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ABSTRACT: 

The survey of building pathologies is focused on reading the state of conservation of the building, composed by the survey of 
constructive and decorative details, the masonry layering, the crack pattern, the degradation and the color recognition. The drawing 
of these representations is a time-consuming task, accomplished by manual work by skilled operators who often rely on in-situ 
analysis and on pictures. In this project three-dimensional an automated method for the condition survey of reinforced concrete 
spalling has been developed. To realize the automated image-based survey it has been exploited the Mask R-CNN neural network. 
The training phase has been executed over the original model, providing new examples of images with concrete cover detachments. 
At the same time, a photogrammetry process involved the images, in order to obtain a point cloud which acts as a reference to a Scan 
to BIM process. The BIM environment serves as a collector of information, as it owns the ontology to recreate entities and 
relationships. The information as extracted by neural network and photogrammetry serve to create the pictures which depict the 
concrete spalling in the BIM environment. A process of projecting information from the images to the BIM recreates the shapes of 
the pathology on the objects of the model, which becomes a decision support system for the built environment. A case study of a 
concrete beam bridge in northern Italy demonstrates the validity of the process. 

* Corresponding author

1. INTRODUCTION

The processes of surveying, geometric and informative 
representation and project management of built environment 
highlights were consequential and independent phases. In a 
digital environment, they can find overlap and mutual 
enrichment.     
Recent developments in 3D modeling associated with 
information management, demonstrate how Building 
Information Modeling (BIM) can use classes and structured 
ontologies to enable any knowledge-base for asset management. 
Moreover, the efforts by BuildingSmart International to expand 
the IFC schema (Industry Foundation Classes) for linear 
infrastructures validates the importance of intervening in these 
strategic national assets. 
Hence the need for the built object to obtain a digital twin, 
composed by digital survey and classes of products, which 
becomes a reliable basis for decisions for operations. By 
contrast, some procedures in professional practice are still 
related to conventional techniques, such as manual drawing on 
paper. For example, the survey for restoration is characterized 
by an increased focus on reading the state of conservation of the 
building, composed by the survey of constructive and 
decorative details, the masonry layering, the crack pattern, the 
degradation, and the color recognition. These representations 
are accomplished by manual work driven by skilled operators 
who often rely on in-situ analysis and pictures, sometimes in 
the form of orthophotos, and on their personal ability. 
Moreover, there is a general lack of standards for the 
representation of building pathologies, usually described by 
generic patterns and colors annotated on a specific legend. 
Therefore, it seemed natural to consolidate multiple possibilities 
in investigating a built object within a common solution: photo 
modeling procedures to obtain a point cloud, machine learning 

techniques to both classify damaged entities and relate them to 
BIM objects. Implemented within an ad-hoc platform, this 
process allows building a management system that can be 
expanded over time and easily replicated over time. The 
experience can then be expanded to heritage buildings, which 
share modeling issues and similar risk to communities. 
The study summarizes, through the example of an existent 
bridge, some processes for managing and integrating 
heterogeneous information: producing a Scan to BIM model, 
checking the correctness of the model and structural problems 
thanks to deviance analyses between model and point cloud, 
architectural photo modeling, machine learning for location of 
damaged elements, automation for the geometric representation 
of building pathologies through computer vision algorithms 
within the BIM environment. (1) 

2. LITERARY REVIEW

Few articles investigated how to describe an existing building 
with BIM, and the relationship between digital survey and BIM 
models (Murphy et al., 2009). In relation to this wide theme, 
one of the most interesting topics is the relationship between as-
built geometry provided by the point cloud and abstracted 
geometry provided by the model (Brumana et al., 2019). 
Deviance analysis may provide automatically indexes about 
structural issues in historic buildings and bridges (Giordano et 
al., 2015). Thanks to BuildingSmart effort, BIM for linear 
infrastructure is having a semantic definition to begin specific 
software developing (Costin et al., 2018).     
About the use of HBIM in performance assessment and 
diagnosis, the work of Bruno represents a state of art, without 
providing methods to relate pathologies and decay to BIM 
objects, still related to 2D representation (Bruno et al., 2018). 
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Other scholars tried to accomplish this task, without offering a 
comprehensive solution about the relationship between a 
specific condition and given building element (Malinverni et 
al., 2019). 
BIM models as repositories of information of structural 
elements have been already investigated by various scholars. 
Few articles described how to integrate a Structural Health 
Monitoring (SHM) within the IFC schema for modular building 
units (Valinejadshoubi et al., 2019), as a system similar to a 
BIM model for bridges (Smarsly and Tauscher, 2016). 
In recent years, the development of image-based technologies 
and laser scanner, aerial drones (UAV), computer vision, leads 
to a great improvement in terms of speed in Cultural Heritage 
data acquisition.  
The terrestrial laser scanner (TLS) technology allows a detailed 
reconstruction by returning a point cloud, valid both for the 
three-dimensional geometric reconstruction of the cultural 
heritage and to perform the analysis of the damage conditions. 
Some scholars proposed an alternative method to the traditional 
CAD models for structural evaluations (Sánchez-Aparicio et al., 
2018): by means of a radiometric and geometric relief, the 
methodology allowed to map a wide range of the most common 
degradations in masonry, supported by a 3D model. 
(Quagliarini et al., 2017) exposed a method for a digital survey 
of the state of conservation of historic buildings, even after 
seismic events. The virtual reconstruction, by partitioning the 
building in macro-elements and modeling the structure by 
geometric primitives, allows the identification of typical 
masonry damage mechanisms. 
Even if the LS technology is able to reach great precision, it 
represents an expensive tool, requiring qualified personnel to 
perform it. For these reasons, alternative studies on survey of 
degradations were carried by Galantucci and Fatiguso based on 
photogrammetry and three-dimensional analysis of surfaces 
(Galantucci and Fatiguso, 2019). Pandiella et al. determined an 
automated method to recognize the scaling effect on stone 
surfaces, using photogrammetry for 3D modeling (Muñoz-
Pandiella et al., 2017).   
Other approaches purposed a semi-automated system for the 
detection and classification of materials and their pathologies 
by means of photogrammetry and near-infrared images 
(Sánchez and Quirós, 2017), or an integrated methodology for 
the diagnosis of the degradations due to the futures climate 
changes, combining numerical methods with thermal and 
structural analysis (Cavalagli et al., 2019). Through the Finite 
Element (FE) model and the mapping of the current damage, it's 
possible to study the evolution over time of the degradations 
already present or that may occur in the future. 
The collection and managing of data from heterogeneous 
sources and the visualization of the state of degradation on 3D 
models are common issues in the field of Cultural Heritage 
conservation, involving scholars in developing toolkits for 
mapping and displaying stone degradations (Stefani et al., 
2014). 
Several solutions of automated classification have been 
proposed to quickly solve the survey of material cracks. Some 
studies presented their methodologies based on machine 
learning and neural networks for identification and 
quantification of cracks starting from images collected by 
remote-controlled robots (Jahanshahi et al., 2013; Prasanna et 
al., 2016). 
Other similar studies based on images for the analysis of cracks 
have been presented (Lins and Givigi, 2016; Nguyen et al., 
2014; Su, 2013; Valença et al., 2013). Usually computer vision 
functions are used to automatically extract the geometric 
properties of the damaged elements. 

In order to overcome the limitations due to the visual 
inspections and traditional methods of surveys, Adhikari uses 
neural networks to recognize cracks patterns in the images and 
realizing a 3D model to display the evolution of them on the 
structural elements (Adhikari et al., 2014).  

3. METODOLOGY

3.1 Machine Learning 

Traditional methods for building pathologies mapping are 
usually based on manual surveys and design on CAD files 
(Conde et al., 2016; Riveiro et al., 2011; Sánchez-Aparicio et 
al., 2014), requiring long and expensive operations, which 
mostly rely on the experience of the technicians. 
As a solution, it was decided to operate through an automated 
survey performed by an artificial neural network and to process 
the results obtained within a BIM software for the analysis of 
degradations. 
The entire process consists on performing an instance 
segmentation of the damages present in images: this method 
combines the classification and localization of objects, that 
generally returns the bounding boxes containing the objects 
themselves, with the pixel-level segmentation process, which 
creates the masks containing the detected objects. 
The Mask R-CNN (He et al., 2017) has been chosen as neural 
network. Developed by the FAIR – Facebook AI Research, its 
source code has been distributed and published from the 
activity of Waleed Abdulla (Abdulla, 2019). 

Figure 1. Network Architecture 

3.1.1 Network Architecture 

The neural network architecture is organized in three sections 
(Figure 1): the first one performs the extraction of the feature 
map through a particular convolutional backbone architecture 
called Feature Pyramid Network (FPN), to extract features 
within each analysed image. The second section identifies a 
further subdivision: in a first step, called Regional Proposal 
Network (PRN), which shares a common part with the Faster R-
CNN (Ren et al., 2016), it proposes the possible bounding 
boxes of the objects. In a second step, which uses the results of 
the Fast R-CNN (Girshick, 2015), the features are extracted 
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from each proposed bounding boxes by means of the RoIPool 
and the classification and the bounding box regression are 
performed. In parallel, the third section serves to identify the 
binary masks for each RoI (Region of Interest) containing the 
objects of any image. 
 
  
3.1.2 Training phase 
 
Starting from the original model of the neural network, trained 
on the COCO (2) dataset, a new training phase was carried out 
to allow the recognition of the spalling of concrete cover. The 
images provided for the training were manually labeled to 
perform a supervised training of the neural network. The 
process utilized 575 images, 303 of them representing one or 
more spalling condition. 
The training phase was executed for 16 hours and a total of 80 
epochs, each one with 575 steps and a batch size of 1 image per 
step. The tenth epoch model was used to perform the 
recognition of the degradation, in addition to which overfitting 
was beginning to occur (Figure 2). 
 

 
 

Figure 2. Loss and Validation Loss graphs from Tensorboard 
 
 
3.1.3 Source code modification 
 
The original source code provided by Abdulla has been 
modified to obtain an output file containing the EXIF data of 
the images submitted for recognition and a list of the 
coordinates of the pixels of each mask, as detected by the neural 
network. This data will be integrated later within the BIM 
environment. For a preliminary visual check of each performed 

detection, the algorithm extracts the images containing only the 
detected spalling (Figure 3). 
 

 

Figure 3. Example of spalling detection 
 
3.1.4 Observation of the results 
 
In Table 1 are presented the results of the damage detection 
phase, performed over 541 photos from the survey of the case 
study. Considering only the 75 detailed images used for the 
modeling of the pathologies, the percentage of precision 
increases. It has been observed a good precision in the detection 
of the concrete spalling, nevertheless, the presence of false 
positives is high, particularly when images depict railings, 
metal wires, stains, and vegetation. Missed detection cases 
occur in photos taken with low-light conditions. Indeed, the 
same object pictured with higher exposure conducted to better 
results, probably due to a greater contrast among between steel 
reinforcement and concrete. A wider dataset could improve the 
detection results. 
It should be noted that the results in the table have been 
compiled as a truth table, by manually observing what were the 
degradation in the images and those detected, without a control 
of the masks at a pixel-level. 
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 All W/damage 
Pictures 540 75 
Actual spalling - True 1205 228 
True detected 613 203 
True missed 592 57 
Weighted average % of True 37 71.92 
False detected 672 75 
Average number of False per image 1.24 1 

 
Table 1 - Truth table of the detected and missed spalling 

 
 
3.2 Photogrammetry 

Unlike traditional methods of analysis based on 2D 
representations  (Salonia and Negri, 2003) the method proposed 
here relies on 3D reconstruction of the building, for the 
visualization and analysis of pathologies. In this way, the study 
enriches traditional documents, limited to the description of 
only faces orthogonal to the view projection direction (Stefani 
et al., 2014). 
A photogrammetry technique represents the base of the digital 
survey. Compared to laser scanner, the process requires less 
expensive and complex instruments. Furthermore, the use of 
pictures is complementary to the automated degradation 
analysis via the neural network. A further advantage could be 
achieved integrating in the proposed system UAV drones to 
accomplish a photographic survey of inaccessible/dangerous 
areas. An example of the possibilities of this technology have 
already been experienced for the survey of both infrastructures 
and historical buildings (Hallermann et al., 2015a, 2015b). 
A clear disadvantage is the dependence on the lighting 
conditions of the site: it is preferable to perform the survey 
during cloudy days, which guarantee diffused and non-direct 
lighting, thus avoiding sharp shadows and overexposure 
situations, with cause a consequent loss of information. 
 
3.3 HBIM 

This section studies how damages and building pathologies, 
both automatically o manually selected, are organized within 
the well-known domain of Building Information Modeling. 
The Scan-to-BIM process highlights the importance in having a 
digital survey and BIM models within the same modeling 
environment, considering as essential the increase of knowledge 
necessary to obtain an analysis tool instead of a simple database 
of digital objects (Giordano et al., 2015). In order to be a 
critical tool, every model needs to describe the state of things 
(geometries and parameters) and its relations (ontologies), 
demonstrating the necessity of international standard for the 
built environment, such as the IFC schema. Moreover, objects 
need to be related through operations such as grouping, 
splitting, linking to produce any analogy/difference reasoning, 
in comparison with other reference models (geometric, 
configurational-structural, historical, ornamental, building 
condition, etc.).  
This fact leads to the well-known concept of BIM libraries. The 
main problem in applying any BIM concept to existent built 
object is about the lack of available libraries, both for 
architectural heritage (i.e. vaults for cathedrals) and existing 
infrastructure (i. e. steel component profiles for bridges beams). 
The fact determines the necessity of time-consuming operations 
in building libraries to achieve the required result. Another 
problem is based on the reconstruction of the necessary 
hierarchical structure, which helps to create the typical BIM 

organization, especially for an existent infrastructure object.  
Indeed, if a building is spatially organized by “IfcSite”, 
“IfcBuilding”, “IfcBuildingStorey”, “IfcRooms”, a bridge is 
planned by other spatial elements, such as abutments, piles, 
assemblies of beams, etc. For this reason, BuildingSmart 
released IFC4.1, in which the IfcAlignment is documented as 
the positioning structure of the elements composing a bridge. In 
this sense, as levels in existent buildings, the BIM for a bridge 
demands algorithm to create firstly the alignment, then its 
virtual components. The phases to create a BIM from a point 
cloud are:  
- data entry of the digital survey (point cloud) within the 
modeling software; 
- after finding a generative geometry, construction of objects by 
classes, referenced to the point cloud (in case, automatic 
procedures could replace this phase); 
- deviance analysis between as-modeled components and the 
point cloud (Anil et al., 2013); 
- documentation of the information previously obtained. 
The point cloud does not function only as documentation, but 
mainly as an analysis tool: it would be limiting thinking that 
this feature could be useful only for model checking. This 
process may lead to better results on conservation and 
preservation/condition survey. Firstly, a distributed deviation 
analysis is valuable for collapse mechanisms. Previous case 
studies demonstrated that this methodology is suitable to 
evaluate local damages and failures, such as out-of-plane walls 
and deformation on floors and vaults. Moreover, it is possible to 
detect all those building conditions that have generic missing 
part (gap, loss of material, loss of matrix).  
A second part illustrates the methodology for integrating 
information about specific building pathologies within the BIM 
model. Following BIM standard and widespread methods, the 
requirement is not only in depicting correctly surface 
pathologies and structural condition by representing them but 
also on linking information the condition to the object itself. As 
stated during the literature review, other scholars highlighted 
some issues: on the one hand, graphically, the process could not 
lead to the use of symbolic representation; on the other, it is 
difficult to store complex areas regarding multiple parts of 
objects (i.e. vegetation/exfoliation on masonry surfaces).  
The methodology here proposed is based on projecting 
graphical information, in the form of curves (open or close 
polylines) (Borin et al., 2018). As stated before, commonly 
building pathologies are stored in 2D representation, such as 
orthophotos and the digital pictures, in which experts indicate 
curves on geometries (projections of 3D geometries on the 
support). In the case of parallel projection, the information 
gathered is about the direction of projection (the centre of 
projection is an infinite point). On the contrary, with digital 
pictures, the required data is represented by the centre of 
projection and the direction, following the perspective rules). If 
the scan-to-BIM process starts from a point cloud after a 
photomodeling procedure, it appears clear that data is provided 
by the photomodeling process itself and can be easily imported 
in the VPL environment.   
In order to coordinate the models, in the first steps, the 
procedure involves elementary concepts of coordinate system 
mapping. Once the geometry about frame and curves are placed 
and scaled on the centre of projection, the method inverts the 
projecting process by means of typical computing techniques as 
ray tracing. Consequently, the script relates the found pathology 
on any 2D support with the BIM object, writing the relationship 
as ad-hoc parameters.  
The explained methodology permits to have multiple 
description/taxonomy of pathologies on different type of 
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surface, disconnecting the drawing of building condition on the 
BIM model, assigning the same task to an accurate 
computational projection of curves. 
 

 
 

Figure 4. Current state of the bridge 

 

Figure 5. Photogrammetric point cloud 
 

4. CASE STUDY 

A road bridge located in northern Italy was chosen as a 
representative case study. The bridge, about 250 meters long, is 
divided into 15 spans. The study analyzed the first three on the 
east bank. 
The structure of the bridge is in reinforced concrete, composed 
of three longitudinal beams, supported by girder spans each 
supported by four pillars. 
There is an evident state of degradation, with widespread 
concrete spalling, an ideal condition to test the validity of the 
proposed method. 
The photographic survey was carried out around and at the 
intrados of the main beams, collecting in total 541 photographs, 
for creating a point cloud and analyzing automatically the state 
of conservation. 
The dense point cloud obtained, once the superfluous data have 
been manually eliminated, counts 155 million points. Although 
there are several studies on automated modeling (Martarelli et 
al., 2014; Quagliarini et al., 2017; Sánchez-Aparicio et al., 
2018), the BIM model was reconstructed manually. The lack of 
standard makes necessary to align the objects typically defined 
for buildings in a bridge model. Beam objects have been used 
for beams, columns for bridge piles, a slab for the road slab, etc. 
Each element was modeled individually, using parametric 
elements that have been adapted to reflect as close as possible 
the current situation, in order to guarantee the best precision 
during the following degradation projection phase.  
The final step reconstructed 146 surfaces as pathologies. Each 
object is defined by a unique ID and associated with the 

structural element that hosts the issue. A schedule, specifically 
created within the BIM software, documented the current 
situation: any degraded surface in the model can be viewed 
directly and without any possibility of misunderstanding. At the 
same time, the user can group all the pathologies by element 
(beam, column, slab). In order to perform a detailed report, all 
the data can be viewed in a specific sheet which illustrates the 
pathologies identified. 
To perform the projection of the masks as recognized by the 
neural network, an ad-hoc script was created using Dynamo. 
The data extracted from the neural network (EXIF data and 
contours of the degradations) and from the camera alignment 
phase (position and orientation), allow reconstructing each 
selected picture in the 3D model. As described above, each 
photo was projected inversely towards the 3D objects, 
identifying the vertices of the degraded surfaces, then converted 
into classified elements of degradation. 
 

 
 

Figure 6. Detailed image of the slab intrados, at right 
recognized damages  

 

Figure 7. BIM model with the detected damages 
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5. CONCLUSIONS 

In conclusion, the exposed method allows performing, in a BIM 
environment, the analysis of the current state of damage of a 
built object. The study specifically deals with finding concrete 
spalling. 
Among the noteworthy advantages of using BIM platforms, the 
semantic characterization of each element, defined by its 
function, represents a key point to facilitate the reading process 
of the model. Moreover, its properties in interoperability and 
information management make it an essential tool in the field of 
conservation of Cultural Heritage. 
The main purpose of this study was to find an efficient method 
for the survey of the state of conservation of buildings, saving 
time compared to the state of practice. It concerns the use of a 
photogrammetric survey, as a more accessible technique than 
laser scanning, artificial neural networks for damage detection 
and an automated modeling phase in the BIM tool. 
With regards to timing, it took 270 seconds to analyse 75 
images at 16.2Mpx, 3.6 seconds per image. Considering a 
hypothetical neural network with sufficiently high reliability, 
these times are clearly superior to any manual visual analysis of 
a skilled operator. 
While the reconstruction of the photographic shots in the three-
dimensional BIM model, the projection of the vertices on the 
structural elements and the reconstruction of the degraded 
surfaces took about 28 minutes, for a total of 146 elements. 
In addition to the speed of execution in the automatic modeling 
process, the script allows realizing surfaces located on corners 
and on inclined planes - an operation that would require 
considerable effort if performed manually. Furthermore, the 
surfaces are perfectly coincident with the element to which they 
belong. 
With regard to the accuracy, assuming a sufficiently reliable 
neural network, it is clear the advantage of the analysis at pixel-
level over the entire surface of the picture. 
A further advantage of this method compared to others 
(Adhikari et al., 2014; Hallermann et al., 2015b), it is not 
mandatory to take photos orthogonally to the surface or perform 
the degradation analysis on orthophotos. Furthermore, this 
technique is fully compatibile with the use of UAV drones 
equipped with cameras, performing the state of preservation of 
the structure even in inaccessible areas. 
Further development concerns the expansion on detecting 
multiple degradations on masonry and the execution of the 
damage survey directly on the point cloud, so as to be able to 
detect also the depth of the concrete spalling.  
 
 
 
 
 
 
 
 
 
 
 
(1) The chapter Introduction, Methodology for HBIM, 
Conclusion are written by Paolo Borin, the other part by 
Francesco Cavazzini.  
(2) COCO is a large-scale object detection, segmentation, and 
captioning dataset sponsored by CVDF, Microsoft and Mighty 
Ai. 
 

 
Figure 8. Representation of the current condition of bridge parts 
 

 
 

Figure 9. Projection of curves from analyzed images to BIM 
elements. 
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