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ABSTRACT:

Recent developments in the field of deep learning for 3D data have demonstrated promising potential for end-to-end learning directly
from point clouds. However, many real-world point clouds contain a large class im-balance due to the natural class im-balance
observed in nature. For example, a 3D scan of an urban environment will consist mostly of road and façade, whereas other objects
such as poles will be under-represented. In this paper we address this issue by employing a weighted augmentation to increase
classes that contain fewer points. By mitigating the class im-balance present in the data we demonstrate that a standard PointNet++
deep neural network can achieve higher performance at inference on validation data. This was observed as an increase of F1 score
of 19% and 25% on two test benchmark datasets; ScanNet and Semantic3D respectively where no class im-balance pre-processing
had been performed. Our networks performed better on both highly-represented and under-represented classes, which indicates that
the network is learning more robust and meaningful features when the loss function is not overly exposed to only a few classes.

1. INTRODUCTION

The success of deep learning for 2D image processing has
been due to a combination of improved hardware, software and
data. Despite advances in 2D data processing, it is evident
that progress in 3D data is still far behind (Hackel et al.,
2017). Processing of 3D geometry such as point clouds can
be performed using the same hardware and software libraries
(i.e. tensorflow, torch, caffe) as 2D image processing, and
recently there has been a surge in network architectures that can
learn directly from point clouds in an end-to-end manner. Such
examples include; PointNet (Qi et al., 2017a), PointNet++ (Qi
et al., 2017b), SPLATNet (Su et al., 2018), PointCNN (Li et al.,
2018) and MCCNN (Hermosilla et al., 2018). This is currently
a very active area of research and offers exciting potential.

Classic machine learning approaches for point cloud
classification use hand-crafted feature descriptors, which
are computed for each individual point. For such approaches
each point represents one training sample. Even moderately
sized labelled point clouds therefore are adequate for training
in such a framework. In contrary, deep learning methods for
per-point classification typically operate on small sub-sets
or sub-windows of the point cloud representing a whole
scene. Every sub-window represents one training sample. It is
immediately clear that the number of training samples becomes
an issue. However, the success of 2D deep learning is often
largely accredited to the release of large open-access labelled
datasets such as ImageNet (Deng et al., 2009), which contains
> 14 ∗ 106 images. It is now largely standard procedure to
pre-train deep CNNs on the ImageNet benchmark dataset
for initial model weight tuning. Achieving a similar dataset
for 3D point cloud processing would be a substantially more
challenging feat, and as such open training datasets on the
scale of ImageNet do not exist for 3D point clouds. Regardless,
there has been a range of efforts to address this issue. The

∗Corresponding author.

most obvious attempt for a 3D ImageNet comes in the form
of ShapeNet (Chang et al., 2015). ShapeNet contains over
300 million models with 220,000 classified into 3,135 classes
arranged using WordNet hypernym-hyponym relationships.
Similarly, ScanNet (Dai et al., 2017) contains over 1500 indoor
scene scans, with each scan containing 400-600k points.
With respect to outdoor point cloud processing there have
also been significant efforts to address this problem, most
noticeably; iQmumuls/TerraMobilita (Vallet et al., 2015),
TUM City Campus (Gehrung et al., 2017) and the current
largest, Semantic3D (Hackel et al., 2017) which contains 4
billion points.

Although these datasets offer large point counts in absolute
terms, they contain very large class-imbalances. This is due
to the natural class imbalances present in both urban and
sub-urban environments. For example, the total points captured
from a typical street scene using a Terrestrial Laser Scanner
(TLS) or Mobile Laser Scanner (MLS) can consist of >90%
road and façade points. Similarly, features such as pole-like
objects, pedestrians and street furniture contain few points
due to their comparatively small size and natural scarcity of
occurrence. This issue has been well acknowledged within
machine learning for point cloud classification (Weinmann et
al., 2015), however, typically, these have been for classical
machine learning approaches such as support vector machines
and random forests. These methods learn on individual points
and therefore have abundant training data. The solution to
balance classes is therefore to reduce the number of examples
for strongly represented classes to the quantity of least
represented classes, that meet a certain minimum threshold.
Such a method is not sufficient for training Deep Neural
Networks (DNNs) as modern DNNs operate on batches of
points and thus need much larger data sets to achieve high
classification accuracy. It is therefore unfavourable to reduce
the point cloud as in some cases this would result in rejecting
> 90% of points in the training dataset.
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The current best-practise to account for class-imbalance with
training DNNs is to scale the networks loss based on a per-class
weight coefficient. This helps to prevent under-represented
classes being over-shadowed by abundant classes. The weight
coefficients can be determined as a function relating to the
probability of the point occurring in a scene. In this
paper, we propose an additional pre-processing stage to help
further address this issue, by physically reducing the class
im-balance through selective augmentations. Our approach
quantifies the representation of a given scene by analysing it’s
class occurrences. Scenes containing many points which are
under-represented score higher. The number of augmentations
is then determined as a non-linear function of the derived score.
By weighting the augmentations in this way the class balance is
subsequently reduced. We test our hypothesis using the popular
PointNet++ network architecture on both indoor (ScanNet) and
outdoor (Semantic3D) datasets.

2. RELATED WORK

Within the field of deep learning there has been an active
effort to address the issue of class-imbalance. The most
common approach is to weight the loss function with the
inverse frequency of the labels occurrence. This method was
proposed by (Lin et al., 2017) to address the class-imbalance
in object detection CNN’s where in many cases the majority of
classifications are easy to detect background. This is achieved
by re-shaping the cross-entropy by adding a modulating factor,
ensuring negative/frequent classes do not overwhelm the loss
function. This was shown to improve the performance for
single-class object detectors (Griffiths , Boehm, 2018), where
class-imbalance is likely to be high. The ability to pass weights
into cross-entropy loss function is now a standard feature for
many leading deep learning software libraries. (Yue, 2017)
proposed a method by which the softmax loss function is
scaled by a scaling parameter determined as a function of
the labels frequency. In essence, this is a reactive approach
for dealing with scenarios where class im-balance is assumed.
(Fidon et al., 2018) propose using a generalised Wasserstein
Dice Score to take advantage of inter-class relationships and
multi-scale information. The improved loss function favours
semantically meaningful predictions, which can help balance
mis-classification due to class im-balance.

Alternative approaches include undersampling and
oversampling data. Undersampling is the process of randomly
removing data from classes which are highly represented
such that their ratio approaches that of the under-represented
classes e.g. (Weinmann et al., 2015). In contrast, oversampling
is the procedure of replicating under-represented classes
such that they approach the count of highly-represented
classes. Whilst undersampling can result in a lot of useful
information invariably being lost, oversampling results in
replication of identical data which can also lead to over-fitting
to small data samples. A more sophisticated approach
is proposed by (Chawla et al., 2002) in their technique
called Synthetic Minority Over-sampling (SMOTE). SMOTE
suggests a combination of undersampling and oversampling
is the most effective approach. Oversampling is further
achieved by generating synthetic data that is similar to the
original under-represented class data when assessed using
a nearest-neighbour classification. Although this method
demonstrated promising results, it has not been tested in the
context of deep learning. The authors also tested the possibility
of bagging and boosting methods, however, these methods were

not shown to improve the performance of the classification
algorithm. Nevertheless, none of these approaches address
the issue when there is an extremely under-represented class.
As such, there is still no common heuristic for dealing with
class-imbalance with under/oversampling. The work presented
here follows a similar approach of synthetic oversampling,
however, we use augmentation to generate the synthetic data.

More recently, (Zhu et al., 2017) have proposed the use of
Generative Adverserial Networks (GAN) to generate data from
the true distribution of the data. By supplementing the data
manifold with an approximation from the true distribution,
classification rates were shown to improve by 5%-10% in
emotion classification for 2D images. Whilst this method shows
promise, the use of GANs for 3D point cloud generation is
still in its infancy (Achlioptas et al., 2017), and not currently
capable of generating convincing data matching the complexity
of ScanNet/Semantic3D.

3. METHODOLOGY

To evaluate our proposed weighted augmentation approach we
train and validate our results on two common datasets; ScanNet
and Semantic3D. Each dataset consists of numerous point cloud
scenes where a point cloud is defined as a set of 3D points
Pi|i = 1, ..., n where P ∈ R3 such that Pi is a vector (x, y, z)
denoting its location in a euclidean coordinate system. We
select ScanNet and Semantic3D for two main reasons. Firstly,
both datasets contain a large number of points (750m and
4bn respectively) necessary for training deep neural networks,
and have demonstrated themselves as standard benchmark
datasets for deep learning with point clouds. Secondly, each
dataset contains a varied class im-balance, with the indoor
ScanNet having a more even class distribution to the outdoor
Semantic3D. This allowed us to evaluate the effect of weighted
augmentations over varying class-imbalances. Each dataset
was pre-processed using the same pipeline which we describe
below.

3.1 Preprocessing

The initial stage to pre-processing was to determine the label
weights for each dataset. A general heuristic for calculating
class weights for point clouds is defined by (Dai et al.,
2017) as 1/log(1.2 + probability of occurence). After internal
experiments we opted for normalised weights between 0 − 1
which a capped lower threshold (tmin). We compute our
weights (w) as:

w = (tmax − tmin)(
−
∑n

i=1[Pi = x]−minP

maxP −minP
) + tmin (1)

where tmax and tmin are the maximum and minimum weight
thresholds respectively, p is the entire point set and x is the class
for which the weight is to assigned.

By scaling the weights between a minimum and maximum
threshold we increase the variance of weights at the upper end
of the distribution, and retain the ability to cap a minimum
threshold. In our experiments we found tmin = 0.25 yielded
the best results for both datasets.

To feed the data into a PointNet++ network the entire dataset
needs to be split into chunks of point clouds of uniform size n,
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where n is equal to the number of input nodes for the network
(8192 in our case). To achieve this we first split the dataset
into a planar grid using a 10x10m grid size. As the point
clouds have varying point density, each chunk (C) contains
an undefined number of points (Cn). The simplest approach
to deal with this is to discard any chunks where Cn < n,
and randomly sub-sample C where Cn > n. To improve on
scenarios where Cn > n, we incorporate an adaptive voxel
down-sampling approach. The initial voxel size vb where b is a
cube, is set to 0.013m for ScanNet and 0.053m for Semantic3D.
All points that fall within the voxel are represented by a
new point pi with the coordinates of the voxel centroid, and
the label is determined via a maximum vote scheme. While
Cn > n we incrementally increase the value b on the original
chunk point cloud until Cn < n, we then take the value of
b where Cn is as close as possible to n, but larger 1. This
ensures the points are primarily reduced in a geometrically
and spatially coherent manner, before employing probabilistic
sub-sampling to achieve the exact target number. To initially
help reduce class im-balance points are sub-sampled from a
non-uniform distribution where the probability Pr of a point
being sub-sampled is the inverse of the corresponding class
weight w such that Pr = f(−w). Finally, to avoid discarding
too many valid points where Cn < n, if Cn >= 0.5n we
randomly duplicate points until Cn = n.

Algorithm 1: Adaptive voxel downsampling
v=0.01
large chunk = reduced chunk = original chunk
while size(reduced chunk) > n do

large chunk = reduced chunk
reduced chunk = voxel-downsample(original chunk, v)
v += increment

final chunk = large chunk

We split the dataset into training (60%), test (20%) and
validation (20%) batches. The test sub-set is used for in-training
performance evaluation. The model state which achieves the
highest performance on the test data is subsequently exported
and then used for inference on the validation sub-set which
gives the final performance of the model (Section 4).

3.2 Augmentation

We define an augmentation as a random rotation in the x and y
axis about the z axis, followed by a small rotation in the x, y, z
axis’. We refer to this as a single permutation. To apply the
permutation we randomly compute a value r and multiply by
rotation matrix R such that:

p =

cos 2rπ − sin 2rπ 0
sin 2rπ cos 2rπ 0

0 0 1

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2)

where r is a randomly generated number such that 0 < r < 1.

To determine the number of augmentations an we quantify the
chunk based to the number of under-represented classes present
within the chunk where an = f(

∑n
i=1[Pi = x], w) for x ∩ c.

We call this value the chunk uniqueness (u). We calculate u by
first normalising the counts of each class present in the chunk
between by cn. Then we take the sum of all of the associated
normalised counts for each label in the chunk and multiply by
w. This returns a quantified value such that u = [0, 1]. Formally
we define this as:

u =

∑k
i=1

∑n
j=1[Pj = xi]

n
∗ wk (3)

where k is the number of classes in the chunk.

Finally to determine the an we calculate:

an =
10 tanu2

2
(4)

This yields the following values for an:

u 0.25 0.375 0.5 0.625 0.75 0.875 1
an 1 1 2 3 5 8 13

By scaling an by tan2 this ensures that highly under-represented
chunks are augmented substantially more than higher-represented
scenes. The affect this procedure has on the class distribution of
the datasets can be seen visually in Figure 1.

(a) ScanNet

(b) Semantic3D

Figure 1. Normalised distribution of classes of datasets before
and after weighted augmentation and non-uniform sampling for
a) ScanNet and b) Semantic3D. A more horizontal line indicates

3.3 Network architecture

We employ PointNet++ for end-to-end model training.
PointNet++ is an extension of the seminal deep learning
point cloud architecture PointNet (Qi et al., 2017a). Unlike
previous deep learning approaches for end-to-end 3D point
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cloud processing, PointNet does not extract features with a
3D convolution operator (i.e. (Maturana , Scherer, 2015)), but
instead consists only of fully-connected layers. Features are
generated using Multi Layer Perceptrons (MLPs) and aggregated
using a single symmetric function, max-pooling. In essence,
the network learns a set of functions that select interesting and
informative key-points from a sub-set of points, encoding this
information in each layers feature vector. Semantic segmentation
is achieved by concatenating the aggregated global features into
two MLPs to generate per-point features and subsequently class
probabilities for each point. Per-point features are obtained
by concatenating global feature vectors with each of the point
features.

PointNet++ is a hierarchical network extension of PointNet
which has the ability to capture local structures induced by
the metric space points live in. Point sets are partitioned into
overlapping local regions by a distance metric. Features are then
extracted from progressively increasing neighbourhood sizes.
Whereas small neighbourhoods capture fine-grain local features
(i.e. surface texture), large neighbourhoods capture global shape
geometry features. Overlapping partitions are generated with a
neighbourhood ball with centre px,y,z and radius r. Where p is
each point the set.

Model hyper-parameters are initially derived from the original
values outlined by (Qi et al., 2017b), with a few minor changes.
To reduce result ambiguity and retain focus on the affects of
weighted augmentation, these values are not further revised
for each training scenario. The final model hyper-parameters
were; batch size = 16, learning rate = 0.001, momentum = 0.9,
weight decay rate = 0.7, number of input points (single batch) =
8192. We did not make any changes to the network architecture,
and therefore the reader is referred to the original paper for
further details. Each network was trained for 25 epochs on a
single Nvidia GTX 1080 Ti graphics processing unit which took
between 15-30 hours and 20-40 hours for Semantic3D and
ScanNet datasets respectively.

3.4 Performance evaluation

We evaluate performance with 5 metrics for each processing
scenario. These are; precision, recall, F1, accuracy and mean
intersection over union (IoU). We define these as; precision=

tp
tp+fp

, recall= tp
tp+fn

and F1= 2 recall∗precision
recall+precision

where
t, f, p, n are true, false, positive and negative respectively. Mean
IoU is calculated from the confusion matrix where intersection
i is the intersection of correct predictions (diagonal top left to
bottom right). Union u is the sum of both the predicted and
true label columns for each class respectively. Mean IoU is then

calculated as
∑i=k

j=1 uj−ij

k
, where k is the number of classes.

4. RESULTS

The results for each experiment are presented in Table 1. In
both Semantic3D and ScanNet datasets, models trained with

some form of augmentation resulted in higher validation scores.
This was more prominent with respect to overall accuracy on
the outdoor Semantic3D dataset where a higher class-imbalance
existed both before and after pre-processing. Caution should
be sought when measuring success with overall accuracy when
any form of class im-balance is present as this can indicate
over-fitting on the dominant class, resulting in a model that
scores highly but generalises across classes poorly. Despite this,
gains were also made with respect to precision and recall values
for both datasets, suggesting multi-class improvements. This is
further justified by the confusion matrices seen in Figure 3 and
Table 2. In each scenario the incorporation of class im-balance
reduction led to not only an increase in correct classifications
of poorly represented classes, but also for highly represented
classes. This suggests the model is generalising better than when
class-imbalance is lower, which suggests that the network is
benefiting from a more diverse dataset. The very high increase
in overall accuracy experienced on the Semantic3D dataset, is
likely due to reduction of incorrect classifications of man-made
terrain and natural terrain as they are both dominant classes and
the accuracy is not a weighted value.

(a)

(b)

Figure 2. Point cloud classification results of a) Semantic3D and
b) ScanNet datasets. Images are derived from inference of entire

scene, which contains training, test and validation examples.

Interestingly, there appears to be no correlation with respect to
the confusion matrix intersection score improvement and the
number of samples per-class. Again, this also suggests that the
model is generally performing better over all classes. A concern
would be if poorly represented class classification accuracy was
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Table 1. Semantic3D and ScanNet validation dataset performance results. In all scenarios augmentation performed better than when
no augmentation was used. Weighted augmentation further increases performance.

Training scenario Precision Recall F1 mean IoU Accuracy (%)
Semantic3D vanilla 0.466 0.440 0.443 0.938 87.2
Semantic3D augmentation 0.497 0.475 0.478 0.950 89.7
Semantic3D weighted augmentation 0.564 0.552 0.554 0.956 98.1
ScanNet vanilla 0.716 0.705 0.696 0.780 89.4
ScanNet augmentation 0.779 0.779 0.765 0.791 90.4
ScanNet weighted augmentation 0.841 0.848 0.835 0.842 93.2

Table 2. ScanNet normalised confusion matrix intersection (I)
values for no augmentations (a) and weighted augmentations (b)

processing scenarios.

Class 0 1 2 3 4 5 6
I 0.70 0.88 0.97 0.97 0.95 0.95 0.99

7 8 9 10 11 12 13
0.96 0.98 0.87 0.97 0.98 0.97 0.90
14 15 16 17 18 19 20

0.91 0.94 0.96 0.94 0.85 0.97 0.93

Class 0 1 2 3 4 5 6
I 0.81 0.95 0.97 0.98 0.98 0.98 0.99

7 8 9 10 11 12 13
0.98 0.99 0.95 0.98 0.99 0.99 0.93
14 15 16 17 18 19 20

0.98 0.98 0.99 0.99 0.97 0.98 0.98

improved at the cost of highly represented classes, however in our
experiments this does not appear to be the case.

In each scenario, the gain from vanilla to augmentation was
less than the gain from augmentation to weighted augmentation,
demonstrating the advantages of such a strategy. For
example, Semantic3D F1 scores increased 7.9% from vanilla
to augmentation and 15.9% from augmentation to weighted
augmentation. Similarly, with respect to overall accuracy
2.5% was gained from augmentation, but from augmentation
to weighted augmentation 8.4% was achieved. ScanNet also
had similar conclusions with F1 increases of 8.8% and 9.6%
respectively, and for overall accuracy 1.4% and 4% respectively.

5. DISCUSSION

The results discussed in Section 4 suggest a overall improvement
was witnessed by the incorporation of class-imbalance reducing
procedures, namely, weighted augmentation along with
non-random sub-sampling. Whilst these results are promising,
we would argue that their conclusions should still be taken
cautiously. For example, the validation results of Semantic3D
out perform the current benchmark leaders, however, this was
not evaluated on the full test set. Validation chunks were taken
from within the same scenes that both training and test data
came from. Furthermore, these values are taken from a sparse
classification of the point cloud as apposed to a full point
classification. To fully classify a point cloud further steps must
be taken such as a K-nearest-neighbour and interpolation to
achieve a dense classification. The purpose of this experiment

was solely to determine if confusion matrix ambiguity could
be minimised by reducing the class imbalance. The results
never-the-less demonstrated potential for overall improvements
and further work should look into validation on new datasets.

Analysis of the confusion matrix and results combined strongly
indicates the importance of class-balance for training robust
DNNs on geometric data. This was most prominent by
the improvement in performace on dominant classes after the
increase in number of points for less dominant classes. This
suggests that models that achieve high performance scores where
high class im-balance is occurring are subject to some forms
of class-specific over-fitting, in which the results presented in
this paper suggest is worse performing than a model with more
balanced classes, especially where the classes are geometrically
variant. It is still unlikely that this has been completely mitigated
from either dataset, in particular Semantic3D where an initially
higher class im-balance was present. Evidence of this can be
observed in the discrepancy between overall accuracy and F1
scores for each dataset. Whereas Semantic3D has a higher overall
accuracy the F1 score is substantially lower when compared
to ScanNet. Mitigation of class im-balance should hopefully
address this issue by minimising this discrepancy, ideally by
raising the precision and recall values. It would therefore
seem reasonable to assume in datasets where overall accuracy
is significantly higher than F1 score, class im-balance could be
an influencing factor. Furthermore, this suggests that an ideal
training dataset for point cloud classification with DNNs is both
geometrically balanced, as well as class balanced with respect to
total counts of points.

Although we limit the learning to features derived purely from
each point’s x, y, z components, due to the connectionist nature
of neural networks, it remains difficult to conclude without
the need for proxy indicators, what features the network has
learned. Voxel down-sampling was performed to ideally remove
the potential for the network to learn point density, however, it
is still not possible to conclude that the networks features are
purely derived from geometry. So although the reduction of class
im-balance led to an overall improvement across all classes, it
is not possible to accredit this to more geometrically meaningful
features.

6. CONCLUSION

In this paper we present weighted augmentations as a
pre-processing technique for training DNNs where large class
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(a)

(b)

Figure 3. Confusion matrices for a) Semantic3D with no
augmentation and b) Semantic3D with weighted augmentation.

im-balances occur within the training data. A normalised
weighting function was described to derive individual class
weights dependant on the probability of occurrence within the
training data. Individual geo-spatially chunked point cloud
sets are then assigned a quantifiable metric to determine the
uniqueness of the chunk, based on the presence of points with
highly weighted classes. From this scene uniqueness metric
we compute a value an from a non-linear function, where an
is the number of augmentations applied to the chunk. By
strongly augmenting scenes with many under-represented classes
we reduce the total class im-balance present in the training
data. We further address the class im-balance by using the class
weights to derive the probability of selection in a non-uniform
sub-sample when the chunk contains more points than input
nodes of the DNN. Experiments undertaken with the ScanNet
and Semantic3D datasets using the PointNet++ architecture
suggest that reduction of the class-imbalance has a positive
influence on the performance of the network. An increase in
F1 score of 19% and 25% and overall accuracy value of 3.8%
10.9% for ScanNet and Semantic3D respectively was observed
when weighted augmentations were used to reduce the class

im-balance. These results suggest that the reduction of class
im-balance can have a significant affect on model training,
especially when the im-balance is very strong, for example in
outdoor environments.
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