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ABSTRACT: 

 

Information obtained from LiDAR data processing is considered in a variety of applications, among them urban planning. In this 

context, buildings play a substantial role, since a high percentage of the urban landscape is occupied by them. In the literature, many 

methodologies have been developed aiming at the detection of building using remote sensing data. The approaches can be developed 

by applying different ideas: regularity of cluster boundary, plane fitting, radiometric data and also in geometric attribute derived from 

LiDAR. This paper proposes a method of building detection based on the use of the entropy concept and the K-means algorithm in 

which the training step is dispensed with. The experiments were performed considering two LiDAR datasets with different densities 

(12.5 pts/m2 and 4 pts/m2). Visual and qualitative analysis enabled verification of the potential of the proposed method, which presented 

satisfactory results for both datasets. 

 

1. INTRODUCTION 

The point cloud derived from airborne LASER scanning (ALS) 

systems, also known as LiDAR data, can be used to obtain and 

maintain accurate and up-to-date cartographic products. The 

geographic information system (GIS) is an example as it is 

applied in several contexts, for instance, urban planning, 

telecommunications networks planning, surveillance and 

transportation and evaluation of damage caused by natural 

disasters. In urban planning, buildings play a major role, since 

they occupy a high percentage of the urban area. Considering 

these aspects, automatic and semi-automatic building extraction 

have been explored by many authors (Kim and Habib, 2009, Dal 

Poz et al., 2009, Awrangjeb, 2016, Gavankar and Ghosh, 2018, 

Santos et al., 2019). 

 

An important task in this area is related to obtaining the set of 

points related to each building, which is usually performed by 

means of region growing and RANSAC. This is commonly 

carried out over non-ground points: buildings, vegetation, among 

other high objects. In the face of the variety of objects, the 

derived result is composed of building and non-building clusters, 

the last usually being formed by vegetation points. When the aim 

is detection, extraction and reconstruction of building, 

identifying which are the building clusters is essential. 

 

The identification of cluster types can be performed by analyzing 

the boundary shape of each cluster, as seen in Galvanin and Dal 

Poz (2012). In this case, it is assumed that building boundaries 

have a certain regularity, being formed by right-angled corners, 

unlike vegetation contours. The limitation is related to boundary 

extraction, since this operation is influenced by  point density and 

the thresholds considered, as mentioned in Santos et al. (2019).  

 

Another approach consists in adjusting planar surfaces using the 

magnitude of normal position vector (Kim et al, 2016) or 
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adjusting planes to the points of each cluster (Carrilho and Galo, 

2018). In this case, it is assumed that the building is represented 

by a plane, or set of inclined planes, whereas vegetation is formed 

by several small planes with different orientations. Despite being 

robust to noise, this approach can present problems in identifying 

buildings composed of curved roofs.  

 

In addition, radiometric data can be explored in the identification 

process (Uzar and Yastikl, 2013). However, not all LiDAR 

surveys are accompanied by radiometric data. Alternatively, 

geometric attributes calculated from LiDAR data can be applied 

(Ramiya et al., 2017). In this case, the final result is directly 

dependent on the estimated attributes and thresholds used to 

separate the classes. 

 

In this work, a method for detecting building clusters based on a 

geometry attribute computed from LiDAR is proposed. With this 

in mind, a different approach for the calculation of the entropy 

attribute is proposed, since an average value for each generated 

cluster is estimated. Considering that most of the grouping 

corresponds to buildings or trees, it can be expected that building 

clusters present a low entropy, and non-building clusters a high 

entropy due to multiple returns in the vegetation. The 

identification of building clusters is automatically performed 

using the K-means algorithm. The main contribution of this work 

consists in the proposal of a simple and automatic building 

identification method, dispensing with the need for training data. 

 

2. METHOD 

Figure 1 presents a simplified flowchart of the proposed method. 

In general, the method is divided into three mains steps: pre-

processing, region growing and cluster building detection. The 

LiDAR point cloud corresponds to input data, whereas the output 

is represented by building and non-building clusters. 
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Figure 1. Flowchart of proposed method. 

 

2.1 Outlier Detection 

The LiDAR point cloud may contain outliers due to external 

factors present in the scene. The outlying points can be caused by 

LASER returns from objects near the scanning system, such as 

birds or small unmanned aircraft, and due to the multipath 

trajectory of the LASER pulse. According to Ben-Gal (2005), the 

outlying observations may lead to incorrect results. It is therefore 

essential to detect and eliminate them in a pre-processing step. 

 

In this paper, the method proposed by Carrilho et al. (2018), 

designated as cell histogram filter (CH filter), was used to 

perform the outlier detection. The identification process is 

executed by means of height histogram analysis. In this context, 

the outlier points are detected using a pre-established frequency 

threshold (Tf). 

 

2.2 Filtering 

Filtering techniques are used to identify the ground and non-

ground points (vegetation, buildings and other high objects). This 

process can be designed from combination of different elements 

(Sithole and Vosselman, 2004): data structure, neighborhood 

definition criteria, measure of discontinuity, filter concept, 

control mechanism (single step vs. iterative), filtering nature 

(replacement vs. culling), and using first pulse and reflectance 

data. 

 

The method proposed by Axelsson (2000) was applied to carry 

out the filtering process. It is an iterative approach and works in 

the raw point cloud. Considering the neighborhood minima 

criterion, a sparse TIN is obtained and, in sequence, this point set 

is progressively densified to the LiDAR point cloud. One point 

at a time for each iteration in each TIN facet is added if it meets 

the criteria based on the calculated threshold parameters. The 

parameters are the distances to the facet planes, and the angles to 

the nodes. The threshold parameters are estimated at each 

iteration considering the available data, and the iterative process 

ends when there is no point below the thresholds. The progressive 

TIN densification (Axelsson, 2000) is implemented in the 

lasground tool of LAStools software 

(http://rapidlasso.com/lastools/). In this work, this tool was 

applied to select the non-ground points. 

 

2.3 Segmentation 

According to Kwak and Habib (2014), segmentation techniques 

can be categorized in two approaches: region growing in the 

spatial domain and in the parameter (attribute) space. In the first, 

seed points are needed, the candidate points that satisfy a pre-

established proximity criterion being attached to them. The 

second approach is implemented in the parameter space and 

consists of grouping points that have similar attributes.  

 

In this paper, the region growing was performed in the spatial 

domain, being based on an approach similar to that presented by 

Sampath and Shan (2007). The process is executed in three-

dimensional space, considering the non-ground points in the 

original point cloud, and not the points in a grid domain as 

performed by Oliveira and Galo (2017). Also, two thresholds are 

adopted to obtain individual clusters at the region growing stage: 

planimetric distance (TDxy) and altimetric distance (TDh). The set 

of points that belong to the same grouping are stored in array B, 

which is initially null. The steps involved in the segmentation are 

presented below: 

Step 1: The input data are stored in array S = [Po P1 … Pn]. 

Step 2: The first point of S (Po) is adopted as seed point. 

Step 3: Center a sphere of radius R at the point and collect all 

points G = [rP1 rP2 … rPm] that fall within this sphere. 

 

R = [(LDxy)2 + (LDh)2]1/2                   (1) 

 

Step 4: Verification of the closeness criteria is performed 

considering points located inside the sphere. The points that 

satisfy the criteria (Equations 1 and 2) are stored in array 

A = [cP1 cP2 … cPk]. 

 

[(xi – xc)2 + (yi – yc)2]1/2 < TDxy          (2) 

 

|zi – zc| < TDh                         (3) 

 

where xi, yi and zi are coordinates of the i-th point inside the 

sphere; xc, yc and zc are coordinates of the sphere center. 

Step 5: Move the sphere center to cP1. 

Step 6: Collect the points that satisfy the closeness criteria 

and store them in a temporary array, T = [tP1 tP2 … tPi]. 

Step 7: Move the sphere center to point cP2. Append the 

newly collected points to array T, and in this process make 

sure that no two points are identical. 

Step 8: Continue the process until the sphere has been placed 

over all the points in set A. 

Step 9: Merge points in A and T, and store them in B 

(B = {B U A U T}). 

Step 10: Replace points in A with points in T so that the 

newly populated set A is equivalent to {T ⊄ A} 

Step 11: Go back to Step 5, if at least one new point is added 

in B. Otherwise, go to Step 12.  

Step 12: When no point is added to set B, array S needs to be 

updated. The new array S is obtained by S = {S-B}. Go back 

to Step 2. 

Step 13: Stop when there are no more points in S. 

In order to eliminate small clusters, a criterion based on number 

of points is considered and segmented clusters containing less 

than TNp points are excluded. The threshold TNp is automatically 

computed considering the area of the smallest building to be 

represented (Armin) and average point density (davg). 

 

 TNp = Armin . davg                                   (4) 

LiDAR 

data 

Outlier detection 

Filtering  Ground 

Non-ground 

Region growing 

Estimantion of average entropy 

K-means algorithm 

Building Non-building 
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2.4 Cluster Building Detection 

In this work, the entropy concept is explored to describe the 

cluster characteristics. For this purpose, an average entropy value 

is estimated for each cluster (Ec). The value of Ec is obtained from 

the arithmetic mean of entropy values estimated for each point of 

grouping (Ei), as can be seen in Equation 5. The estimated 

entropy value for a point i is calculated from Equation 6 

(Shannon, 1948, and Weinmann et al., 2015). 

 

            Ec = n-1ƩEi                i=1, 2,…n      (5) 

 

Ei = -Lλ ln(Lλ) - Pλ ln(Pλ) - Sλ ln(Sλ)                (6) 

 

where: 

 

Lλ = (λ1- λ2)/ λ1                                  (7) 

 

Pλ = (λ2- λ3)/ λ1                                  (8) 

 

Sλ = λ3/ λ1                                        (9) 

 

correspond to linearity (Lλ), planarity (Pλ) and scattering (Sλ), 

estimated from the eigenvalues λ1, λ2 and λ3 considering the 

following ordering λ1 ≥ λ2 ≥ λ3., as can be seen in Gross and 

Thoennessen (2006), Weinmann et al. (2015), and Weinmann et 

al. (2017). 

 

The eigenvalues are determined from the variance-covariance 

matrix (SX), which is computed by means of the interest point and 

its neighbors (Equation 10). The neighborhood is defined by the 

nearest N points, N being obtained from the average point cloud 

density (davg) and the area of the smallest element to be 

represented (Armin), similar to the formulation used for estimate 

TNP (Equation 4). 

 

SX = N-1 Ʃ Xj Xj
T – mX mX

T                     (10) 

 

mX = N-1 Ʃ Xj                                (11) 

 

where: 

mX – Vector of mean values; 

Xj – Vector of the 3D coordinates (X, Y, Z), being j=1, 2, …, N.  

 

Considering the average entropy values as input data, the next 

step consists of separating the clusters into two classes: buildings 

and non-buildings, using the K-means algorithm. This is an 

unsupervised classifier, the centroids being defined iteratively, as 

can be seen in Johnson and Wichern (2007), and Santos and Galo 

(2018). To perform the separation into two classes, the Euclidean 

distance in one-dimensional space was adopted as the similarity 

measure. 

 

3. RESULTS AND DISCUSSION 

3.1 LiDAR Dataset 

The experiments were performed considering two LiDAR 

datasets. The first dataset is part of the Unesp Photogrammetric 

Data Set and was generated from three different flying heights 

over Presidente Prudente/Brazil (Tommaselli et al., 2018). This 

paper considers only the lowest flight. The second dataset comes 

from the ISPRS Test Project on Urban Classification, 3D 

Building Reconstruction and Semantic Labeling, which was 

captured over Vaihingen in Germany (Cramer, 2010). The 

characteristics of the LiDAR datasets are presented in Table 1. 

Data  P. Prudente/Brazil Vaihingen/Germany 

Scanning 

system 

RIEGL LMS-Q680i Leica Geosystems 

ALS50 

Scan angle 60° 45º 

Flying 

height 

550 m 500 m 

Average 

point 

spacing 

0.3 m 0.7 m 

Average 

point density 

12.5 pts/m2 4 pts/m2 

Table 1. Characteristics of the LiDAR datasets used in the 

experiments. 

 

3.2 Experiments and Results 

The experiments were performed over two clippings, derived 

from both datasets. The first clipping (Figure 2) was selected 

from the Presidente Prudente dataset, and corresponds to an area 

with high complexity, being composed of buildings of different 

sizes and shapes, buildings located near each other, isolated trees, 

clumps of vegetation and transmission lines. A high 

concentration of buildings can be seen on the lower diagonal of 

the image in Figure 2a, with trees in the upper diagonal. The 

presence of trees near the buildings can also be seen, in some 

cases causing the occlusion of part of the building’s roof. The 

second clipping (Figure 3) was selected from the Vaihingen 

dataset. It is composed of buildings of rectangular shape and 

isolated trees. In general, the buildings are not located too close 

to each other, and there are few trees in the area. In addition, there 

are few problems of tree occlusion in building roofs. 

 

The thresholds considered in outlier detection (Tf), region 

growing (TDxy, TDh and TNp) and building cluster identification (N) 

are presented in Table 2. The value of Tf was derived from 

Carrilho et al. (2018), whereas TDxy and TDh were defined by 

means of average point spacing (TDxy = 2savg) and internal 

altimetric accuracy (TDh = σh), respectively. In this paper, the 

filtering was performed using the option “city” of the lasground 

tool. These values can be accessed by means of the LAStools 

documentation (http://www.cs.unc.edu/~isenburg/lastools/). 

 

Thresholds P. Prudente/Brazil Vaihingen/Germany 

Tf 5 5 

TDxy (m) 0.6 1.4 

TDh (m) 0.2 0.3 

Armin (m2) 4 4 

TNp = N  50 16 

Table 2. Thresholds values considered in each dataset. 

 

The quality parameters: completeness (Comp), correctness 

(Corr) and Fscore (Wiedeman et al., 1998, and Sokolova et al., 

2006) were computed for both areas using the proposed method 

(Table 3). It is important to highlight that these parameters are 

related only to the building class. The reference data were 

manually-derived on original LiDAR data using the 

CloudCompare software (https://www.cloudcompare.org/). 

 

 P. Prudente/Brazil Vaihingen/Germany 

Comp (%) 91.5 94.0 

Corr (%) 97.0 92.2 

Fscore (%) 94.2 93.1 

Table 3. Quality parameters of proposed method for different 

datasets. 
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Figure 2. Presidente Prudente dataset. Aerial image (a), non-ground points after region growing process (b), and identification of 

building clusters using the proposed method (c). 

 

 

 
Figure 3. Vaihingen dataset. Infrared aerial image (a), non-ground points after region growing process (b), and identification of 

building clusters using the proposed method (c).
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3.3 Discussion of Results 

A wide variety of objects can be seen in both areas from a visual 

analysis of the segmentation results. In general, the growing 

region process was able to identify the different clusters. Despite 

this, it is important to highlight that some problems may occur in 

the segmentation process related to the complexity of the urban 

scene: buildings close to each other, tree surround of the 

buildings, and occlusions. In this work, no process was 

considered to minimize these problems. The growing region 

results are therefore directly dependent on the threshold values 

adopted (TDxy, TDh and TNp). 

 

Considering the results derived from the building identification 

process (Figures 2c and 3c), it can be seen that most of the 

building clusters were correctly identified, even when the regions 

were more complex. Figures 2c and 3c highlight areas with high 

complexity, having vegetation surrounding the buildings. In 

these cases, the building clusters and non-buildings were 

correctly separated, including the small clusters. In addition, it 

can be seen that a few linear segments, usually related to power 

lines or walls, were identified as building clusters as highlighted 

in Figure 2c. 

 

Analyzing the values of quality parameters, it can be seen that, in 

terms of completeness and correctness, the best results are related 

to dataset 2 and dataset 1 respectively. Considering the Fscore 

obtained by means of harmonic mean between completeness and 

correctness, similar results can be seen for both datasets. These 

results indicated that the proposed method is suitable for building 

cluster identification, even for areas with different 

characteristics.  

 

In summary, the qualitative and quantitative analysis indicates 

the proposed method can be used to identify building clusters 

from LiDAR data automatically, presenting satisfactory results 

for urban areas with high levels of complexity and datasets with 

different specifications.   

 

4. CONCLUSIONS 

This paper proposes a method to identify the building clusters. 

The process explores the entropy concept to describe the cluster 

characteristics, and the K-means algorithm to separate the 

clusters into buildings and non-buildings. Although the proposed 

method is based in an unsupervised classifier, eliminating the 

need to run a training stage, the results are dependent on the 

thresholds adopted. 

 

The experiments using two LiDAR datasets show that the 

proposed method generated satisfactory results even for critical 

regions: high concentration of buildings, tree surround the 

buildings, buildings with different sizes and shapes, and 

occlusions. However, the result derived from building 

identification process is directly influenced by the growing 

region step, characterizing a limitation of the method. As for 

future research, it is suggested the refinement of growing region 

step or the use of a more robust segmentation method, aiming to 

minimize problems in the mentioned critical regions in urban 

area.  
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