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ABSTRACT: 

Heritage elements, from historic buildings to stone sculptures and panels, stand as key elements in the history of humanity. 
Unfortunately, the deterioration of both the surface and the interior of these elements is inevitable, endangering the quality and 
existence of these structures of high historical value in the event of a delay in the implementation of the required maintenance 
tasks. InfraRed Thermography, IRT, appears as one of the most recent techniques to detect and characterize possible pathologies in 
structures in their early stages, being very useful for a preventive analysis in heritage elements.  

This paper presents a methodology for the automatic detection and characterization of one of the most severe and frequent 
pathologies in heritage structures, moisture, from thermal images. The proposal stands as a demonstration of the potential of the 
IRT technique for heritage conservation applications, and as a new step towards the automation of the inspection process and 
optimization of the decision-taking in conservation actions within cultural heritage. For that, two thermal criteria and a semi-
automatic image rectification process are implemented as main phases of the methodology, obtaining good results for the detection 
of moisture zones and accurate area values with regard to the real dimensions of each moisture zone. Specifically, an F-score 
average of 78%±19% regarding detection performance and a percentage relative error of minimum 4%, and maximum of 12%, 
referred to the area computation in unit metrics are obtained.   

* Corresponding author 

1. INTRODUCTION

According to Cadelano et al. (2015), the conservation of 
heritage elements requires the knowledge of the phenomena 
involved in the processes of deterioration of the affected areas. 
These include: i) biological/mould growth, ii) efflorescence/salt 
crystallization, and iii) cracking and detachment as decay 
mechanisms. All of them can be caused by moisture through 
the following corresponding actions: 

i) water promotes the development and expansion of the mould
in non-nutritive materials with traces of organic matter
contamination.

ii) water precipitates and crystallizes certain water-soluble
salts, when water is evaporated in a material.

iii) water changes its volume through its change of state,
liquid-solid-vapour, generating pressure or depression inside
the pores of materials.

Consequently, the detection and characterization of moisture at 
an early stage in heritage elements are essential to avoid 
irreversible damage in their surfaces and interiors. With this 

purpose, Non-Destructive Testing (NDT) techniques are 
defined as ideal tools for performing the above tasks, since 
they do not damage the heritage elements under study (Riveiro, 
Solla, 2016). InfraRed Thermography (IRT) stands among the 
most appropriate NDT methods for moisture analysis because 
of the following advantages: i) remote and real time operation, 
ii) high accuracy and high-speed scanning, iii) non-emission of
harmful radiations and iv) easily interpretable results in 2D
(Garrido et al., 2018a).

IRT consists of a technique that measures the temperature of 
the surface of a material by means of thermal sensors (Garrido 
et al., 2018a), saving the measurements in image format. The 
thermal sensors are typically incorporated in a camera, known 
as Thermal InfraRed (TIR) or thermographic camera.  

For the specific case of moisture, the presence of water 
generates an anomalous temperature distribution that is 
reflected on the superficial temperature of the material prior 
the water reaches the surface. This thermal print is different 
with regard to the temperature distribution of the unaltered 
environment (Bagavathiappan et al., 2013), and can 
consequently be detected using IRT. 
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As will be seen in Section 2, there are several investigations 
focusing on the application of IRT to moisture analysis. 
However, all these IRT studies require the interpretation of the 
data by a human operator, increasing the risk of a wrong 
assessment due to the high-level of subjectivity and 
dependence on the expertise of the operator, except for Garrido 
et al. (2018b) and Garrido et al. (2019). Then, with the aim of 
taking a step forward towards the automation of the inspection 
process and optimization of the decision-taking in conservation 
actions within cultural heritage, this work presents a 
methodology for the automatic detection and characterization 
of moisture in heritage elements, from the thermal images 
acquired with IRT. For that, this paper is structured as follows: 
first, Section 2 describes an overview of the most recent IRT 
works on the analysis of moisture. Secondly, Section 3 explains 
the main steps of the methodology developed, showing the 
results and discussion of its application in various tests in 
Section 4. Finally, Section 5 contains the conclusions reached. 

2. RELATED WORK

Analysing the most recent IRT works related to the study of 
moisture, two different approaches can be contemplated both 
during the acquisition and the post-acquisition phases. Some 
IRT research perform the acquisition by applying some natural 
thermal excitation source, such as solar radiation, with the aim 
at measuring the surface temperature differences between 
moisture and unaltered environment. With this approach, 
called passive IRT, it is only possible to detect and characterize 
moisture that thermally affects the material surface, 
compensating this limitation through its simpler and faster 
experimental setup. Otherwise, the use of artificial thermal 
excitation, such as lamps and heaters, allows a better thermal 
contrast of the acquired thermal images, in addition to detect 
and characterize internal moisture (active IRT). 

Regarding passive IRT, it is possible to identify changes in 
moisture content on adhered ceramic façades by analysing their 
different thermal behaviour at different hours (Edis et al., 
2015) or days (Edis et al., 2014). As both works detect changes 
in moisture content during the post-acquisition stage, this 
approach is known as qualitative IRT, in which the only 
purpose is to detect anomalous areas. Instead, if the objective 
is to determine some characteristics of the moisture, the 
approach is denominated as quantitative IRT. 

More examples of passive IRT are: i) Garrido et al. (2018b) 
and Garrido et al. (2019), which search moisture areas on 
surfaces of internal/external walls and of construction 
materials of different scale sizes, respectively (qualitative 
IRT), ii) Barreira et al. (2016), who assess moisture related 
phenomena in building components (qualitative IRT), iii) 
Georgescu et al. (2017), who monitor the interior of a church to 
evaluate improvements made after restoration works in search 
of moisture areas to remove (qualitative IRT), and iv) Barreira 
et al. (2017), who analyse the humidification phenomena in 
lightweight concrete specimens, both in qualitative and 
quantitative IRT. 

Moreover, with active IRT, i) Cadelano et al. (2015) evaluate 
the decomposition of fresco mural painting inside of a 
medieval chapel through the detection of the presence of water 
on the decorated surfaces and inside the walls, considering 

solar radiation as an “artificial” thermal source (qualitative 
IRT), while ii) Sfarra et al. (2016) use two halogen lamps to 
analyse the state of a mural painting in combination with other 
NDT and micro-destructive analytical techniques, identifying a 
sandwich structure having the interstitial void full of moisture 
(qualitative IRT), among others, and iii) Sfarra et al. (2017) 
evaluate the state of conservation of a mosaic testing it through 
different experimental setups, among them by applying a 
halogen lamp where the interior water made as artificial defect 
is detected (qualitative IRT). 

3. METHODOLOGY

The method proposed consists of three main phases applied to 
a single thermal image at a time, being the images acquired in 
passive IRT. Figure 1 shows the workflow of the methodology, 
using one of the case studies analysed in Section 4 as example 
of input thermal image (Test_1). 

Figure 1. Workflow of the methodology  
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In the first phase, the histogram of the input thermal image is 
adjusted to a polynomial equation in order to automatically 
obtain the minimum value between the two maximum peaks of 
the histogram. This is based on the thermal criterion that the 
temperature distribution of a thermal image of a structure, with 
areas affected by pathologies, presents an approximate bimodal 
distribution. In other words, the thermal image histogram of a 
heritage element with moisture areas consists roughly of a 
combination of two Gaussian distributions, one belonging to 
the unaltered zones and the other to the pathology (Garrido et 
al., 2019). Thus, by counting the number of maximum peaks in 
the histogram of the thermal image, it can automatically be 
determined whether (2 maximums peaks) or not (more or less 
than 2 maximums peaks) a material will have anomalous areas. 

In the case of pseudo-bimodal distribution (2 maximums peaks 
in the thermal image histogram), the minimum value between 
the maximums peaks is considered as the point of overlap 
between the Gaussian distributions of the unaltered areas and 
the moisture, respectively. With the purpose of knowing which 
Gaussian bell of the pseudo-bimodal distribution belongs to 
moisture, the following hypotheses are considered on the 
second phase of this method: 

1) Thermal image acquired during sunrise: the Gaussian bell of
moisture is located at the left regarding the point of overlap,
because the evaporative cooling and the increased heat storage
capacity in the moisture area slow the temperature increase
with respect to the temperature increase of the unaltered
environment.

2) Thermal image acquired during sunset: the Gaussian bell of
moisture is located at the right regarding the point of overlap,
because the condensation process and the increased heat
storage capacity in the moisture area slow the temperature
decrease with respect to the temperature decrease of the
unaltered environment.

In this way, the temperature range of moisture can be known 
automatically, by directly grouping different candidate regions 
to moisture areas with the help of the application of some 
image processing algorithms. The first one consists in the 
application of the morphological dilation process (Balado et 
al., 2019) on the thermal image by means of the previous 
creation of a binary mask, allowing to group nearby pixels that 
are not colliding but that have their values within the moisture 
temperature range. Next, a method of connecting components 
(Riveiro et al., 2018) is used, labelling each candidate region 
to moisture area in order to separate among them. With the last 
purpose, and as last step of this second phase, it is possible to 
calculate separately the Kurtosis and Skewness values 
regarding the temperature distribution of each candidate 
region, allowing the automatic verification of the Gaussian 
distribution. Then, with these parameters, the effect of noise 
(non-Gaussian distribution) appearing as false Gaussian bell is 
discarded. 

Regarding the last phase of the methodology, and after 
automatically detecting the possible regions affected by 
moisture on the heritage element under study, two different 
steps are applied in order to geometrically characterize each 
moisture area detected and drawn on the input thermal image. 
The first step is a semi-automatic image rectification applied to 

the input thermal image. By means of the image rectification 
process, the area of a pixel in metric magnitudes can be 
obtained. This process is semi-automatic as four control points 
on the input thermal image must be manually assigned 
beforehand, knowing their real relative distances. The second 
step, automatic, consists of counting the number of pixels in 
each moisture area from the rectified thermal image. 
Consequently, the real surface value of each moisture zone is 
known. 

4. RESULTS AND DISCUSSION

This methodology has been tested in several heritage elements, 
showing their visible images in Figure 2. 

Figure 2. Visible images of the case studies (regions of interest 
in red rectangles). Reference name, from top to bottom: Test_1, 

Test_2 and Test_3 

As can be observed, Test_1 consists of a part of a wall 
belonging to an academic building built during the first half of 
the last century. Test_2 tests a wall belongs to a museum 
building built in the mid-19th century. Last, Test_3 is a part of 
the wall of an 18th century cemetery. The corresponding input 
thermal images are represented in Figure 3, reflecting on the 
right side of each image their corresponding temperature scales 
(in ºC). It can be seen that there are signs of moisture in all 
images. The acquisitions were made: Test_1 during the 
sunrise, and Test_2 and Test_3 during the sunset. 
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Figure 3. Input thermal images of the analysed case studies. 
From top to bottom: Test_1, Test_2 and Test_3 

Figure 4 graphically shows the results of the moisture regions 
detection obtained with this methodology, representing on the 
right side of each result the corresponding real regions verified 
by an expert operator. 

 Figure 4. Results of the methodology in each case study (red 
lines), representing on the right side of each result the 

corresponding real moisture regions (red lines). From top to 
bottom: Test_1, Test_2 and Test_3 

To quantify the qualitative results, the following performance 
metrics (values in percentage) are defined: 

where TP, FP and FN are the number of true positives/pixels, 
false positives/pixels and false negatives/pixels, respectively 
and regarding between the detected and the real moisture 
areas. Results of precision, recall and F-score performance 
metrics for each case study, and the global average and 
standard deviation, are shown in Table 1. 

Precision (%) Recall (%) F-score (%) 
Test_1 96 99 98 
Test_2 66 54 60 
Test_3 83 73 78 
Average (%) 82 75 78 
Standard 
deviation (%) 15 22 19 

Table 1. Precision, recall and F-score results for each case 
study in addition to the global average and standard deviation 

Analysing the previous results, the methodology developed 
gives good results for detection of moisture areas, with values 
generally higher than 70%. In Test_2 the results are the 
poorest due to solar reflection at the time of thermal image 
capture, decreasing the performance of the IRT. So, it is very 
important that the acquisition of thermal images is done during 
the sunrise/sunset just before/just after the 
appearance/disappearance of sunlight, respectively, trying to 
make the captures as perpendicular as possible. 

Referring to the calculation of the area in metric units in each 
of the regions of moisture detected in Figure 4, Table 2 shows 
the values obtained and the estimation error of this quantitative 
analysis comparing with the real values through the absolute 
error and percentage relative error calculations. 

Test_1 Test_2 Test_3 

Moisture area calculated (m2) 0,084 0,839 1,729 

Absolute error (m2) 0,003 0,057 -0,244
Percentage relative error (%) 4% 7% -12%
Table 2. Area value obtained for each detected moisture region 

in metric units, in addition to their corresponding absolute 
error and percentage relative error values 

As can be seen, the methodology proposed also offers an 
acceptable geometric characterization, although accuracy is 
dependent on the area: the higher the area, the lower the 
accuracy of the area estimation. In addition, given the good 
performance regarding the geometric characterization, the 
results of Table 1 can be shown as detected/undetected 
moisture area, and area falsely detected as moisture, for each 
of the case studies in metric units (Table 3). 

Test_1 Test_2 Test_3 

Detected moisture area (m2) 0,084 0,839 1,729 

Undetected moisture area (m2) 0,001 0,383 0,473 

Area falsely detected as moisture (m2) 0,003 0,286 0,292 
Table 3. Detected/undetected moisture area, and area falsely 
detected as moisture, for each of the case studies in metric 

units 

5. CONCLUSIONS

This work shows a methodology for the automatic detection 
and geometric characterization of moisture areas in heritage 
structures from thermal images. Through the application of 3 
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main phases in different case studies, the first two phases 
based on thermal criteria that analyse the temperature 
distribution regarding the images, for the detection process, 
and the third phase focusing on the image rectification process, 
for the geometric characterization process, acceptable results 
have been obtained. Referring to the detection performance, 
average values of 82%±15%, 75%±22% and 78%±19% for 
precision, recall and F-score are obtained, respectively. 
Regarding the geometric characterization, the real area of each 
region of moisture is obtained, with minimum values of 0,003 
m2 and 4%, and maximum values of -0,244 m2 and -12%, with 
respect to absolute error and percentage relative error 
parameters, respectively. 

Future researches will deal with the automatic detection of 
Gaussian bells with moisture in a more robust way than the 
polynomial adjustment process of the thermal image histogram 
under study, and automatically classify several types of 
pathologies in a same thermal image, such as moisture and 
cracks, following the line of (Garrido et al., 2018b). 
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