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ABSTRACT: 

 

Terrestrial Laser Scanning (TLS) greatly facilitates the acquisition of detailed and accurate 3D measurements of remote rock 

outcrops, at an operational range from several meters to a few kilometres. Reliable, quantitative measures of rock discontinuity 

roughness are necessary to characterize and evaluate the mechanical and hydraulic behavior of the rock mass. The aim of this 

research is to investigate the TLS potential and limitations for a reliable estimation of small scale roughness. TLS data noise and 

resolution define the level of extractable morphological detail, and therefore need to be known and associated with roughness value. 

The stationary variant of Discrete Wavelet Transform (SWT) was applied to estimate TLS noise level and perform wavelet denoising 

in direction of range measurements. Denoised TLS data were compared to reference surfaces of decreasing resolution (reference 

grids) in order to define the size of extractable surface detail. Noise and resolution effect on rock surface roughness, wavelet 

denoising success and extractable roughness scale were investigated with comparative analyses of TLS and reference surfaces. The 

developed methodology enabled reasonable TLS noise estimation, improved capabilities of TLS for modelling fine features of an 

irregular rock surface, and indicated the surface scale that can be reliably extracted from the TLS data. 

 

 

1. INTRODUCTION 

Advantages of Terrestrial Laser Scanning (TLS) are 

acknowledged in many fields of geological engineering, since it 

permits an in-situ acquisition of a large and remote surface in a 

short period of time, and represents the 3D surface structure 

with a relatively dense and precise point cloud (e.g. Buckley et 

al., 2008). For in-situ roughness acquisition, traditional contact 

measurement techniques such as linear mechanical profiling 

using either a straight edge or a profile gauge, and compass and 

disc-clinometer method have been successfully replaced by TLS 

(e.g. Fardin et al., 2004; Khoshelham et al., 2011). Joint surface 

roughness refers to local departures of the actual surface from 

planarity or any higher order reference surface. Roughness can 

have a prevailing influence on the shear strength. However, the 

parameterization of roughness, to fully capture the influence of 

roughness on shear strength, remains a challenge; it needs to 

consider that roughness is direction and scale dependent 

(Rengers, 1970). Therefore, measurements need to performed in 

the anticipated shear direction and at the engineering scale of 

interest. Larger scale roughness features are referred to as 

waviness and represent surface irregularities with a wavelength 

greater than about 10 cm (Priest, 1993). Smaller scale features 

are referred to as unevenness and include finer features that are 

superimposed on the waviness. While decent results have been 

obtained in quantifying waviness (Fardin et al., 2004), finer 

details of unevenness have been hindered by TLS data precision 

and resolution.  

 

The data precision mainly depends on the inherent random 

range error (noise), which results in an overestimation of 

surface roughness (e.g. Kulatilake et al., 2006; Poropat, 2009; 

Khoshelham et al., 2011). We refer to this as the noise effect. 

TLS data resolution defined as the ability to distinguish surface 

details on adjacent line of sights (hereafter referred to as 

effective resolution) is a function of sampling interval and laser 

beam footprint size (Lichti and Jamtsho, 2006). Decreasing 

resolution, i.e. increasing the sampling interval, results in 

effective smoothing of discontinuity surface and therefore 

causes roughness underestimation; we refer to this as the 

resolution effect. Ignoring the variation of measurement 

resolution leads to misleading roughness estimation (Tatone and 

Grasselli, 2012). TLS noise and effective sampling interval 

increase with the scanning range and incidence angle. In 

general, it is neither possible to extract surface features that 

have an amplitude smaller than the TLS noise, nor features that 

are smaller than twice the data resolution (Nyquist theorem). 

 

The aim of this research is to analyse effects of TLS noise and 

resolution on rock discontinuity roughness as a function of 

range. The objectives are to: 

 Estimate and eliminate TLS noise using an advanced signal 

processing technique, the wavelet transform, to enable 

precise and detailed roughness estimation. The challenge of 

wavelet denoising is to eliminate noise, but preserve surface 

details. 

 Investigate TLS effective resolution in relation to irregular 

rock surface and define the size of the smallest surface 

detail extractable from denoised surfaces. 

 

2. TLS NOISE ESTIMATION AND ELIMINATION 

TLS noise, defined among others in (Soudarissanane et al., 

2011), can be estimated empirically by (i) scanning an object 

with known geometric properties, as for example a uniform 

plane (Vezočnik and Bitenc, 2011), cylinder or sphere, (ii) 

applying modeling strategies for TLS 3D point clouds (Gordon 

and Lichti, 2007), or (iii) using reference measurements or a 

model; or theoretically by using the random error propagation 

law (Hartzell et al., 2015; Mikhail, 1976). The range error has 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-935-2019 | © Authors 2019. CC BY 4.0 License.

 
935



 

been modelled as a function of local scanning geometry (range 

and incidence angle) and TLS specifications (beam width) 

(Soudarissanane et al., 2011) or as a function of backscattered 

signal strength (Wujanz et al., 2017). 

 

Noise has typically been removed by surface interpolation 

techniques such as averaging the TLS range measurements 

(Schulz et al., 2008), orthogonal least squares (Fardin et al., 

2004; Pollyea and Fairley, 2011), the robust interpolation 

method RANSAC (Grasselli et al., 2002) or Fast Radial Basis 

Function (Rahman et al., 2006; Tesfamariam, 2007). 

Interpolation methods improve the positional accuracy of 

simple surfaces that can be approximated with planes but 

smooth out topographic details of irregular rock surfaces. 

Reducing the spatial complexity of a 3D randomly scattered 

point cloud by gridding to a regular 2.5D mesh, a wide range of 

image processing algorithms can be applied (Buades et al., 

2005; Salmon, 2010; Smigiel et al., 2011; Zhang et al., 2014). 

To improve surface roughness estimation, previous researchers 

investigated a transforming domain filtering method, namely the 

DWT (Bitenc et al., 2015a, 2015b, 2019; Khoshelham et al., 

2011), and a spatial (pixel) domain filtering method, namely the 

Non-Local Mean (NLM) (Bitenc et al., 2016; Smigiel et al., 

2011). Prior research has focused on denoising in a direction 

perpendicular to the best fit plane. However, denoising in the 

range direction (hereafter referred to as range denoising) is 

considered preferable (Schulz et al., 2008; Smigiel et al., 2011), 

since noise mainly relates to the range. In this research, the TLS 

noise is estimated and eliminated in the range measurement 

direction by applying DWT. Details on the wavelet denoising 

can be found in numerous literature, among others in (Donoho, 

1995). Based on our previous research (Bitenc et al., 2019), the 

optimal choices for DWT method and threshold value are as 

follows.  

 

An undecimated version of DWT, referred to as the Stationary 

Wavelet Transform, or SWT (Buades et al., 2004; Coifman and 

Donoho, 1995) has been chosen. It is shift invariant, provides 

more precise information regarding frequency localization, 

enables direct correlation of the space scale to the original data, 

reduces the overshoot and undershoot of the signal near 

discontinuities (Buades et al., 2004) and shows superior 

performance for image denoising (Gyaourova et al., 2002; 

Starck et al., 2004). For denoising rock surfaces in range 

direction, 2D SWT is used, where the input signal is a 2.5D grid 

of range values (a range image).  

 

The optimal threshold value (T) is a key to successful wavelet 

denoising, and is in general calculated as: 

 

𝑇 = 𝜎 × 𝑇0 (1) 

 

where 𝜎 is the standard deviation of the noise and 𝑇0 is the 

threshold chosen according to one of the threshold selection 

methods for a signal model including white noise (𝜎  = 1). The 

global penalised (Birgé and Massart, 1997) threshold selection 

methods is applied, setting its adjustable (sparsity) parameter to 

6.5 (penalized high). Higher sparsity parameter returns higher 

threshold, thus more coefficients are eliminated resulting in a 

sparser (smoother) signal representation. The threshold is 

applied in hard mode, following previous findings that hard 

thresholding is more suitable for rock surface roughness 

estimation than soft thresholding (Bitenc et al., 2015a; 

Khoshelham et al., 2011) 

 

Considering the statistical property of the DWT that transforms 

white noise of the input data into white noise of the output data, 

the actual noise can be estimated from the variance of detail 

coefficients on level j, 𝑐𝐷𝑗, corresponding to the noise. The first 

level detail coefficients, 𝑐𝐷1, having the finest scale and being 

least decimated, are often considered as noise coefficients. 

Therefore, a robust standard deviation of 𝑐𝐷1, referred to as the 

Median Absolute Deviation (MAD), is used to estimate the 

noise 𝜎𝑒 as (Donoho and Johnstone, 1995): 

 

𝜎𝑒 = median(|𝑐𝐷1|) 0.6745⁄  (2) 

 

The experiment with simulated TLS data, when a random 

Gaussian noise has been added to the reference data, has shown 

that the 𝜎𝑒 equals the known noise level (Bitenc et al., 2015a). 

The investigation of 𝜎𝑒 dependency on the recorded intensity 

(Bitenc et al., 2019), has confirmed the one term power model 

as developed in (Wujanz et al., 2017); 𝜎𝑒 is inversely 

proportional to the mean intensity and tends to increase with the 

range. The advantage of 𝜎𝑒 is, it can be estimated from raw TLS 

data. 

 

3. TLS EFFECTIVE RESOLUTION 

TLS effective resolution is defined as the level of detail or the 

size of an object that can be distinguished in the angular 

direction (perpendicular to the line of sight). A very high point 

density can be achieved by repeating the scans or by decreasing 

the angular sampling interval. Such measurements result in 

correlated sampling (overlapping footprints), which yields a 

high Nyquist frequency, but do not improve the effective 

resolution. Besides the angular sampling interval Δ, the 

footprint size δ has a large impact on the effective resolution 

(Lichti and Gordon, 2004). Δ is usually given in scanner 

specifications, whereas the complete information on δ is usually 

missing. Neglecting internal processing of laser beam, since it is 

often not known, the calculation of δ for long ranges R, when 

linear dispersion of the laser beam can be assumed, and for 

perpendicular scanning direction (α = 0º) is simplified to (Lichti 

and Jamtsho, 2006): 

 

𝛿 [𝑚𝑚] = 𝑅 [𝑚] ×  𝛽 [𝑚𝑟𝑎𝑑] + 𝛽0 [𝑚𝑚], (3) 

 

where 𝛽 is the beam divergence given in mili radians and 𝛽0 is 

the opening aperture. 

 

An Average Modulation Transfer Function (AMTF) was used 

to model the positional uncertainty of TLS angle measurements 

due to the Δ, δ and angle quantization and a new measure for 

effective resolution called Effective Instantaneous Field Of 

View (EIFOV) was derived (Lichti and Jamtsho, 2006). 

Resulting EIFOV was much coarser than the specified smallest 

Δ, pointing out the necessity to consider the δ. Contribution of 

the angle quantization was minor and could be neglected. 

Analysing TLS data acquired on a test target comprising small 

blocks separated for a certain gap, the EIFOV value was found 

to be too pessimistic (Pesci et al., 2011). In their conclusions, a 

gap larger than one third of δ, calculated after Eq. (3), could be 

extracted. However, when observing details of complex 

surfaces (e.g. building facade), the sampling interval should 

have been smaller than in case of gaps between blocks. 

 

These findings suggest that the effective resolution is an 

application dependent measure and should be defined in 

accordance with the surface detail of interest. Observing details 

that can be approximated with simple geometric shapes (e.g. 

lines or planes), this additional geometric information increases 

the effective resolution compared to a case of extracting details 

on an irregular and complex surface. An empirical method is 
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developed here, were a TLS surface acquired at certain range 

and assumed to be noise free is compared to reference surfaces 

of changing resolution. The effective resolution or the size of 

the smallest extractable rock surface detail λmin equals the 

reference resolution, for which the surfaces are the most similar. 

 

4. EXPERIMENTS AND RESULTS 

The experiments described below were conducted to estimate 

noise from the TLS data and eliminate it, and to define the size 

of the smallest extractable surface detail, assuming that the 

noise was successfully removed. 

 

4.1 Data acquisition 

The terrestrial laser scanner Riegl VZ400 and the optical 3D 

coordinate measuring sensor GOM ATOS I were employed for 

data collection (Fig. 1). Key technical specifications of these 

sensors are summarized in Table 1.  

 

 
Fig. 1. The Riegl VZ400 (left) and GOM ATOS I (right) 

measurement set-ups 

 

 Riegl VZ400 GOM ATOS I 

Measurement 

range 
1.5 to 500 m 1 0.65 to 1 m 

Precision / 

accuracy 
3 mm / 5 mm 

0.007 to 0.07 

mm / Unknown 

Spot or pixel size 
6.5 mm beam aperture 

+ 0.3 mrad divergence 
0.04 to 1 mm 

Point spacing min. 0.0024º 0.04 to 1 mm 

Measurement rate 

[points /s] 

42 k (long range) or 

122 k (high speed) 
1000 k 

Measuring FOV or 

area 
360º × 100º 

30 × 40 mm to 

1000 × 800 mm 
1 at 80 % reflectivity 

Table 1. Specifications of Riegl VZ400 and GOM ATOS I. 

 

The four rock samples comprising the experimental data set are 

shown in Fig. 2. For each sample the TLS scans were acquired 

at 10 m intervals in the range of 10 m to 60 m, denoted by Rk 

(k=1..6). The scanning resolution on the rock surface ranged 

from approximately 0.2 to 2 mm. For a filtered 3D point cloud, 

Cartesian (X,Y,Z) and polar (Φ,Θ,R) coordinates along with raw 

intensity values were exported in the scanner coordinate system. 

 

 
Fig. 2. Rock samples, 20 x 30 cm in plan dimensions and 

mounted to a wooden board 

 

ATOS data were acquired at a range of approximately 0.7 m in 

an indoor laboratory environment. To eliminate the influence of 

data resolution on roughness comparisons, the high ATOS point 

density was reduced to the TLS point density of approximately 

1 point / mm2 using the subsample tool in CloudCompare 

(CloudCompare, 2018).  

 

Four targets were established on the sample mounting board in 

order to co-register the TLS and ATOS data. High precision 

TLS target centers were measured in the point cloud by 

applying an algorithm based on image matching (Kregar et al., 

2013) and ATOS target centres were identified automatically 

with built-in software. 

 

4.2 Data processing 

For TLS noise estimation and 2D wavelet denoising in range 

direction, randomly scattered TLS points (Φ,Θ,R) were 

interpolated into a regular grid (range image) with an angular 

spacing equal to 1 mm at the corresponding scanning range. The 

range value was interpolated using the Nearest Neighbour (NN) 

method. Range image was decomposed with SWT, applying the 

most general and widely used Daubechies wavelet db3. The 

number of decomposition levels was determined according to 

the range image size and was set to 3. First level detail 

coefficients 𝑐𝐷1 were used to estimate the noise σe after Eq. (2). 

Further, the SWT detail coefficients were thresholded in the 

hard mode with the global penalized high threshold. Range 

denoised images were transformed to Cartesian coordinates. 

The TLS data, noisy and range denoised, and the ATOS data 

were then co-registered in a common coordinate system, which 

was defined by the targets on the wooden board, and point 

clouds within an identical rectangular area were used for 

roughness comparisons. 

 

The empirical roughness parameter developed by Grasselli 

(2001), hereafter referred to as the Grasselli parameter, has been 

adopted in this research, since it quantifies the direction 

dependence of roughness, is applicable to rock surfaces 

presented in 2.5D, and is least sensitive to data noise (Bitenc et 

al., 2015c). It was calculated for 72 analysis directions (γi, 

i=1…72). The accuracy of roughness estimates was judged by 

comparing the Grasselli parameters, Gk, of noisy and denoised 

TLS surfaces acquired at Rk to Grasselli parameter, GATOS, for 

the ATOS data. A mean relative difference across all analysis 

directions was calculated as:  

 

𝑒𝑟𝑟𝑜𝑟𝑘  [%] =
1

72
∑ (

𝐺𝑘 − 𝐺𝐴𝑇𝑂𝑆

𝐺𝐴𝑇𝑂𝑆
)

𝛾𝑖

× 100 

72

𝑖=1

 (4) 

 

For effective resolution analysis, ATOS data were interpolated 

with NN method into 17 reference grids with grid sizes λj 

(j=1…17) increasing from 0.5 mm to 47, 49 and 53 mm, for 

samples 0727, 0934 and 0936, and 1309, respectively. For each 

sample, λj were defined such that all grids covered the same 

area. Reference grids simulate the TLS data of changing 

effective resolution.  

To estimate the smallest extractable surface detail size λmin, the 

denoised TLS surfaces smoothed out due to the unknown 

effective resolution were compared to each reference grid. The 

λj, for which the surfaces were the most similar, represents λmin. 

The investigated similarity measures were the: 

a) height differences Δ𝑍𝑘,𝑗 between denoised TLS point clouds 

and reference grids, and 

b) mean relative differences 𝑒𝑟𝑟𝑜𝑟𝑘,𝑗   of Grasselli parameters 

calculated for reference grids, Gj, and Gk, which is expressed 

as: 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-935-2019 | © Authors 2019. CC BY 4.0 License.

 
937



 

𝑒𝑟𝑟𝑜𝑟𝑘,𝑗  [%] =
1

72
∑ (

𝐺𝑘 − 𝐺𝑗

𝐺𝑗
)

𝛾𝑖

× 100 

72

𝑖=1

 (5) 

 

We assumed that λj when the 𝑒𝑟𝑟𝑜𝑟𝑘,𝑗  equals zero or the 

standard deviation of Δ𝑍𝑘,𝑗 , std(𝛥𝑍𝑘,𝑗), reaches its minimum, 

represents the λmin at the Rk. A linear functional relationship 

between λmin values, calculated for both similarity measures, and 

EIFOV, calculated for Δ = 1 mm and δ obtained after Eq. (2), 

was analysed. 

 

4.3 Results and discussion 

The main results concerning TLS noise and resolution effect on 

Grasselli parameter, noise estimation and elimination, and 

effective resolution analysis are summarized below. 

 

4.3.1 TLS noise and resolution effect. The Grasselli 

parameter was computed for reference ATOS data (GATOS) in 

order to obtain an insight into the sample roughness 

characteristics and facilitate roughness comparisons. Table 2 

summarizes the approximate size of the analysed area, and 

median and robust standard deviation (robust STD) values of 

GATOS for all analysis directions. Sample 1309 is the roughest, 

with the median value almost three times higher than for the 

smoothest sample 0727. Sample 1309 also has the least 

variability with analysis direction as indicated by the low robust 

STD. The robust STD for sample 0936 shows the highest 

roughness anisotropy. 

 

Sample 
Analyzed area  

[mm] 

Median ± robust STD GATOS 

[º] 

0727 203 × 143 7.6 ± 2.5 

0934 244 × 148 11.8 ± 3.2 

0936 217 × 147 14.3 ± 5.7 

1309 214 × 161 23.4 ± 0.8 

Table 2. The size of analysed area, and the median and robust 

STD of reference ATOS Grasselli parameters (GATOS) calculated 

for 72 analysis directions 

 

To study the TLS noise and resolution effect on Grasselli 

parameter as a function of R, the 𝑒𝑟𝑟𝑜𝑟𝑘 was calculated for TLS 

noisy surfaces and is shown in Fig. 3.  

 

 
Fig. 3. Mean relative difference of Grasselli parameters 

(𝑒𝑟𝑟𝑜𝑟𝑘) for noisy TLS surfaces of the four samples versus 

range 

 

The Grasselli parameter is systematically overestimated for all 

four samples. Effects depend on surface reflectivity and 

roughness, and R. The darkest and smoothest sample 0727 is 

most severely influenced by the noise, while the bright and 

roughest sample 1309 is least influenced. For sample 0727, the 

𝑒𝑟𝑟𝑜𝑟𝑘 increases with the R, which is not the case for sample 

1309; its noise effect is balanced with the smoothing effect that 

results from decreasing effective resolution with increasing R. 

The 𝑒𝑟𝑟𝑜𝑟𝑘 for samples 0727 and 1309 range from 

approximately 590 to 850% and 105 to 130 %, respectively.  

 

4.3.2 Noise estimation: The dependency of the 𝜎𝑒, estimated 

using Eq. (2), on R is shown in Fig. 4. For all samples, 𝜎𝑒 tends 

to increase with the R. Exception is the low 𝜎𝑒 for sample 1309 

scanned at 60 m. Possible reason for this anomaly includes the 

low original point density of 2 mm compared to 1 mm range 

image pixel size. The 𝜎𝑒 is higher for darker rock surfaces of 

samples 0727 and 0934, because of lower backscattered 

intensity, than for the brighter samples 0936 and 1309 (Bitenc et 

al., 2019). 

 

 
Fig. 4. Estimated noise, σe, for the four rock samples versus 

range 

 

4.3.3 Noise elimination: The success of range denoising 

using SWT with global penalised high threshold is shown in 

Fig. 5. For all samples, a considerable amount of noise is 

removed, compared to the 𝑒𝑟𝑟𝑜𝑟𝑘 of noisy TLS surfaces shown 

in Fig. 3. The applied wavelet denoising method successfully 

removes the noise for samples 0727 and 0934; the 𝑒𝑟𝑟𝑜𝑟𝑘 is 

within 12 and 28%. The Grasselli parameter of sample 0936 is 

overestimated up to 39% and underestimated for more than 

31%, for smaller R (10 m) and larger R (50 and 60 m), 

respectively. For the roughest sample 1309, the Grasselli 

parameter is underestimated up to 57%. Possible reasons for 

underestimated roughness of rougher samples 0936 and 1309 

scanned from longer ranges are firstly, high thresholds remove 

also some surface details and secondly, the effective resolution, 

which decreases with the R, additionally smoothes surface 

details. High 𝑒𝑟𝑟𝑜𝑟𝑘 for sample 0936 scanned from 10 m could 

be a result of higher noise due to the strong reflection (Bitenc et 

al., 2019). 

 

 
Fig. 5. Mean relative difference of Grasselli parameters 

(𝑒𝑟𝑟𝑜𝑟𝑘) for range denoised TLS surfaces using SWT with 

global penalised high threshold of the four samples versus range 
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R 

m 

δ 

mm 

EIFOV 

mm 

λmin1 [mm] λmin2 [mm] 

0727 0934 0936 1309 0727 0934 0936 1309 

10 10 8.6 0.9 3.9 NaN 0.9 5.9 4.1 4.1 2.5 

20 13 11.2 2.7 1.6 1.1 4.7 5.9 4.1 4.9 4.1 

30 16 13.8 2.7 10.4 2.8 7.8 5.9 5.4 5.4 5.9 

40 19 16.4 2.9 14.3 5.1 12.6 7.8 9.8 8.2 7.6 

50 22 18.9 1.4 15.1 8.9 15.5 7.8 12.3 12.3 7.6 

60 25 21.5 1.1 17.4 13.1 6.7 15.7 12.3 9.8 10.6 

Table 3. Footprint size δ, EIFOV and λmin values for similarity measures 𝑒𝑟𝑟𝑜𝑟𝑘,𝑗  and std(Δ𝑍𝑘,𝑗) as a function of scanning range R 

 

 

4.3.4 Effective resolution estimation: TLS effective 

resolution in regard to irregular surface detail extraction is 

studied by calculating similarity measures 𝑒𝑟𝑟𝑜𝑟𝑘,𝑗  and 

std(Δ𝑍𝑘,𝑗) for denoised TLS surfaces acquired at scanning 

ranges Rk and reference grid sizes λj. The similarity measures 

for the roughest sample 1309, which comprehends surface 

details on different scales, are shown in Fig. 6, as representative 

values for the other three samples. 

 

𝑒𝑟𝑟𝑜𝑟𝑘,𝑗  is negative for smaller λj and positive for larger; this is, 

the Grasselli parameter of TLS denoised surfaces is 

underestimated and overestimated compared to reference grids 

of smaller and larger λj, respectively. For each Rk, the grid size 

for 𝑒𝑟𝑟𝑜𝑟𝑘,𝑗 = 0 is interpolated, which then represents the λmin 

(denoted by λmin1). 

 

  
(a) (b) 

Fig. 6. Representative similarity measures for sample 1309 

versus grid size, λj (a) Mean relative difference of Grasselli 

parameters, 𝑒𝑟𝑟𝑜𝑟𝑘,𝑗, and (b) standard deviation of height 

differences, std(Δ𝑍𝑘,𝑗) 

 

The std(𝛥𝑍𝑘,𝑗) is relatively constant for smaller λj and steeply 

increases for larger λj. The λj when the std(𝛥𝑍𝑘,𝑗) reaches its 

global minimum is taken as the λmin at Rk (denoted by λmin2). 

Values λmin1 and λmin2 are summarised for all four samples in 

Table 3, where also the theoretical values of δ and EIFOV are 

given with respect to R. 

 

λmin1 shows the expected behavior for samples 0934, 0936 and 

1309; it mostly increases with the R. The outliers appear for 

sample 0934 and 0936 at 10 m, and sample 1309 at 60 m, when 

the λmin1 is too large, could not be defined since the 𝑒𝑟𝑟𝑜𝑟1,𝑗 

does not reach zero and is too small, respectively. The outlier of 

sample 1309 can be explained with denoising results shown in 

Fig. 5. The surface is not thresholded high enough and stays 

rougher than expected resulting in smaller λmin1  

λmin2 increases with R for all samples, except for 0936 at 60 m. 

It is the smallest for the roughest sample 1309 at almost all R, 

since this sample comprehends the smallest details. 

 

The expectation that λmin at certain R is similar for all samples, 

if they comprehend details of similar scale, is partly met for 

λmin2 values, whereas λmin1 values when Grasselli parameters are 

compared vary a lot among samples. The reason is the 

sensitivity of Grasselli parameter to surface representation, thus 

to remnants of TLS noise and wavelet denoising artefacts 

(Bitenc et al., 2015a; Donoho and Johnstone, 1995).  

 

To study a functional relationship between known theoretical 

and in this research developed empirical estimate of effective 

resolution, in Fig. 7, λmin1 and λmin2 are plotted versus EIFOV, 

and a linear regression curve (𝑦 =  𝑝1 × 𝑥 + 𝑝2). The goodness 

of fit, the coefficient of determination ρ2, and the parameters of 

linear model (slope p1 and intercept p2) are written in Table 4. 

 

  
(a) (b) 

Fig. 7. Smallest extractable detail size λmin versus EIFOV (a) 

λmin1 and (b) λmin2 

 

λmin2 shows stronger linear relation to EIFOV, this is having 

higher ρ2 then λmin1. Therefore λmin2 can be considered as a more 

reliable measure of effective resolution on irregular surface. For 

the analysed R from 10 to 60 m, λmin is smaller than EIFOV. 

Shorter is the R, more pessimistic is the theoretical value 

EIFOV. 

 

 λmin1 λmin2 

ρ2 0.9771 0.9813 

p1 0.3195 0.7183 

p2 12.87 9.509 

Table 4. Coefficients of determination, ρ2, and parameters of 

fitted curves (𝑦 =  𝑝1 × 𝑥 + 𝑝2) shown in Fig. 7 

 

 

5. CONCLUSIONS 

In this paper TLS potential and limitations for detailed and 

reliable rock discontinuity roughness estimation were 

investigated; this is the noise and resolution effect were 

analysed. The noise was successfully estimated and removed in 

the direction of range measurements applying Stationary 

Wavelet Transform (SWT) with penalised high threshold. An 

empirical method was developed to obtain the size of the 

smallest surface detail extractable from TLS data. This size was 

related to the theoretical value of effective resolution, the 

EIFOV. 

 

By systematically comparing reference ATOS surfaces to 

original and denoised TLS surfaces, the influence of TLS data 

noise and resolution have been quantified, and the success of 
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wavelet denoising has been demonstrated. The analyses have 

shown a high roughness over-estimation due to the TLS noise, 

especially for smoother surfaces. By applying wavelet denoising 

procedures, TLS data were substantially improved and more 

reliable estimates of rock surface roughness were obtained. 

However, the success highly depends on the threshold value 

with respect to surface roughness. Further study on optimal 

threshold value is needed. 

 

The TLS range noise is not precisely known a priori and 

depends on surface reflectivity and scanning geometry. In this 

research the noise, σe, was estimated with the Median Absolute 

Deviation of the first level detail coefficients obtained from the 

SWT of range images. Additional testing of σe in regard to a 

known range noise would be beneficial, in order to rely on σe 

values. 

 

For effective resolution analysis we assumed negligible 

smoothing effect of wavelet denoising and noise free TLS 

surface. However, the applied wavelet denoising method leaves 

some outliers (spikes) in surfaces, which should be removed 

with additional filtering step. 

 

Comparative analysis of denoised TLS surfaces with the 

reference surfaces of known resolution quantified the smallest 

extractable detail on irregular rock surface, λmin. Analyzing 

similarity of Grasselli parameters and height differences, the 

later measure resulted in more reliable estimates of λmin. This 

empirically estimated effective resolution was related to 

theoretical value EIFOV and the EIFOV was found to be too 

pesimistic, especially for shorter ranges. In the futur, other 

similarity measures, as wavelet coherence, could be tested and 

the methodology should be approved on a larger set of TLS 

data, including longer ranges. 
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