
PUZZLING ENGINE: A DIGITAL PLATFORM TO AID THE REASSEMBLING OF
FRACTURED FRAGMENTS

R.D.L. Hernandez∗, S. Vincke, M. Bassier, L. Mattheuwsen, J. Derdeale and M. Vergauwen

Dept. of Civil Engineering, TC Construction - Geomatics
KU Leuven - Faculty of Engineering Technology

Ghent, Belgium
(roberto.delimahernandez,jens.derdaele,maarten.bassier,stan.vincke,lukas.mattheuwsen,maarten.vergauwen)@kuleuven.be

Commission II, WG II/8

KEY WORDS: Digital reassembling, Serious games, Heritage fragments segmentation

ABSTRACT:

The reassembling of fractured fragments is a paramount task in the fields of digital heritage documentation and reconstruction of archae-
ological artifacts and monuments. This process is typically carried out by manually puzzling matching clues such as decoration,shape,
contour, etc. This labor poses a challenge for restorers as fractured fragments are fragile, deteriorated and in some cases bulky. In order
to aid experts in this meticulous and time-consuming process, a puzzling engine is developed with the aim of providing the user with
tools to facilitate the reassembling of 3D digital fractured fragments. The assisting tools that compose the puzzling engine include 3D
manipulation, reference plane alignment, segmentation, and registration. Furthermore, a Virtual Reality (VR) environment is presented
as an alternative matching tool. This allows the user to have an intuitive understanding of the fragments in terms of scale, texture,
materials, etc., thus facilitating and speeding up the reassembling process. To show the potential of the proposed tool, the engine is
tested by archaeologists not only to puzzle classical stone fragments but also to match deteriorated ancient Egyptian rock tomb blocks.

1. INTRODUCTION

3D digital restoration of fractured fragments has been widely
studied since it is a fundamental task that plays a crucial role
in the restoration of both heritage monuments and archaeological
artifacts. Fracture of tangible heritage can be caused by differ-
ent reasons: deterioration over time, natural catastrophes, looting
activities, historical events, etc. As a result, the common denomi-
nator found in fractured fragments is the lack of material that pre-
vents restorers from intuitively joining the fragments and retrieve
the original shape of the object. Therefore, experts have resorted
to traditional techniques to retrieve tangible clues for puzzling.
For instance, hand-measurements to match fragments based on
scale, meticulous hand-drawings of contours to easily detect frac-
tured areas, and so on. However, this is a time-consuming labor
that requires technical expertise. With the maturity of computer
vision and pattern recognition techniques, numerous approaches
have been proposed to provide experts with automatic clues to
match the fragments. Most of these are based on extracting and
matching local geometric properties of the points that form the
3D mesh. Although these approaches show promising results,
they struggle to retrieve distinctive points for sets with low over-
lap. This is the main challenge for most of heritage fragments
which have undergone severe damage. Hence, for many real-
life applications the matching task is still carried out manually
as complex features like decoration style or inscriptions meaning
are required to solve the puzzle.

In order to assist experts in the matching process, a puzzling en-
gine to join fractured fragments is presented. This digital plat-
form allows the user to interact with the 3D fragments and re-
trieve geometric features out of the polygonal mesh. As initial
setup, the fragments are loaded into a common virtual reference
plane, so that registration is reduced to alignment in two dimen-
sions. After startup, the engine provides the expert with tools to
∗Corresponding author

facilitate the manual alignment, more specifically, contour sur-
face extraction, principal curvature detection, and pairwise re-
fining registration. On the one hand, the main contour surface
offers clear visualization of the shape of fractured areas. On the
other hand, the point-cloud of principal curvatures show the re-
lief, decoration, and damage of the fragments. Moreover, the fine
alignment allows to successively join fragments while preventing
registration errors. The puzzling engine is tested by archaeolo-
gists to match different types of fragments, including high/low
relief Wall Decorated Fragments (WDF) and stone objects from
(Huang et al., 2006). To showcase the potential application of the
approach, the former ancient fragments are puzzled in the virtual
environment where the objects were found (See Figure 1).

Figure 1: Example of the VR Puzzling Engine, aligning ancient
decorated wall fragments.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License. 563



The remainder of the paper is organized as follows. In Section
2, the related work on methods for matching archaeological frag-
ments is presented. In Section 3, the methodology followed to
build up the puzzling engine is described. The results and dis-
cussion on the performance of the digital platform are presented
in Sections 4 and 5. Finally, conclusions and future work are
outlined in Section 6..

2. RELATED WORK

In general terms, the task of digitally reassembling fractured frag-
ments boils down to an alignment problem. Typical 3-D registra-
tion approaches aim at finding relationships among point-clouds
affected by similarity transformations such as translation, rota-
tion and scale. The registration process commonly encompasses
three steps: feature extraction, matching, and fine alignment. The
first two steps are intended to calculate a rough transformation,
while the final one is an iterative process to reduce the distance
between point-clouds. The key behind finding a function that re-
lates a point-cloud with its counterpart lies in detecting distinctive
characteristics, on the basis of which spatial coherent matches
are determined to compute a rigid transformation. Therefore, re-
searchers have focused on developing methods for the extraction
of local and global characteristics, based on geometric proper-
ties derived from the arrangement of the points in the 3D space.
For instance, Huang et al. et al. (Huang et al., 2006) propose
an approach to automatically match unassembled objects by lo-
cally describing the fragmented region in function of curvatures.
Khang Z. et al. (Zhang et al., 2015), tackles the same problem by
means of a template-based strategy, in conjunction with normal-
based features and curvatures. More recently, by characterizing a
fractured surface in terms of curve networks, Mengmeng W. and
Jianfeng W. (Wu and Wang, 2018) are able to find trustworthy
matches for the reassembling of tiny objects.

The success of automatic reassembling approaches relies on the
object completeness. This reduces the complexity of the problem
since it is assumed that fractured regions remain intact. How-
ever, this assumption does not hold true for heritage fragments
that have undergone severe damage and transformations. For in-
stance, fractured surfaces and decoration paint of ancient stone
fragments erode away over time, thus preventing existing feature
extraction methods from yielding a reliable numerical description
of fractured areas. The puzzling of ancient heritage fragments
requires, inevitably, the knowledge of experts to identify clues
that allow registration techniques to compute an accurate rigid
transformation. As a result, computer-assisted technologies have
been developed to serve as an empowering tool to facilitate the
reassembling process. Kimia B. and Aras H. (Kimia and Aras,
2010) propose an expert-aided interactive platform to assemble
vessel fragments, based on the silhouette extracted from images
and scans. Benedict B. et al. (Brown et al., 2012) created a tool
for visual restoration of fresco fragments, which provides the user
with potential alignments merely based on the fragment’s shape
and texture.

The presented approach deals with badly preserved ancient deco-
rated wall fragments. Current automatic approaches struggle with
this kind of entities due to the lack of matched points. Either lo-
cal or global features could lead to mismatches since the fractured
surface might be incomplete. As for current manual-based strate-
gies, these are not able to cope with erratic shapes and scales, as
their matching algorithms assume geometrically-consistent data.
The proposed expert-assisted interactive platform takes function-
alities of both approaches. On the one hand, various geometric
properties are exploited to split the fragment into segments which

serve as visual tools to intuitively solve the puzzle. On the other
hand, the interface developed enables the user to roughly align
the fragments. This task is enhanced by means of an alignment
refinement strategy based on ICP. In addition, the platform is in-
stantiated into a VR environment so that user is able to immer-
sively visualize the geometric attributes of the fragments.

3. METHODOLOGY

Figure 2 shows an overview of the steps that encompass the puz-
zling engine developed on Unity. As noted, the workflow is di-
vided in two parts: the starting setup and the puzzling process.
The first stage entails computing geometrical features and ren-
dering the respective primitives (plane, contour, principal curva-
tures). This step is performed only when the fragment is loaded
for the very first time, otherwise the vertices of geometric struc-
tures are loaded from a serialized file. Once features have been
retrieved, the fragment is oriented with respect to a generic plane
perpendicular to the z-axis. Since fragments are initially loaded
on a 2D imaginary plane, their respective movement is restricted.
Translation is carried out only along the x and y axis. Rotation
is performed on the basis of Euler angles in degrees along the z-
axis. Besides fragment manipulation, the puzzling stage includes
pairwise alignment through ICP on the basis of K-d tree nearest
neighbor search. After the user feeds the software with an initial
rough alignment, the closest neighbor points of the contours are
extracted and aligned by using ICP. All fractured fragments are
then puzzled by iteratively following the prior process.

3.1 Starting Setup - Extraction of Geometric Primitives

3.1.1 Principal Plane The registration steps discussed in the
related work are normally preceded by a segmentation process.
This pre-matching step makes total sense as only the fractured
area contains vital information for matching. Moreover, the com-
putational burden of the system is notably reduced when splitting
the workload into non-dense point-clouds. Segmentation tech-
niques are chosen according to the type of data the problem is
dealing with. Since planarity is a prominent characteristic of dec-
orated wall fragments, plane-based segmentation is performed to
declutter unmatched areas. This way, the matching task is fo-
cused on those points which are most likely to match.

The digital representation of archaeological fractured fragments
is by nature noisy and sometimes incomplete. Therefore, seg-
mentation techniques based on local features such as normals
(Prakhya et al., 2015) or curvatures (Aldoma et al., 2012), could
lead to inconsistent results. However, RANSAC (Schnabel et
al., 2007), the well-known method to extract mathematical prim-
itives, has proved to be a reliable approach for filtering data. Its
robustness to noise and efficient interpretations make it the ideal
candidate to cope with the mentioned constraints.

RANSAC is deployed to extract the main plane of the fragments.
Prior to this step, a noise-reduction process is carried out to ob-
tain a trustworthy segmentation. The success of the subsequent
steps highly depends on the accuracy of the planar segmenta-
tion. On the one hand, the contour extraction is performed on
the neighboring points of the plane. On the other hand, the initial
transformation is computed by projecting the extracted points on
a generic plane. Therefore, two parameters are fundamental to
accurately obtain the main plane: number of iterations and dis-
tance threshold. The former parameter depends on the expected
outliers ratio.This means that for a noisy dataset a high number
of iterations is desirable. The latter parameters are the distance
tolerance among the points that form the extracted plane. Higher
distance thresholds are expected for bigger models.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License.

 
564



Figure 2: Methodology work-flow for the Puzzling Engine. The starting setup is performed for each fragment of the set. The Puzzling
stage refers to pairwise alignment. Both are implemented on the game engine Unity.

3.1.2 Contour Surface The Probability of finding matches is
higher for the contour points of the plane. By segmenting this
area, the user is able to find potential visual clues of possible
matches and to perform either automatic or manual alignment.
Inspired by the Nearest Neighbor Search (NNS) method (Rous-
sopoulos et al., 1995), our segmentation approach is conducted.
NNS aims at finding target points in a given set that are similar
to a query point. To this end, different similarity metrics have
been proposed, resulting in many NNS variants. For the surface
extraction, the Neighbor Distance Ratio (NDR) (Beis and Lowe,
1997) is implemented since we are solely interested in retrieving
the closest points with respect to the extracted plane. Considering
the plane p and the remaining point-cloud q, the contour surface
point-cloud C(p, q) is defined as:

C(p, q) =
∑

0≤i≤n

∑
0≤j≤m

NDR(pi, qj) (1)

where i and j are the indices of the vertices that form the re-
spective point-clouds. The searching ratio r is an important fac-
tor of the NDR algorithm. This parameter delineates the region
within which the contour points are defined. The contour surface
point-cloud becomes denser as the ratio increases. Hence a high
r is desirable to obtain a well-defined shape of the contour. To
showcase the impact of this value, Figure 3 depicts the contour
extracted for different r.

3.1.3 Principal Curvature Decoration of ancient wall frag-
ments is not only based on color but also on sculpture techniques.
This holds true for most of the ancient Egyptian fragments, where
sunk and raise relief is a common decoration style. In some cases,
color fades away and the only remaining distinctive feature is the
relief. This kind of decoration is not clearly visible at first glance,
the light direction has to be adjusted in order for the relief to stand
out. Nevertheless, this characteristic is indispensable for restor-
ers to grasp matching clues. For instance, if the fragment is dec-
orated with lines, by finding the common pattern of linear prim-
itives between two fragments, it is possible to intuitively match
them together.

In order to clearly show the decoration of the fragments, we com-
pute the directions and magnitudes of principal surface curvatures
(Roussos, 1987) for every point of the fragment . These values
contain the necessary information to determine whether a point
might belong to a concave or convex surface. The resulting set
of points, aids the operator in distinguishing sunk relief without
rendering shades. These key-points are computed on the basis of

a threshold comparison. Given a point pi of the extracted plane
and its maximum eigenvalue Emax, a principal curvature key-
point PCi is defined as follows:

PCi = pi : Emax > Th (2)

The principal curvature point-cloud is composed of those points
of the extracted plane whose max eigenvalue is greater than a
threshold Th. An example of the resulted point-cloud is shown
in Figure 4. Note that the principal curvatures key-points show
not only the sunk-relief decoration (the feet) but also the frag-
ment damage. This is expected as the shown example contains
hammering traces that result in concave surfaces.

Figure 4: Segmentation of principal curvatures.

3.2 Alignment of Fragments to Generic Plane

In order to facilitate the alignment of planar-based fractured frag-
ments, an initial transformation that relates the decorated surface
with a generic plane lying on the world-space is computed. The
main idea consists of limiting the fragment’s rotational motion to
the z axis. To this end, a rigid transformation matrix is calculated
as follows. i) A XY plane is defined as: ax+ by + cz + d = 0
where a = b = d = 0 and z = 1. ii) Each point of the extracted
principal plane is projected onto the XY plane. iii) By using
SVD a rigid transformation that relates the extracted plane with
the projected plane is computed. This step finalizes the starting
setup. From this point onwards the user is able to puzzle by ad-
justing the position and rotation of the fragments, and the visual
assistance of the segmented point-clouds.

3.3 User Interaction - Puzzling

3.3.1 Fragments Manipulation A paramount task when ma-
nipulating fragments for puzzling, is the restriction of degrees of
freedom (DoF). This simple action tremendously contributes to
speed up the alignment process. Since the fragments are initially

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License.

 
565



Figure 3: The extreme left models show the extracted plane and its remaining point-cloud marked in yellow and blue respectively. The
next five models depict the contour surface point-cloud marked in red, for multiple searching ratios. From left to right, the value of r
is, 1.0, 5.0, 10.0, and 20.0.

instantiated into a generic plane perpendicular to the Z-axis, the
fragment’s motion is limited to 3 DoF: left/right, up/down and
roll. This way the user is able to provide the system with a rough
transformation for the pairwise registration step.

A fundamental factor to consider when coping with 3D transfor-
mations is the distinction between local and global space. The
initial transformation described in the previous section is per-
formed on the local space. This means that each vertex of the
point cloud is multiplied by the rigid transformation. The ma-
nipulation of fragments, in contrast, is carried out on the global
space. Therefore, once a rough alignment is determined, the up-
dated 3-dimensional vectors for rotation and translation are de-
scribed based on a normalized coordinate system. In order for
the fragment’s mesh vertices to be independent of the world co-
ordinates, a cube pivot is defined on Unity as a partner of the
fragment. Principal Component Analysis (Wold et al., 1987) of
the respective point-cloud is deployed to define pivot’s position
and scale. The former corresponds to the centroid and the latter
is relative to the principal components.

3.3.2 K-d tree based ICP This step aims at estimating a rigid
transformation to improve the rough alignment manually esti-
mated by the user. Since neither matched local points nor com-
mon global features are provided, K-NNS (Song and Roussopou-
los, 2001) is performed to retrieve the neighbor points between
two fragments, on the basis of which ICP is performed to reduce
the distance between the clouds. Keeping in mind that the com-
putational complexity of K-NNS relies on the number of points,
the contour surface is considered as input rather than the whole
point-cloud. K-NNS relies on the k-d tree data structure to effi-
ciently find the nearest point of a set given an input point. Con-
sidering a point-cloud Q, a query point p, and the number K of
desirable neighbor points. The first step consists of arranging Q
into a 3-dimensional binary tree structure. Next, by recursively
comparing p and the points in the tree nodes, the algorithm re-
turns K points that exhibit the least square distance with respect
to p.

Given two sets P and T roughly aligned, we are interested in re-
trieving the closest point-clouds P ′ and T ′ in order for ICP to
estimate a finer alignment. A k-NNS-based strategy is conducted
to construct the 3-d arrays that form the sets P ′ and T ′. This pro-
cess is described step-by-step by Algorithm 1. Basically, for each
point p of P , the proposed approach retrieves K neighbors out of
T along with their respective square distances. P ′ is then built
by the neighbor points as long as they satisfy two criteria: Firstly,
their hamming distance is less than a threshold, thus making sure
the found points belong to the nearest vicinity of T . Secondly,
they have not been calculated for previous p, preventing P ′ from
redundant points. On the other hand, T ′ is formed by pi, if and
only if, p has a neighbor point.

Next, a rigid transformation H that finely aligns P ′ → T ′ is

estimated by ICP. Remember, the obtained transformation was
determined in function of the global space. Hence, the vertices of
P ′ are transformed to the global space and multiplied by H . The
inverse matrix of H is also calculated so that the user is able to
undo the automatic alignment.

Algorithm 1 Pseudocode to retrieve the nearest point-clouds be-
tween sets P and T

1: procedure CLOSERPTS(P, T )
2: Output P ′, T ′

3: N ← Size of P
4: K ← Number of Neighbors
5: Tkd← KdTree(T ) . T points into a k-d tree
6: th← Distance Threshold
7: for each point p ∈ P do
8: flag ← false
9: KNNS(p, Tkd,K) . Computing K-d NN

10: NbA← GetNeighborsArray
11: DiA← GetDistancesArray
12: for each element nb, di ∈ NbA,DiA do
13: if (di ≤ th) ∧ (nb /∈ T ′) then
14: flag ← true
15: WriteIn(P ′)← NbArrayid
16: end if
17: end for
18: if flag then
19: WriteIn(T ′)← p
20: end if
21: end for
22: end procedure

4. IMPLEMENTATION AND EXPERIMENTS

4.1 User Interface

The User Interface (UI) for the Puzzling engine is developed in
Unity, a powerful game engine meant to optimally render high-
resolution meshes. This game development software provides
a transparent platform to modify mesh attributes: material, ver-
tices, triangles, normals, etc. Our segmentation and registration
algorithms are implemented in C++ with PCL Library (Rusu and
Cousins, 2011). In order for the algorithmic modules to be com-
patible with Unity, these were wrapped in a ”.dll” file. As men-
tioned, the approach is composed of two main modules, starting
setup and puzzling. Both are implemented on Unity’s environ-
ment.

After initialization, the user is able to explore the fragments by
means of an orbit camera whose imaginary pivot is located with
respect to the cursor’s position. Unlike traditional mesh viewers,
this digital maneuvering tool enables the user to explore features

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License.

 
566



Figure 5: Datasets for experiments after the puzzle is completed.

of multiple fragments at different angles. By means of a 2-D ro-
tation and translation virtual pivot, the operator is able to alter
the position of the fragments. Once two fragments are roughly
aligned the registration button is activated so that the expert may
refine the alignment. When the puzzle is completed, the transla-
tion and rotation vector of the cube collider as well as vertices of
the geometric primitives (local space), are saved and serialized in
a binary file. Thus, the next time the software is initialized these
values are deserialized, automatically placing the fragments in
their correct position.

4.2 VR Implementation

In order to exploit the digital tools that become attainable when
designing a VR-based UI, the proposed algorithmic components
and the fragments are loaded into a VR environment. The prin-
cipal approach remains the same, however, the user-machine in-
teraction is enhanced by incorporating virtual components of a
real scenario. For example, a scale 3D mesh of the ancient tombs
(de Lima and Vergauwen, 2018) where the fragments were found
is instantiated as the ambiance for puzzling. Likewise, the dec-
orated wall fragments are scaled-down with respect to the site.
This immersive interface not only encourages users to solve the
puzzle but also provides them with an extra matching clue: the
fragment’s scale. This is a tremendously helpful visual compo-
nent since it allows for size-based categorization of the fragments.
For the handling of each fragment, Oculus touch controllers are
used. A digital infinite ray-line emanated from each hand serves
as a virtual indication to select the fragments. Once an entity is
selected, rotation and translation movements are defined accord-
ing to the buttons listed in Table 1. Unlike the standard UI, the
VR environment allows the user to maneuver two fragments at
the same time. This locomotion flexibility along with the immer-
sive experience drastically reduces the tediousness task of joining
fragments.

Button Action
Button.One(A)or(X) Rotation left
Button.Two(B)or(Y) Rotation right

Button.One(A) Rotation left
Axis2D.Primary/Secondary

Thumbstick
Translation (X,Y)

Axis1D.PrimaryIndexTrigger Toggle model views
Axis1D.SecondaryIndexTrigger Register ICP

Axis1D.Primary/Secondary
HandTrigger

Enable ray-line selector

Table 1: Buttons from fragment’s locomotion on the VR environ-
ment

4.3 Experiments

The proposed approach was tested on the following device: pro-
cessor i7-7700HQ at 2.8GHz., 16GB RAM, graphics card GForce

GTX 1050. Two datasets of Wall Decorated Fragments(DWF)
are considered for the assessment. These belong to excavations
of a historical site in Egypt whose development time dates back
to the Middle Kingdom period. The fragments are terribly pre-
served, so it is not advisable to physically puzzle them. The dig-
itization techniques deployed to create the mesh models of both
datasets are described by Bassier et al. (Bassier et al., 2018). In
addition, the brick dataset provided by (Huang et al., 2006) is
included in the experiments to show that the method might be
practical for other types of stone fragments (See Figure 5).

Since the alignment accuracy highly depends on the operator’s
expertise, it is not feasible to asses the method based on either
registration or matching error. This definitely could lead to an
ambiguous discussion and unfair comparison with similar works.
The experiments aim to evaluate the interaction user-machine in
terms of the software smoothness. This is inferred by calculat-
ing the processing times for each algorithmic module. Fast algo-
rithms are desirable to obtain a real-time performance, preventing
the puzzling engine from the lagging effect.

As mentioned the performance of algorithmic modules highly de-
pends on their respective parameters. For RANSAC, 1000 is the
maximum number of iterations selected to extract the main plane
of Egyptian fragments. This value is considered due to the in-
consistent shape of the fragments, which reduce the probability
of extracting a plane. For the brick dataset, on the other side, it-
erations are limited to 500 as the probability of parameterizing a
plane is higher. For both the distance threshold is 0.17cm. For
contour surface extraction, the NNS ratio is 10−20cm depending
on the fragment’s size. For K-d tree ICP, the distance threshold
(th) is 30cm and K = 2. This means that as long as the roughly
aligned point-clouds are separated from each other by 30cm., the
method will be able to refine the alignment. Otherwise, the user
will be requested to improve the manual registration.

Processing times of the starting setup stage are listed in Table 2.
The segmentation column indicates the time consumed to com-
pute the vertices of the main plane, contour, and principal cur-
vatures. The steer to plane section involves the computational
burden for the rigid transformation calculation and rendering of
geometric primitives. The starting setup for DWF(2) dataset takes
longer because the fragment’s resolution is higher. However,
once geometric primitives have been computed and saved, load-
ing time is solely dependent on the Steer to Plane stage, which is
less than 1s.

For the sake of exemplification, two rough alignments for every
dataset are considered to construct the table 3. Figure 6 shows
the preliminary joints, which were conducted by the user based
on the segmented entities. In the context of the variables previ-
ously defined in section 3., P and T correspond to the fragments
marked in yellow and red respectively. The number of retrieved
closest points that form the sets P ′ and T ′ is indicated in the next

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License.

 
567



two columns. Unlike prior results, the listed processing times do
not follow a linear tendency. This irregular behavior has to do
with the fact that the proposed method highly relies on the input
alignment. The computational burden for ICP to estimate a rigid
transformation is determined by the distance between the frag-
ments. Also, Figure 6 depicts the contour surfaces of the frag-
ments that complete the puzzle. Note that in the DWF(2) dataset,
frag 2d and frag 2e, a fine alignment is not necessary due to the
lack of overlap to accurately compute ICP. As for the brick dataset
the fragment part e is not puzzled since the main plane extracted
is not aligned with the other fragments.

Dataset Fragment #Points
Segmentation

[ms]
Steer to

Plane[ms]

DWF (1) frag 1a 244446 6549 110
frag 1b 220158 3906 101
frag 1c 308832 7541 138
frag 1d 370217 8121 190

DWF (2) frag 2a 477503 7063 207
frag 2b 440351 6698 177
frag 2c 399448 5335 172
frag 2d 218446 5178 85
frag 2e 254529 5953 96

brick part a 139420 1901 64
part b 169557 2004 69
part c 168490 2001 65
part d 178721 3165 67
part e 189770 3058 72
part f 222479 4555 102

Table 2: Processing time for the starting setup.Time to load each
dataset: DWF(1)-26.6s,DWF(2)-30.9s, brick-17.1s

Rough
Alignment #Points Query #Points Target

Alignment
[ms]

(a) top-left 443 492 1136
(a) top-right 260 270 414
(b) top-left 847 978 1472
(b) top-right 1334 1588 777
(c) top-left 3902 4248 2318
(c) top-right 5170 5664 2372

Table 3: Performance After Post Filtering

(a) DWF(1)

(b) DWF(2)

(c) brick dataset

Figure 6: Rough Alignments for Table 3 (top images). Point-
clouds of contour surfaces after fine alignment (button images)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License.

 
568



5. DISCUSSION

For Decorated Wall Fragments, the proposed engine served as a
practical tool to speed up the manual puzzling. Even though the
experimental design is carried out for three datasets, the results
give a clear insight into the limitations and potential possibilities
of the puzzling engine. On the one hand, for those un-decorated
planar fragments with intact fractured surfaces, current automatic
or manual approaches are capable of efficiently performing the
matching task. An example of this is the brick dataset, Huang
et al. (Huang et al., 2006) were able to automatically find joints
to puzzle the fragments. Whereas by using our engine, the mod-
els were partially puzzled. As noted in Figure 5, the fragment
part e is not included in the final model since its main plane is
not aligned with the front surface of the brick. This result is ex-
pected because the dataset fragments are formed by several well-
defined planes, so the software aligns the fragment with respect
to the plane made of more points. Moreover, since all the frac-
tured surfaces are intact, their silhouette is distinguishable from
the fragments alone. Visual primitives, consequently, were sel-
dom used to puzzle this dataset. On the other hand, for those pla-
nar fragments that exhibit low overlap and various fractured ar-
eas, neither automatic nor semi-automatic approaches are capable
of computing trustworthy clues to accurately align the models.
The challenge relies on the lack of points to compute distinctive
geometric properties. However, the puzzling engine served as a
helpful alternative to grasp 3D visual components that effectively
aid in the alignment labor of the fragments.

6. CONCLUSION AND FUTURE WORK

In spite of the fact the engine was only tested for a few datasets,
the results show that experts might benefit from this technology
to puzzle fragments with a high degree of damage. Two aspects
were the key to aid in the task of manually finding alignments, the
viewer environment flexibility, and the segmented point-clouds.
Game engines represent a powerful platform to support the smooth
visualization and real-time processing of multiple high resolution
3-D models. Furthermore, they offer the opportunity to extract
complex geometric characteristics, empowering experts with vi-
sual tools to profoundly study archaeological fragments. The
segmented contour and plane resulted in practical ways to find
matched areas, while the point-cloud of principal curvatures turned
out a functional asset to detect concave surfaces. These might
serve as an indicator for professionals to determine properties
such as decoration style, damage, hieroglyphic traces, etc. In
addition, the VR environment is a complementary tool that en-
hances the puzzling experience, facilitating the interaction be-
tween operator and fragments.

Detection of automatic clues out of the segmented point-clouds
is an element considered for future work. Both local and global
descriptors could be extracted from the contour surface to auto-
matically provide the user with potential matches. Also, a 2D
parametrization of the contour surface will be taken into account
to find similarities in terms of concave-convex curvatures. The
combination of both approaches could definitely contribute to
increase the reliability and automation of the puzzling engine.
As for the VR environment, an interaction among the virtual
scenario, fragments, and user is also considered for puzzling.
Thereby, the user will get automatic clues to digitally place the
fragments back to the spot where they originally emanated from.

ACKNOWLEDGEMENTS

The research presented here features within the Puzzling Tombs
project (nr. 3H170337), funded by the KU Leuven Bijzonder On-

derzoeksfonds. We acknowledge archaeologists from KU Leuven
for actively collaborating in the experiments.

REFERENCES

Aldoma, A., Tombari, F., Rusu, R. B. and Vincze, M., 2012. Our-
cvfh–oriented, unique and repeatable clustered viewpoint feature
histogram for object recognition and 6dof pose estimation. In:
Joint DAGM (German Association for Pattern Recognition) and
OAGM Symposium, Springer, pp. 113–122.

Bassier, M., Vincke, S., de Lima Hernandez, R. and Vergauwen,
M., 2018. An overview of innovative heritage deliverables based
on remote sensing techniques. Remote Sensing 10(10), pp. 1607.

Beis, J. S. and Lowe, D. G., 1997. Shape indexing using approx-
imate nearest-neighbour search in high-dimensional spaces. In:
cvpr, Vol. 97, Citeseer, p. 1000.

Brown, B., Laken, L., Dutré, P., Van Gool, L., Rusinkiewicz, S.
and Weyrich, T., 2012. Tools for virtual reassembly of fresco
fragments. International journal of heritage in the digital era
1(2), pp. 313–329.

Challis, J. H., 1995. A procedure for determining rigid body
transformation parameters. Journal of biomechanics 28(6),
pp. 733–737.

de Lima, R. and Vergauwen, M., 2018. From tls recoding to vr
environment for documentation of the governor’s tombs in dayr
al-barsha, egypt. In: 2018 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), IEEE,
pp. 293–298.

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J. and Kwok,
N. M., 2016. A comprehensive performance evaluation of 3d lo-
cal feature descriptors. International Journal of Computer Vision
116(1), pp. 66–89.

Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M. and Pottmann,
H., 2006. Reassembling fractured objects by geometric matching.
ACM SIGGRAPH 2006 Papers on - SIGGRAPH ’06 p. 569.

Kimia, B. and Aras, H. C., 2010. Hindsite: A user-interactive
framework for fragment assembly. In: 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition-
Workshops, IEEE, pp. 62–69.

Prakhya, S. M., Liu, B. and Lin, W., 2015. B-shot: A binary
feature descriptor for fast and efficient keypoint matching on 3d
point clouds. In: 2015 IEEE/RSJ international conference on
intelligent robots and systems (IROS), IEEE, pp. 1929–1934.

Roussopoulos, N., Kelley, S. and Vincent, F., 1995. Nearest
neighbor queries. In: ACM sigmod record, Vol. 24number 2,
ACM, pp. 71–79.

Roussos, I. M., 1987. Principal-curvature-preserving isometries
of surfaces in ordinary space. Bulletin of the Brazilian Mathe-
matical Society 18(2), pp. 95–105.

Rusinkiewicz, S. and Levoy, M., 2001. Efficient variants of the
icp algorithm. In: 3dim, IEEE, p. 145.

Rusu, R. B. and Cousins, S., 2011. Point cloud library (pcl). In:
2011 IEEE International Conference on Robotics and Automa-
tion, pp. 1–4.

Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient ransac
for point-cloud shape detection. In: Computer graphics forum,
Vol. 26number 2, Wiley Online Library, pp. 214–226.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License.

 
569



Song, Z. and Roussopoulos, N., 2001. K-nearest neighbor search
for moving query point. In: International Symposium on Spatial
and Temporal Databases, Springer, pp. 79–96.

Wold, S., Esbensen, K. and Geladi, P., 1987. Principal component
analysis. Chemometrics and intelligent laboratory systems 2(1-
3), pp. 37–52.

Wu, M. and Wang, J., 2018. Reassembling fractured sand parti-
cles using fracture-region matching algorithm. Powder technol-
ogy 338, pp. 55–66.

Zhang, K., Yu, W., Manhein, M., Waggenspack, W. and Li, X.,
2015. 3D fragment reassembly using integrated template guid-
ance and fracture-region matching. Proceedings of the IEEE In-
ternational Conference on Computer Vision 2015 Inter, pp. 2138–
2146.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-563-2019 | © Authors 2019. CC BY 4.0 License. 570




