Learning-based method aims at extracting features of a point 

cloud by using machine learning method with enormous training 

samples. Current learning-based method can be divided into four 

categories: multiview-based, voxel-based, set-based and graph-

based. Multiview-based and voxel-based methods (Le et al., 2017; 

Qi et al., 2016) represent the 3D shape into a set of images or 

regular volumetric occupancy grids, so that the feature learning 

method on regular arrays can be directly used. However, it is 

difficult to determine the distribution of the views, and the voxel-

based method inevitably leads to memory and computation 

consumptions as they increase cubically with respect to the 

voxel’s resolution. Set-based method (Qi et al., 2017a, 2017b; 

Zaheer et al., 2017) aims to find a symmetric function which can 

aggregate the information of the set with any input orders. Graph-

based method (Bronstein et al, 2017; Simonovsky and 

Komodakis, 2017; Yi et al., 2017) first represents the point cloud 

into a graph according to their neighbourhoods, and then the 

graph neural networks are applied for feature learning. However, 

learning-based method needs enormous training samples and 

yields huge computations. 

 

Point cloud classifier. After the point cloud features are 

extracted, proper classifier is required to assign each point with 

certain class label. Generally, classifiers for point cloud can be 

divided into 1) individual point classifier and 2) contextual 

classifier (Martin Weinmann et al., 2015). The commonly used 

individual point classifiers include support vector machine 

(Ghamisi and Höfle, 2017; Zhang et al., 2013), cascaded 

AdaBoost (Lodha et al., 2007), random forest (Li and Cheng, 

2018; Ni et al., 2017), extreme learning machine (Strom et al., 

2010), cascade classifiers (Carlberg et al., 2009), and so on. 

Although these methods can perform well in point classification, 

the topological relationship among different objects in the urban 

environment is usually ignored. Moreover, these methods are 

sensitive to noise. 

 

In order to account the relationship among neighbouring points, 

contextual classifier regards the point cloud as a graph. Each 

vertex corresponds to a point in the data and the edges connect 

neighbouring points (Kang and Yang, 2018; Yan et al, 2014). 

After that, respective approaches such as Markov random fields 

(MRF, Najafi et al., 2014; Shapovalov et al., 2010), conditional 

random field (CRF, Kalogerakis et al., 2010; Niemeyer et al., 

2014, 2012) can be applied. MRF/CRF converts the classification 

as a multi-labeling optimization problem. By minimizing their 

corresponding energy functions, the feature differences are 

minimized in the same class and are maximized among different 

classes (Lozes et al., 2013). Contextual classifier is insensitive to 

noise, but its segmented results depend on the initial values and 

are usually piecemeal. 

 

 
Figure 1. Flowchart of the proposed SegMSF method. 

 

3. METHODOLOGY 

The flowchart of proposed method is presented in Figure 1.  

Multi-scale feature extraction and supervoxel segmentation are 

conducted simultaneously on the original point cloud. According 

to the principle of segmentation, the features of points belonging 

to the same segment tend to be consistent. Therefore, for each 

point, its multi-scale features are then modified by concatenating 

with the features of the segment it belongs to. After that, the 

random forest classifier is leveraged to produce preliminary 

classification probabilities. At last, considering the effect of noise, 

a global energy function which encourages the spatial 

consistency between neighbouring labels is used for further label 

optimization. 

 

3.1 Multi-Scale Feature Extraction  

Feature design is of great importance to the process of point cloud 

classification. Considering the various size of objects in urban 

scenes, statistics-based geometrical features of point cloud at 

multi-scales are extracted in this work. 

 

Geometrical Features Formula 

Linearity (λ1 − λ2)/λ1 

Planarity (λ2 − λ3)/λ1 

Sphericity λ3/λ1 

Omnivariance (λ1λ2λ3)1/3 

Anisotropy (λ1 − λ3)/λ1 

Eigenentropy −Σi=1
3 𝜆𝑖 ln 𝜆𝑖 

Curvature 𝜆3/(𝜆1 + 𝜆2 + 𝜆3) 

Sum of eigenvalues 𝜆1 + 𝜆2 + 𝜆3 

Table 1. Local geometrical features. 

 

Specifically, for the given point cloud 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁}, we 

first down-sample the point cloud into multiple resolutions 
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{𝑃1, … , 𝑃𝐿} and then a series of search radii {𝑟1, … , 𝑟𝐿} are used 

for neighbouring points searching. For each point 𝑝𝑖(𝑥, 𝑦, 𝑧) ∈ 𝑃, 

denote 𝒩𝑙(𝑝𝑖) as the set of neighbouring points of 𝑝𝑖 within radii 

𝑟𝑙. The geometrical features at each scale are derived from the 

normalized eigenvalues 𝜆1, 𝜆2, 𝜆3 of the covariance matrix of the 

neighbour set 𝒩𝑙(𝑝). Assume that these eigenvalues are sorted as 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0, the local geometrical feature 𝑓𝑔(𝑝𝑖) applied 

in this paper contains the linearity, planarity, sphericity, 

omnivariance, anisotropy, eigenentropy, curvature and sum of 

eigenvalues, whose definitions are provided in Table 1. 

 

3.2 Supervoxel Segmentation   

The local features described in Section 3.1 characterize the 

geometrical attributes of point cloud within a sphere 

neighbourhood according to their Euclidean distances. However, 

they neglect the semantic differences of points and therefore 

cannot precisely represent the feature of points. For instance, the 

points at a building corner should actually belong to one side of 

the building, but its local covariance features are similar to the 

vegetation points as its spatial neighbourhood contains the points 

of both sides of the building (Figure 2). Therefore, for complex 

classification involving multiple types of objects, it is required to 

over-segment the original point cloud into small regions or 

objects simultaneously. This will not only enhance the capacity 

of distinguishing the points that are likely to be confused, but also 

greatly reduce the amount of computation.  

 

 
Figure 2. Illustration of the neighbourhood searching for local 

feature extraction. (a) Points at a building corner. (b) Points of 

vegetation. The local geometrical features (e.g., linearity, 

planarity, curvature, etc.) of these two situations are similar. Thus, 

they are difficult to distinguish with only the local geometrical 

features. 

 

In order to well preserve the boundaries of ground objects during 

segmentation, voxel cloud connectivity segmentation (VCCS, 

Papon et al., 2013) is adopted in our study. This approach is 

achieved by a seeding method based on 3D space and local 

iterative clustering with flow-constraint using colour and 

geometrical features. Firstly, the point clouds are voxelized by 

octree, and then the initial supervoxels are extracted by dividing 

the 3D space evenly. The local k-means clustering method is then 

used to grow these initial supervoxels. Especially, VCCS is 

reported to be highly efficient in avoiding the problem of under-

segmentation and can conform to real geometric relationships. 

 

3.3 Feature Modification 

Statistics-based geometrical features represent the local feature 

of point cloud within a sphere neighbourhood, while they cannot 

accurately characterize the points at the boundary of objects. The 

supervoxel segmentation method aggregate the points lying on 

one local plane into a segment, but the segmentation results are 

always piecemeal and have no meaningful object information. In 

this section we describe how to combine the supervoxel 

segmentation information and the local geometrical features, 

while maintaining the advantages of both.  

 

Denote the segments as {𝑆1, 𝑆2, … , 𝑆𝐾}, where 𝑆𝑘  is set points 

belonging to the 𝑘 -th segment and ⋃ 𝑆𝑘
𝐾
𝑘=1 = 𝑃 . We first 

calculate the feature attribute of each segment as 𝑓𝑆𝑘
 according to 

the covariance matrix of set 𝑆𝑘 as described in Section 3.1. The 

modified feature of the 𝑖-th point 𝑝𝑖 is defined as follows: 

 

𝑓𝑖 = [𝑓𝑆𝑘
,

1

|𝑆𝑘|
∑ 𝑓𝑔(𝑝)𝑝∈𝑆𝑘

, 𝑓𝑔(𝑝𝑖)] , 𝑝𝑖 ∈ 𝑆𝑘           （1） 

 

where the second term represents the mean feature of the points 

belonging to the same segment. The modified feature 𝑓𝑖 

leverages both the advantages of the supervoxel segments and the 

local geometrical features.  

 

3.4 Class Probability Prediction with Random Forest 

In this section, the random forest (RF) algorithm is used as the 

classifier for preliminary class probability prediction of each 

point. RF is an integrated algorithm that creates a set of decision 

trees from a randomly selected subset of the training set, then 

aggregates votes from different decision trees to determine the 

final class of the test point. It has the advantages of no data 

preprocessing, convenient and fast processing of multi-class 

problems and stable classification results. Therefore, RF has 

already been widely used and shown good classification results 

for LiDAR point clouds (Sun and Lai, 2014; Hackel et al., 2017).  

 

In this study, to analyse the performance on different datasets, we 

input the modified features of each training set into the RF 

separately. During the prediction phase, the class probability 𝑝̂𝑖 

of the corresponding point 𝑝𝑖  in the testing set is predicted and 

is used as the initial value for global label optimization with CRF 

(Section 3.5).  

 

3.5 Global Label Optimization 

To deal with the spatial inconsistency of the predicted label 

caused by noise, a CRF model with spatial consistency is 

constructed for global label optimization. For this purpose, we 

construct a graph 𝐺(𝑉, 𝐸)  with vertex 𝑣 ∈ 𝑉  and edge 𝑒 ∈ 𝐸 . 

Each vertex is associated to a point, and the edges are added 

between the point and its K-nearest points of the point cloud. 

 

 
Figure 3. The unary and pairwise term of the CRF model. 

 

Let random variable 𝑋𝑖  be the label of vertex 𝑖 , whose value 

domain is a set of labels ℒ𝐶 = {𝑙1, 𝑙2, … , 𝑙𝐶} , where 𝐶  is the 

number of class. Random variable 𝑋 consists of 𝑋1, 𝑋2, … , 𝑋𝑁 , 

where 𝑁 is the total number of points. Regard vertex 𝑉 of the 

graph 𝐺(𝑉, 𝐸)  as the random variable of label, i.e. 𝑉 =
{𝑋1, 𝑋2, … , 𝑋𝑁}. Given a global observation (point cloud) 𝑃, the 

pair ( 𝑃, 𝑋 ) can be model as a conditional random field 

characterized by a Gibbs distribution 𝑝(𝑋 = 𝑥|𝑃) =
1

𝑍(𝑃)
exp (−𝐸(𝑥|𝑃)) , which can also be seen as the posterior 

probability of the point cloud assigned to label 𝑙 under the global 

observation 𝑃. The Gibbs energy of labelling 𝑥 ∈ ℒ𝑁 is 𝐸(𝑥|𝑃) 

and 𝑍(𝑃)  indicates the normalized index (Krähenbühl and 
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Koltun, 2012). The rest of the paper drops the conditioning, i.e., 

denote 𝐸(𝑥|𝑃) as 𝐸(𝑥) for notational convenience. 

 

In the CRF model about graph 𝐺(𝑉, 𝐸), the corresponding Gibbs 

energy is formed as: 

 

               𝐸(𝑥) = ∑ 𝜓𝑢(𝑥𝑖)𝑖∈𝑉 + ∑ 𝜓𝑝(𝑥𝑖 , 𝑥𝑗)(𝑖,𝑗)∈𝐸                (2) 

 

where the unary term 𝜓𝑢(𝑥𝑖) measures the cost of assigning label 

𝑥𝑖  to the 𝑖-th point, and the pairwise term 𝜓𝑝(𝑥𝑖 , 𝑥𝑗) measures 

the cost of assigning labels 𝑥𝑖 , 𝑥𝑗  to neighbouring points 

𝑝𝑖 , 𝑝𝑗 (Figure 3). In this study, the unary term is defined as 

𝜓𝑢(𝑥𝑖) = −𝑙𝑛 (𝑝̂𝑖), where 𝑝̂𝑖 is the assignment label probability 

for 𝑖-th point predicted by the RF classifier (Section 3.4). 

 

The pairwise term integrates the spatial smooth relationship, 

which encourages assigning similar labels to the neighbouring 

points. It can be formulated as 

 

     𝜓𝑝(𝑥𝑖 , 𝑥𝑗) = 𝜇(𝑥𝑖 , 𝑥𝑗) ∑ 𝑤(𝑚)𝜅(𝑚)(𝑓𝑖 , 𝑓𝑗)𝐾
𝑚=1

= 𝜇(𝑥𝑖 , 𝑥𝑗)𝜅(𝑓𝑖 , 𝑓𝑗)
          (3) 

 

where the first term learns the penalty of global co-occurrence 

between any pair of labels, e.g., the output value of 𝜇(𝑥𝑖 , 𝑥𝑗) is 

large if 𝑥𝑖   and 𝑥𝑗  should not coexist as neighbouring. Each 𝑘(𝑚) 

is a kernel function that measures the distance between the 

feature pair (𝑓𝑖 , 𝑓𝑗) corresponding to the feature of 𝑖-th and 𝑗-th 

point respectively. Commonly, 𝜅(𝑚)  is usually defined as 

Gaussian kernel. Inference of 𝐸(𝑥) can be achieved with mean 

field algorithm (Zhang and Chen, 2012).  

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Experimental Data 

The test data includes both ALS and MLS point clouds which 

contain objects of different sizes and scanning densities. They are 

over the same region of Wuhan University, China. The MLS data 

with two blocks were manually labelled into the following seven 

classes: vegetation, building, car, pedestrian, lamp, fence and 

others. The ALS data, which is relatively sparser and more 

fragmented, was only divided into three classes (i.e., vegetation, 

building and car). Besides, all the ground points have been 

removed in advance. Each dataset is divided into two parts as 

shown in Figure 4. One part is for training while the other for 

testing. 

Figure 4. Experimental datasets. (a) and (b) are the MLS point clouds and (c) is the ALS point cloud. 

Each block is divided into two parts, P1 and P2, by a vertical plane shown with a dash line. P1 is for 

training and P2 for testing. 

(c) 

Vegetation Building Car Pedestrian Fence Lamp Others 

P2 

P2 

P2 

P1 

P1 

P1 

(a) (b) 

(a) 

(b) 

Figure 5. Classification results of the testing data. The first row shows the ground truth of the three testing 

sets; the second row represents the corresponding classification results with the proposed SegMSF. 
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(4) 

4.2 Experimental Results 

To adapt to the various sizes of objects, point cloud features with 

four scales are applied in this experiment. In addition, 

considering the difference of point densities and object sizes 

between the MLS and the ALS point clouds, different sizes of 

neighbourhoods are used for local geometrical feature extraction. 

Specifically, we set the radii for the MLS point cloud to be 0.25m, 

0.5m, 1m, and 2m. The radii for ALS point cloud are set to be 

0.5m, 1m, 2m, and 4m due to its relatively larger objects and 

sparser point density.  

 

For quantitative evaluation, three metrics including overall 

accuracy (OA), precision and recall over each class are applied. 

The three metrics are defined as follows: 

 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

where 𝑇𝑃, 𝐹𝑃, 𝑇𝑁 and 𝐹𝑁 is the number of true positives, false 

positives, true negatives and false negatives respectively. OA 

represents the overall performance of the classification results,  

recall indicates the completeness of each class, and precision is a 

measure of exactness or quality. 

  

Table 2 lists the quantitative results on three different testing sets. 

Overall accuracies greater than 90% and 83% have been achieved 

on ALS and MLS dataset respectively. The performance on ALS 

data is relatively higher than MLS data due to its sparser point 

density and simpler categories. Large-size objects (i.e., 

vegetation and buildings) always get higher classification 

accuracies than small-size objects (i.e., pedestrian and lamps). 

The poor accuracy on small-size objects is mainly caused by 

incomplete shapes and deficient training samples. The 

visualization of the classification results on the three datasets are 

shown in Figure 5. 

 

To demonstrate the advantages of this method, we compare it 

with MSNet (Wang et al, 2018) which used the same datasets as 

we did. As it indicated in Table 2, the proposed method can 

achieve higher overall accuracy on the MLS datasets. Obviously, 

this method has more robust classification ability for small 

objects (i.e., lamps and cars). Additionally, because the building 

walls are easily obscured by surrounding plants, the recalls of 

buildings are not high in the classification results of MSNet. 

However, in our method, this problem does not influence the 

classification results as the recalls of buildings are higher than 

88%. Thus it is concluded that the proposed method is able to 

adaptively characterize and classify all the objects in spite of 

various sizes and mutual occlusions among ground objects.  

 

4.3 Analysis and Discussion 

To further verify the effectiveness of the proposed method, we 

remove the supervoxel segmentation and only use the multi-scale 

geometrical features for classification. The experimental results 

are provided in Table 3. By comparison, the overall accuracies 

drop by 7.83%, 5.21% and 5.60% for the ALS, MLS (block I and 

block II) point clouds respectively. The mean recall and mean 

precision overall three datasets drop by 11.92% and 7.75%. 

Results show that the supervoxel segments serve as the clustering 

information which encourages the points lying on one plane to 

share the same class label. It complements the drawbacks of local 

geometrical features that are difficult to characterize the feature 

of points at the boundary of multiple objects or planes.  

 

5. CONCLUSION 

In this paper, we propose a novel point cloud classification 

approach, SegMSF, which combines the supervoxel 

segmentation results and the multi-scale features of each point 

for precise point cloud classification. It leverages both the 

advantages of the segmentation information and multi-scale 

features of point clouds. For one thing, it can accurately 

characterize the features of points at object boundaries. For 

another, it performs well on classifying objects of different scales 

Method Testing data 
Vegetation 

(%) 

Building    

(%) 

Car            

(%) 

Pedestrian 

(%) 

Lamp        

(%) 

Fence        

(%) 

Others     

(%) 

Overall 

accuracy 

(%) 

SegMSF 

MLS-I 91.73/90.06 61.67/94.13 94.31/61.96 0.14/0.14 31.92/46.33 76.36/77.18 0/0 83.48 

MLS- II 95.62/88.47 88.97/98.68 95.98/76.36 3.19/1.38 27.31/43.54 - 0/0 90.94 

ALS 91.52/94.93 93.72/89.93 67.22/43.73 - - - - 91.48 

MSNet 

MLS- I 88.88/96.21 93.11/52.13 56.5/93.57 - 85.02/38.21 99.8/58.77 0/0 83.18 

MLS- II 76.84/93.87  99.64/73.59 65.77/98.52 - 11.93/31.44 - 0/0 82.98 

ALS 92.38/97.81 96.55/89.88 0/0 - - - - 94.06 

- represents that there is no such kind of object in the data. 

Table 2. The precision/recall and overall accuracy of the test data with the proposed method and MSNet. 

 

Method 
Testing 

data 

Mean  

recall 

Mean 

precision 
Kappa 

Overall 

accuracy 

SegMSF 

MLS-I 61.85 59.36 0.719 83.48 

MLS-II 51.41 51.84 0.852 90.93 

ALS 76.20 84.15 0.848 92.41 

w/o 

segmentation 

MLS-I 49.20 46.35 0.627 78.27 

MLS-II 40.62 46.07 0.764 85.33 

ALS 63.89 78.68 0.695 84.58 

 Table 3. Classification results of test data with the proposed method. 
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and is robust to noise in the data. The method is tested on both 

ALS and MLS point cloud datasets. The experimental results 

show that the SegMSF method can get higher precision and recall 

rate in comparison to the traditional methods that without fusion, 

and achieve remarkable performance on three testing sets.  
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