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ABSTRACT:

In the last years we are witnessing an increasing quality (and quantity) of video streams and a growing capability of SLAM-based methods to derive
3D data from videos. Video sequences can be easily acquired by non-expert surveyors and possibly used for 3D documentation purposes. The aim of
the paper is to evaluate the possibility to perform 3D reconstructions of heritage scenarios using videos (“videogrammetry”), e.g. acquired with
smartphones. Video frames are extracted from the sequence using a fixed-time interval and two advanced methods. Frames are then processed applying
automated image orientation / Structure from Motion (SfM) and dense image matching / Multi-View Stereo (MVS) methods. Obtained 3D dense point
clouds are then visually validated as well as compared with photogrammetric ground truth achieved acquiring images with a reflex camera or analysing

3D data’s noise on flat surfaces.

Figure 1: Heritage 3D documentation using videos from smartphone devices: examples of indoor (Egyptian museum’s statue in Torino, Italy and
Ishtar Gate at the Pergamon museum in Berlin, Germany) and outdoor (Greek temple in Selinunte, Italy) scenarios.

1. INTRODUCTION

During the last 2-3 decades, a emergent set of 3D imaging sensors
and tools started to be released and used for cultural heritage 3D
documentation, providing an indispensable support to the
(digital) preservation, archival, analysis and valorization of
heritage assets (Remondino, 2011). Image-based solutions
(Remondino and El-Hakim, 2006), offered by photogrammetric
and computer vision methods, are among the most interesting as
they allow the simultaneous retrieval of shapes and colours from
high-resolution image or even from archival data (Wiedemann et
al., 2000; Gruen et al., 2004; Condorelli and Rinaudo, 2018),
videos (Pollefeyes et al., 2002; Sung and Lin, 2017) or
smartphones (Kolev et al., 2014; Nocerino et al., 2017).

In photogrammetric 3D reconstruction tasks, the image network
geometry is a crucial and tricky phase (Fraser, 1984). This is
getting more and more important also in the heritage community,
where the use of automated processing tools allows any user to
take some randomly acquired images, blindly load them into a
package, push a button and enjoy the obtained 3D model
(Remondino et al., 2017). One of the key aspects for successful
3D reconstructions is the image scale, the image overlap, the
viewing angle as well as the baseline between the images. It is
known that too narrow baselines are not optimal for the
triangulation of tie points whereas very wide baselines
complicate the matching of detected keypoints.

Is therefore clear that, assuming good knowledge of photography,
image-based 3D reconstructions require expertise in acquiring
the images. Lack of photography and photogrammetry
knowledge as well as human mistakes could prevent precise and
detailed 3D reconstructions. Nevertheless, the use of videos
could a be an important support and step toward easier and less
error-prone on-site acquisitions. This could be also favourable in
case of existing video footage of lost heritage (Vincent et al.,
2015). The use of videos for scenes 3D reconstruction purposes
is nowadays seeing a revival after the initial breakthrough
experiments of some 15 years ago (Sato et al., 2002; Pollefeyes
et al., 2007). Indeed, there is an increasing radiometric and
geometric quality of video footages and, moreover, users can
exploit the ever-growing capabilities of Simultaneous
Localisation and Mapping (SLAM) methods to process video
streams and derive 3D information (Taketomi et al., 2017).

Videogrammetry, i.e. the processing of video streams for
retrieving metric 3D information, was originally used for
industry-based applications, such as motion capture, crash tests
analyses, biomechanics, mobile mapping, etc. (Gruen, 1997).
Few interest points (normally coded targets) in the images were
tracked and matched in order to triangulate them and derive
sparse 3D point clouds. Nowadays, thanks to the progresses in
hardware (CPU/GPU) performances, recent developments in the
robotics community and the availability of fast and reliable
Visual-SLAM methods (Mur-Artal et al., 2015), videos acquired
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Name Type Features Point Global opt | Opt algorithm Loop Reference
cloud closure
MonoSLAM | Feature-based FAST Sparse No Kalman filter No (Davison et al., 2007)
PTAM Feature-based FAST Sparse Yes Bundle Adj. No (Klein et al., 2009)
ORB-SLAM | Feature-based ORB Sparse Yes Bundle Adj. Yes (Mur-Artal et al., 2015)
LSD-SLAM Direct - Semi-dense Yes Pose graph opt. Yes (Engel et al., 2014)

Table 1: Brief summary of some V-SLAM algorithms.

with off-the-shelf cameras or even smartphones could also be
used for dense 3D reconstruction purposes. Actually, V-SLAM
and the image orientation (also called Structure from Motion —
SfM) step are facing very similar problems: deriving a set of 3D
point starting from image correspondences by means of
triangulation. The main difference is that V-SLAM is designed
to work in real-time on video streams, i.e. it expects very short
baselines and delivers camera poses and sparse 3D points as soon
as the video frames are processed. On the other hand, traditional
image orientation algorithms and SfM solutions require a suitable
image network with good baselines, providing more precise 3D
results but being more computationally expensive.

Therefore, to fully exploit videos for 3D reconstruction purposes,
applying automated image orientation / SfM (Ozyesil et al.,
2017) and dense image matching / Multi-View Stereo (MVS -
Remondino et al., 2014; Furukawa and Hernandez, 2015)
methods, some frames should be carefully selected (the so called
keyframes) before running the 3D reconstruction pipeline.

1.1 Aim of the paper

The aim of the work is to evaluate the potentials and limitations of video-
based 3D reconstructions of heritage scenarios (Fig. 1). More
specifically, the paper reports how keyframes extracted from video
sequences could be exploited for dense 3D heritage reconstruction. We
evaluate the following keyframe selection methods (Section 3):

. Keyframe selection at fixed-time intervals;
e 2D-feature-based approach implemented;
e 3D-based approach of ORB-SLAM (Mur-Artal et al., 2015).
The selected keyframes are then used within a 3D reconstruction pipeline
to generate 3D dense point clouds (Section 4). Three heritage datasets are
considered for the experiments (Section 4.1): a facade of Trento’s
cathedral (Italy), the gate with lion of the Trento’s cathedral (Italy) and
the Arches Castle in Paphos, (Cyprus). A geometric evaluation of the
derived 3D dense point clouds is also carried out (Section 4.2) using plan
fitting error evaluation and ground truth data produced with reflex
camera-based photogrammetric survey.

2. SIMULTANEOUS LOCALISATION AND MAPPING

Simultaneous Localisation and Mapping (SLAM) algorithms are
used to simultaneously retrieve, in real time, the 3D structure of
the environment and the positions (trajectory) of the imaging or
scanning sensor. When the device is a camera, SLAM is called
Visual SLAM (V-SLAM) and the formulation of the problem is
very similar to the photogrammetric pipeline where different
images are used to reconstruct a surveyed scene in 3D. The main
difference is that V-SLAM is designed to work on densely
sampled frames of a video stream and perform operations in real
time. V-SLAM algorithms are divided in two main families:

o feature-based algorithms (Davison et al., 2007; Mur-Artal et
al., 2015): they employ detector/descriptors algorithms (e.g.
ORB - Rublee et al., 2011; FAST — Rosten and Drummond,
2006; etc.) to quickly find and track image correspondences,
sequentially bundle images minimizing the reprojection error
and, eventually, refine the entire trajectory.

o direct algorithms (Engel et al., 2014): they work directly on
pixels intensities by keeping a depth map estimation for high

gradient pixels and estimating the camera positions through
the minimisation of the photometric error.
Table 1 summaries briefly the current V-SLAM panorama.

3. KEYFRAME SELECTION APPROACHES

The keyframe selection phase is a mandatory prerequisite to
derive 3D data from videos, either with V-SLAM methods or
using a more complex image orientation / SfM approach.

In the literature different techniques have been proposed to select
keyframes from videos. They can be categorized in trivial
(random way or at fixed-time intervals frame extraction),
clustering-based (some global image features, such as color
histograms, is chosen and then frames lying close to the centroids
of the clusters are selected — Girgensohn and Boreczky, 2000),
2D-feature-based approaches (Guan et al., 2013; Nocerino et al.,
2017) and 3D-based methods (Resch et al., 2015). In the
following sections, these last two methods, considered the most
valued, are described in detail.

3.1 2D-feature-based selection

2D-feature-based approaches (Guan et al., 2013; Nocerino et al.,
2017) use image keypoints, such as SIFT (Lowe, 2004) or ORB,
to measure the newness of each frame and decide whether to
select it or not. The newness is measured by comparing the 2D
features of the current frame with a pool of features extracted
from the previous frames. Given a sequence of video frames, the
i-th frame f; is selected to be a keyframe if the following
properties hold:

e f; is sharp (not blurred);

. the percentage of keypoints in f; that matches with a pool of

keypoints in the previous frame f;_; is below a certain
threshold.

This approach ensures that blurred and redundant frames, having
probably small baselines between each other, are discarded
because of the high percentage of matched keypoints. The main
limitation of this approach is that it is not exploiting the current
3D knowledge of the scene.

3.2 3D-based selection

3D-based methods (Resch et al., 2015) take advantage of the
current geometric properties of the reconstructed scene, such as
the geometry of the point cloud and the viewing angles of the
video frames, to decide when to select a new keyframe out of the
analysed video. The main advantage of those methods is that they
exploit the geometric knowledge of the scene e.g. to control the
baseline of the selected frames. Modern V-SLAM algorithms,
such as ORB-SLAM (Mur-Artal et al., 2015), lie in this category
as they geometrically select the subset of frames on which the
scene 3D geometry is computed. ORB-SLAM was designed to
have quite relaxed keyframe selection policies and stronger
checks during the keyframe culling phase. In this way the point
cloud is rapidly updated with the selected keyframes but their
geometric relevance as well as their redundancy is rigorously
checked during the culling phase.
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Dataset Trento’s cathedral facade — Trento’s cathedral lion — Arches Castle —
name Trento-1 Trento-2
Example of r
frames
L BN = oV
Regszon 1920 x 1080 px 1920 x 1080 px 1920 x 1080 px
Smartphone Samsung S9 plus Samsung S9 plus Samsung S6
Validation RMSE on plane fitting Visual inspection of derived 3D Cloud2Cloud distance and profiles
dense point cloud from a photogrammetric point
cloud generated from 175 Nikon
D3X images (6048 x 4032 px);
Video . . .
~2 min: 59 sec ~ 2 min: 45 sec ~ 4 min: 20 sec
length
# frames 5374 4953 7826
Table 2: Main characteristics of the datasets used for the paper experiments.
Given a frame f, the algorithm selects f as a keyframe if the
number of frames since the last selected keyframe is greater than Video
a certain threshold, and if the number of keypoints of f that match
with the keypoints of the last selected keyframe is less than 90%.
A keyframe k is removed if at least 90% of the keypoints of k are ) o
seen by at least other two previously selected keyframes. In this HKexedstme intery “lsl 2D-based \ 3D-based
way ORB-SLAM keeps only informative keyframes and, at the ! ' Kevi
same time, it bounds the time required to perform all the ] Sharpness ! eylrame
background optimisations. i check ! selection
g p | 1 +
Fixed-time : ¢ : .
4. METHODOLOGY AND RESULTS selection ] ! Real-time 3D
H Newness 1 reconstruction
In order to evaluate the potential and usability of videos acquired H check using | v
with consumer dev@ces (e.g. .smartpl}ones) . for the 3D . descriptors i Keyframe
documentation of heritage scenarios, various video sequences H I culling
were acquired, trying to image the entire scene from multiple . |
views. Then, frames were selected/extracted using the Keyframes
aforementioned selection procedures (Fig. 2-3): Fixed-time
interval (FTI), 2D-feature-based (2D) and 3D-based method
(D). SfM + MVS

keyframes = []

PROCEDURE TimeSelection (video, time)
FOR frame in video
IF time (frame) mod time == 0
keyframes.add (frame)

PROCEDURE 2DSelection (video, newnessTh)
poolOfDesc = []
FOR frame in video
IF isBlurred(frame) CONTINUE
frameDesc = computeORB (frame)
IF match(poolOfDesc, frameDesc)
keyframes.add (frame)
poolOfDesc.add (frameDesc)

> newnessTh

PROCEDURE 3DSelection (video)
selectedKeyframes, pointCloud = ORBSLAM (video)
FOR keyframe in selectedKeyframes
keyframes.add (keyframe)

Figure 2: Pseudo-code of the three considered keyframe
selection methods.

Finally, the extracted keyframes were processed using the
COLMAP (Schonberger et al., 2016a-b) workflow (version 3.5)
in order to derive 3D dense point clouds. A self-calibration was
performed to retrieve both interior and exterior camera
parameters while dense 3D reconstructions were achieved with
the MVS patch-based approach.

Figure 3. The main steps of the tested selection methods which
extract keyframes from the given video sequence in order to
process them into a photogrammetric pipeline.

4.1 Datasets

Three datasets (Table 2) are used for the evaluation: two of the
Cathedral in Trento (Italy) and one of the Arches Castle in
Paphos (Cyprus). Table 3 shows some information of the
extracted/selected frames per dataset, based on the selection
method.

Dataset # frames
Trento-1 FTI 180
Trento-1 2D 409
Trento-1 3D 189
Trento-2 FTI 165
Trento-2 2D 311
Trento-2 3D 641
Cyprus_FTI 262
Cyprus_2D 700
Cyprus_3D 149

Table 3. Number of extracted keyframes for each dataset and
applied method (FTI: fixed-time interval, 1 frame every 30
frames; 2D: 2D-feature-based; 3D: 3D-based).
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Areas KS RMSE (m)

FTI 0.007

1 2D 0.01
3D 0.037
FTI 0.013
2 2D 0.025
3D 0.016
FTI 0.026

3 2D 0.035
3D 0.025
FTI 0.008
4 2D 0.017
3D 0.008

FTI 0.053
5 5 2D 0.033
3D 0.044

Figure 4. Locations of the five areas used to calculate the plane fitting Table 4: RMSEs for the 5 planar areas of Figure 5
RMSE useful to evaluate geometric performances of the video-based 3D  depending on the keyframe selection method (KS).
reconstruction.

Figure 5: Qualitative comparison of the videogrammetric point clouds of the Trento-2 dataset: fixed-time selection (a), 2D-feature-
based selection (b) and 3D-based selection (c). The latter approach is delivering the most complete and dense 3D reconstruction of
the imaged scene.

Area | KS Cc2C C2C std.
Mean (m) dev. (m)
FTI 0.015 0.008
1 2D 0.011 0.009
3D 0.01 0.005
FTI 0.025 0.029
2 2D 0.044 0.042
3D 0.028 0.064
FTI 0.134 0.033
3 2D 0.091 0.030
3D 0.008 0.006
FTI 0.015 0.010
4 2D 0.021 0.022
3D 0.014 0.009
FTI 0.070 0.039
5 2D 0.143 0.070
3D 0.16 0.014

Figure 6: Location of the five areas (from left to right: 1,2,3,4 and 5) used to perform
the cloud-to-cloud distances between the videogrammetry-based and ground truth
point clouds (Table 5).

Table 5: Cloud to cloud distances between
the photogrammetric cloud of the Arches
Temple (ground truth) and  the
videogrammetric clouds computed with the
different keyframe selection methods (KS).
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4.2 Results

Trento’s Cathedral facade (Trento-1). Table 4 reports the
RMSE distances on five selected planes of the cathedral fagade
which was geometrically reconstructed with the videogrammetry
approach (Fig. 5). The 3D-based frame selection method is
providing, in general, better results, although not outperforming
the other selection methods.

Trento’s Cathedral lion. The dataset features a quite complex
scenario, with an entrance gate, columns, statues and several
architectural elements. The derived point clouds (Fig. 5) clearly
highlight how fixed-time interval and 2D-feature-based frame
extraction are not suitable to provide a sufficient and correct
number of frames to completely reconstruct the scene.

Arches Castle. Dense point cloud derived from every frame
selection method were aligned using ICP with the available
ground truth (photogrammetric dense point cloud, computed at /2
image resolution). Then Cloud-to-cloud distances were
computed (Table 5), in five specific areas (Fig. 6). Also in this
case, a 3D-based frame selection approach provides for the most
accurate results. Furthermore, Figure 7 shows a graphical
comparison of two profiles on the estimated points clouds. The
keyframes selected with the 3D-based approach provide for the
closest point cloud to the photogrammetric ground truth.

Profile B-B’

2D 3D

Figure 7. Visual comparison of profiles (A-A’ and B-B’)
extracted on the videogrammetry (red) and ground truth
(yellow) point clouds for the employed frame selection
methods.

4.3 Discussion

Experiments and results show that in all considered datasets the
photogrammetric reconstruction is greatly helped by the

geometric keyframe selection of the V-SLAM approach.
Regarding the Cyprus dataset, both cloud-to-cloud distance
analysis (Table 5) and profile analysis (Figure 7) show that 3D
documentation performed with frames extracted with the 3D-
based method can almost match the quality of point clouds
created using images acquired with reflex cameras. Moreover,
the efficacy of the 3D-based approach in selecting good
reconstruction keyframes is clearly visible in Figure 5: the 3D-
based dense point cloud is far more complete than the point
clouds obtained by the other two frame selection methods. It is
evident how the time-based selection can be completely
inefficient when the camera moves around complex objects as
discontinuities changes are not considered during the selection
procedure. On the other hand, the RMSE analyses of the planes
(Table 4) does not show a clear winner: it must be noticed that in
this case the camera movement and the distance to the cathedral
was constant during the acquisition. Results show that in these
circumstances the three methods almost present the same
performances. Finally, another strength of the 3D-based selection
is that it does not require any prior knowledge of the scene to
perform the tuning of the parameters: the inner structure of the
V-SLAM algorithm is designed to work in many different
scenarios (fast or slow camera movements, different distances to
the object to reconstruct, etc.) without the need of using scenario-
related settings.

5. CONCLUSIONS

The paper presented how videogrammetry, i.e. the use of videos
for 3D reconstruction purposes, can be a valuable source for 3D
documentation in the heritage community. Video frames can be
extracted with various approaches, such as: time-based selection,
2D-feature-based selection and 3D-based selection (e.g. based on
the ORB-SLAM algorithm). Experiments show that a
videogrammetric approach can deliver comparable 3D results to
a photogrammetric solution based on a reflex camera images, in
particular when the reconstruction frames are selected
considering the surveyed geometry.

3D documentation of heritage scenarios with high-end high-
resolution digital cameras will be never surpass. Nevertheless
video-based 3D reconstruction, if coupled with advanced frame
selection algorithms and a precise 3D processing methodology,
could be a valuable alternative, being easier and less prone to
errors, especially when operators are lacking photogrammetric
knowledge required to acquire images with good reconstruction
and geometric properties.

REFERENCES

Condorelli., F., Rinaudo, F., 2018. Cultural Heritage
reconstruction from historical images and videos. ISPRS Int.
Arch. Photogramm. Remote Sens. Spatial Inf. Sci., Vol. 42(2),
pp. 259-265.

Davison, A.J., Reid, 1.D., Molton, N.D. and Stasse, O., 2007.
MonoSLAM:  Real-time single camera SLAM.IEEE
Transactions on Pattern Analysis & Machine Intelligence, (6),
pp-1052-1067.

Engel, J., Schops, T. and Cremers, D., 2014, September. LSD-
SLAM: Large-scale direct monocular SLAM. In European
conference on computer vision (pp. 834-849). Springer, Cham.
Fraser, C., 1984. Network design consideration for non-

topographic photogrammetry. Photogrammetric Engeneering
and Remote Sensing, Vol. 50(8), pp. 1115-1126.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W15-1157-2019 | © Authors 2019. CC BY 4.0 License. 1161



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019
27th CIPA International Symposium “Documenting the past for a better future”, 1-5 September 2019, Avila, Spain

Furukawa, Y. and Hernandez, C., 2015. Multi-view stereo: a
tutorial. Foundations and Trends in Computer Graphics and
Vision, Vol. 9(1-2).

Girgensohn, A. and Boreczky, J., 2000. Time-constrained
keyframe selection technique. Multimedia Tools and
Applications, 11(3), pp.347-358.

Gruen, A., 1997. Fundamental of videogrammetry — a review.
Human Movement Science, Vol. 16(2-3), pp. 155-187.

Gruen, A., Remondino, F., Zhang, L., 2004. Photogrammetric
Reconstruction of the Great Buddha of Bamiyan, Afghanistan.
The Photogrammetric Record, Vol.19(107), pp. 177-199.

Guan, G., Wang, Z., Lu, S., Da Deng, J. and Feng, D.D., 2013.
Keypoint-based keyframe selection. IEEE Transactions on
circuits and systems for video technology, 23(4), pp.729-734.

Klein, G. and Murray, D., 2009, October. Parallel tracking and
mapping on a camera phone. In 2009 8th IEEE International
Symposium on Mixed and Augmented Reality, pp. 83-86.

Kolev, K., Tanskanen, P., Speciale, P., Pollefeys, M., 2014.
Turning Mobile Phones into 3D Scanners. Proc. CVPR.

Lowe, D.G., 2004. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vision,
Vol. 60(2), pp.91-110.

Mur-Artal, R., Montiel JM.M., Tardos, J.D., 2015. ORB-SLAM:
A Versatile and Accurate Monocular SLAM System. IEEE
Trans. on Robotics, vol. 31, no. 5, pp. 1147-1163.

Nocerino, E., Lago, F., Morabito, D., Remondino, F., Porzi, L.,
Poiesi, F., Rota Bulo, S., Chippendale, P., Locher, A., Havlena,
M., Van Gool, L., Eder, M., Fotschl, A., Hilsmann, A., Kausch,
L., Eisert, P., 2017. A smartphone-based pipeline for the creative
industry - The REPLICATE project. ISPRS Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., Vol. XLII-2-W3,
pp. 535-541.

Ozyesil, O., Voroninski, V., Basri, R., Singer, A.,2017. A Survey
of Structure from Motion. Acta Numerica, Vol. 26, pp. 305-364.

Pollefeys, M., van Gool, L., Vergauwen, M., Cornelis, K.,
Verbiest, F., Tops, J., 2002. Video-to-3D. ISPRS Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., Vol.34(B3), pp.
252-257.

Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A.,
Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.-J.,
Merrell, P., SalmiC., Sinha, S., Talton, B., Wang, L., Yang, Q.,
2007. Detailed real-time urban 3D reconstruction from video. Int.
Journal of Computer Vision, Vol. 78(1-2), pp. 143-167.

Remondino, F., Nocerino, E., Toschi, I., Menna, F., 2017. A
critical review of automated photogrammetric processing of large
datasets. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci., Vol. XLII-2/WS5, pp. 591-599.

Resch, B., Lensch, H., Wang, O., Pollefeys, M. and Sorkine-
Hornung, A., 2015. Scalable structure from motion for densely
sampled videos. Proc. CVPR, pp. 3936-3944.

Remondino, F., El-Hakim, S., 2006. Image-based 3D modelling:
a review. The Photogrammetric Record, Vol.21(115), pp. 269-
291.

Remondino, F., 2011: Heritage recording and 3D modeling with
photogrammetry and 3D scanning. Remote Sensing, 3(6), pp.
1104-1138.

Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex, F.,
2014. State of the art in high density image matching. The
Photogrammetric Record, Vol. 29(146), pp. 144-166.

Remondino, F., Nocerino, E., Toschi, 1., Menna, F., 2017. A
critical review of automated photogrammetric processing of large
datasets. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci., Vol. XLII-2/WS5, pp. 591-599.

Rosten, E. and Drummond, T., 2006. Machine learning for high-
speed corner detection. Proc. ECCV, pp. 430-443, Springer,
Berlin, Heidelberg.

Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., 2011.
ORB: An efficient alternative to SIFT or SURF. Proc. ICCV.

Sato, T., Kanbara, M., Yokoya, N., Takemura, H., 2002. Dense
3-D reconstruction of an outdoor scene by hundreds-baseline
stereo using a hand-held video camera. Int. Journal of Computer
Vision, Vol. 47(1-3), pp. 119-129.

Schonberger, J.L. and Frahm, J.M., 2016a. Structure-from-
motion revisited. Proc. CVPR, pp. 4104-4113.

Schonberger, J.L., Zheng, E., Frahm, J.M. and Pollefeys, M.,
2016b. Pixelwise view selection for unstructured multi-view
stereo. Proc. ECCV, pp. 501-518.

Sung, B.-Y., and Lin, C.-H., 2017. A fast 3D scene reconstructing
method using continuous video. EURASIP Journal on Image and
Video Processing, 18.

Taketomi, T., Uchiyama, H., Ikeda, S., 2017. Visual SLAM
algorithms: a survey from 2010 to 2016. Transactions on
Computer Vision and Applications, Vol. 9(16).

Vincent, M. L., Coughenour, C., Remondino, F., Flores
Gutierrez, M., Lopez-Menchero Bendicho, V. M., Frtisch, D.,
2015: Crowd-sourcing the 3D digital reconstructions of lost
cultural heritage. Proc. IEEE Digital Heritage, Vol. 1, pp. 171-
172.

Wiedemann, A., Hemmleb, M., Albertz, J., 2000. Reconstruction
of historical buildings based on images from Meydenbauer
archives. In: International Archives of Photogrammetry and
Remote Sensing. Vol. 33(B5).

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W15-1157-2019 | © Authors 2019. CC BY 4.0 License. 1162





