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ABSTRACT: 

Outdoor stone cultural properties are continuously affected by the external environment such as wind, rain, and earthquakes. These 

cause damage to the cultural properties by not only threatening structural stability but also damaging the aesthetic value. Quick 

detection of these damages is important to enable appropriate preservation treatment in terms of cultural property conservation 

management. Even though conventional manual damage detection methods are widely used, they are limited by manpower, cost, and 

other external conditions. In this paper, we propose a system that automatically detects and classifies damage occurring in cultural 

properties using deep-learning technique to settle these drawbacks. In detail, the damages are classified into four types (i.e., crack, loss, 

detachment, biological colonization) based on Faster region-based convolutional neural network (R-CNN) algorithm. In addition, we 

construct an image dataset of stone damage, which is collected by the regular report of the National Designated Cultural Property in 

2017 conducted by the Cultural Heritage Administration of S. Korea, and augment its dataset to enhance damage detection performance. 

From the experiment conducted, we achieved an average confidence score of 94.6% or more on the 20 test images. 

1. INTRODUCTION

Outdoor stone cultural properties frequently lose their original 

appearance due to physical, chemical, and biological weathering 

(ICOMOS-ISCS, 2008). In addition, natural disasters (e.g., 

typhoons, earthquakes, floods) and artificial disasters (e.g., arson, 

damage, graffiti, and environmental degradation) are threats to 

cultural properties. 

The damage caused by these factors does not only threaten the 

structural stability but also develops into blistering, peeling, 

fragmentation, bursting, etc., thus damaging the prototype and 

aesthetic value of the cultural property. Therefore, it is important 

to effectively detect damages to cultural properties through 

continuous monitoring, analyzing the causes, and enabling 

appropriate conservation treatment. 

Recently, the visual inspections, such as photogrammetry and 

laser scanning (A. Oliveira, 2012) (A. Manzo, 2019), infrared 

thermal imaging techniques, and ground-penetrating radar (D. 

Angelis et al, 2017) (M. Manataki et al, 2018) (B. Johnston et al, 

2018) are widely used to detect damage to cultural properties. 

In particular, after acquiring image and point cloud data of 

cultural property, the damage detection by photogrammetry and 

laser scanning is analyzed by a 3D-textured mesh model. Some 

disadvantages of this method are as follows: it takes a long time 

to perform the modeling, and it is difficult to identify the damage 

if the accuracy of the constructed model is lowered. 

The infrared thermal technique detects damage or cracks by 

expressing the temperature distribution obtained by measuring 

the infrared ray emitted from the target as a color image. The 

active/passive thermal infrared technique can be greatly 

distinguished based on the heat source. Both techniques can 

detect damage effectively, but there is a great deal of noise from 

the outside environment, such as the weather and seasons, which 

causes damage by injecting heat sources into the surface. The 

ground-penetrating radar radiates electromagnetic waves in the 

range of 60 MHz–8 GHz to the cultural property and analyzes the 

returning waves to grasp the internal state of the stratum or 

cultural property. Although other damage detection methods are 

fast and accurate, this method requires a lot of experience and 

huge data to receive a lot of external environment and reliable 

analysis. 

These existing damage detection methods are time consuming 

and costly, and there is a limitation in that they should be carried 

out by expert in field. In addition, the results of inspection are 

affected by external conditions such as weather and seasons.  

To deal with this limitation, we propose a damage detection 

system using deep-learning technique and data augmentation 

method. The main contributions of this paper can be summarized 

as follows. Firstly, we adopt deep-learning technique for 

automatically detecting damage of cultural heritage. Furthermore, 

we construct an image database which is composed of the 

deterioration patterns that can often occur in cultural properties 

into four categories and augment the dataset to improve the 

performance of damage detection and test image taken in various 

environments. 

The rest of this paper is organized as follows. Section 2 briefly 

reviews deep-learning methods for damage and object detection. 

In Section 3, a deep-learning system for automatic damage 

detection is proposed. Section 4 describes the implementation of 

the proposed method, and finally, Section 5 presents conclusions 

and future works. 

2. RELATED WORKS

2.1 Damage Detection Methods 

Damage detection via deep learning is mainly used to detect 

defects in a concrete structure, road pavement damage, and 

various industrial facilities (Cha et al, 2017). They applied the 

sliding window technique, and it is easy to scan images larger 

than 256 × 256 pixels; the trained network showed an accuracy 

of about 98% in the verification experiment. Also, it showed 
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robust detection performance without being influenced by 

lighting condition, shadow, image quality, camera specifications, 

and distance. (Z. Lei et al. 2016) carried out quantitative 

evaluation of cracks 3264 × 2448 pixels image datasets, which 

showed detection with an accuracy of about 90% (Chen et al, 

2018). This greatly reduced the amount of time previously spent 

manually and robustness in a complex environment. 

 

2.2 Deep Learning for Object Detection  

Deep learning for object detection frequently uses region-based 

convolution neural network (R-CNN) series (R. Girshick et al, 

2014). R-CNN uses selective search to generate region proposals. 

The detection performance is greatly improved by using the CNN 

feature based on region. Furthermore, SPPNet in (Kaiming He et 

al, 2015) is input regardless of the size of the image, and after the 

convolutional layers have been passed through the entire image, 

they are input to fully connected layers through a spatial pyramid 

pooling process. As a result, performance is improved. Afterward, 

Fast R-CNN (R. Girshick et al, 2015), which does not use 

additional disk space for feature caching, but has higher accuracy 

than R-CNN or SPPNet, was developed to update the results 

learned in all layers, improving the shortcoming of previous 

models. 

 

3. PROPOSED METHOD 

 

Figure 1. The workflow of the proposed method. 

This paper proposes a deep-learning-based damage detection 

system to detect the damage area from the image of outdoor stone 

cultural property. Recently, various deep-learning algorithms are 

being developed for object detection. Faster R-CNN (S. Ren et al, 

2017), which is a region-based detection model and somewhat 

slower to detect than recently developed methods but has high 

accuracy, has been adopted. The process of detecting the damage 

is shown in Figure 1. First, after acquiring an image captured by 

CCTV or camera, a training set is generated by performing 

format conversion and annotation of an image file to train a 

damage detection model. Then, a new learning model is created 

by transfer learning the Faster R-CNN model of the pre-trained 

inception v2 structure. Lastly, we detect the damage area and 

classify damage type through the learning model and display it 

as boundary box and score. 

 

3.1 Database Construction 

Deep-learning models require various training and test datasets 

for accurate feature extraction and recognition. However, since 

there are no datasets suitable for cultural property, we built a 

cultural property damage dataset for the experiment.    

 

 

Figure 2. Damage type of dataset. 

We categorized the four types of damage as follows: crack, loss, 

detachment, and biological colonization with reference to 

(ICOMOS-ISCS, 2008). The images were obtained from the 

regular report of the National Designated Cultural Property in 

2017 conducted by the Cultural Heritage Administration of S. 

Korea. A total of 3,335 images were obtained, and 100 pieces 

were extracted for each type of damage. 

 

3.2 Dataset Augmentation 

 

Figure 3. Augmentation training dataset. 

One of the important factors that can improve the performance of 

the model by learning a deep-learning algorithm is the amount of 

training data. Therefore, we apply image dataset augmentation to 

learn the model for superior performance using a small amount 

of data. 

The Faster R-CNN model does not care about the size of the input 

image, so we did not use the image segmentation, only the image 

transformation. One hundred existing images of each type were 

transformed into a total of six methods, as shown in Figure 3. The 

dataset was implemented with 90º rotation, upside down, and left 

and right reversal to prepare for various types of damage. 

Brightness of 50% and darkness of 50% were applied, 

considering the external weather and ambient noise at the time of 

image acquisition. Finally, image sharpening was performed. 

 

3.3 Damage Detection via Faster R-CNN 

Faster R-CNN is a form of Fast R-CNN with region proposal 

network added. The first feature is extracted through CNN to 

generate a feature map. The generated feature map is shared 

between region proposal network (RPN) and region of interest 

(ROI) pooling layer. RPN is a network that suggests a candidate 

region where an object may exist on an image. The extracted 

feature map is used to make a sliding window using nine anchor 

boxes with three scales and three ratios different from each other. 

Through this process, the probability of the object and the 

coordinates for the bounding box are generated for k–candidates, 

and candidate regions are created based on the generated 

probability and transmitted to the ROI pooling layer. 
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Figure 4. Illustration a process of region proposal network. 

Figure 5. Process a faster R-CNN for damage detection. 

During an RPN run, all anchors must be separated by foreground 

(positive anchor) and background (non-positive anchor) for the 

learning area. When the classification value of each anchor is P*, 

the formula is given as follows: 

P*= {
1 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒),    𝐼𝑜𝑈 > 0.7

0 (𝑛𝑜𝑛 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒),    𝐼𝑜𝑈 < 0.3
 (1) 

Intersection over union (IoU) means the width of the intersection 

area of the two areas divided by the value of the total area, and 

ground truth box means the actual box coordinates. The formula 

is given as follows: 

  Io𝑈 =
𝑎𝑛𝑐ℎ𝑜𝑟 ∩  𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥

𝑎𝑛𝑐ℎ𝑜𝑟 ∪  𝑔𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥
 (2) 

In Faster R-CNN, we can summarize the loss function by adding 

the class classification loss function and the bounding box loss 

function with the above definition.  

  𝐿(𝑝𝑖,𝑡𝑖,) =
1

𝑁𝑐𝑙𝑠,

∑ 𝐿𝑐𝑙𝑠 (𝑝𝑖 , 𝑝𝑖
∗) + 𝜆

1

𝑁𝑟𝑒𝑔,
∑ 𝐿𝑟𝑒𝑔 (𝑡𝑖 , t∗)  (3)

where       i    = index of anchor, 

𝑝𝑖,  = The predicted class probability of anchors,

𝑝𝑖
∗ = Ground truth label recall precision,

𝑡𝑖,   = Predicted bounding box,

𝑡𝑖
∗ = Ground truth box,

 𝜆   = Balancing parameter. 

i is the index of anchor, 𝑝𝑖 is the probability that the object is

detected by anchor, and 𝑝𝑖
∗is the ground truth label, 1 for object,

0 for non-object. 𝑡𝑖 is the coordinate vector of the predicted

bounding box and 𝑡𝑖
∗is the parameter of the ground truth box. 𝜆

is the default, typically 10. 𝐿𝑐𝑙𝑠 is the log loss for predicting the

object or background, and 𝐿𝑟𝑒𝑔 is the location prediction loss.

Also, 𝑁𝑐𝑙𝑠 is the same normalization value as the mini batch size,

and 𝑁𝑟𝑒𝑔 is the same normalization value as the number of other

locations. 

4. EXPERIMENTAL RESULT

In this paper, we test various types of damage to a cultural 

property using the existing model. For the experiment, we 

conducted 100 train image datasets annotated by each type and 

composed of 20 test datasets. In addition, to improve the 

performance of the learning model, a comparative study will be 

conducted by augmenting the crack trainset among cultural 

property damage types.   

4.1 Experimental Settings 

Devices Specification 

CPU Intel i9-7900X 

GPU GeForce GTX 1080 Ti 

OS Window 10 64× 

Toolkit TensorFlow 1.5, cuDNN 7.0.5, 

CUDA 9.0 , Open CV 3.0  

Language Python 

Table 1. System configurations for the experiment. 

In this paper, the experimental environment for generating and 

evaluating a new detection model through Faster R-CNN based 

transfer learning is shown in Table 1. Learning and experiments 

were conducted using CUDA 9.0, cuDNN 7.0.5 and Open CV 

3.0 in window based TensorFlow environment. 

4.2 Image Pre-processing 

Figure 6. Workflow of image pre-processing. 

The image pre-processing is required to use the RGB images and 

the image collected by the camera for training model. The image 

pre-processing procedure is shown in Figure 6. The images are 

labeled with an object on the image using the graphic image 

annotation tool, i.e., LabelImg, which is shown in Figure 7. Then, 

train and test comma-separated value (CSV) file are generated 

and converted into TFRecord file, which is a file format suitable 

for TensorFlow streaming, to perform detection model learning. 
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Figure 7. Image annotation using LabelImg. 

 

4.3 Experimental Result 

 

Figure 8. Illustration of IoU measure. 

We conducted an experiment to detect four types of damage (i.e., 

crack, loss, detachment, biological colonization) occurring in 

cultural property and to perform image augmentation of cracks in 

damage type and compare the result before and after image 

processing. We conduct the quantitative evaluation as an 

evaluation measure which is illustrated in Figure 8. The cultural 

property damage detection model receives the input image, 

displays the bounding box in the part where the object is expected 

to be present, and displays the confidence score together with the 

classified damage class. For example, IoU is used to evaluate the 

overlap between predicted bounding boxes and ground truth 

bounding boxes, and they are displayed as scores. In this 

experiment, we set the threshold for IoU to 0.5. That is, if the 

ratio of the overlapping region between the prediction bounding 

box and the grounding bounding box exceeds 50%, the two 

bounding boxes are matched and the reliability score of the 

prediction bounding box is evaluated. The evaluation results are 

as follows. 

 

 

a) Originals 

 

b) Image augmentation 

Figure 9. Detection results of crack. 

As a result of quantitative evaluation of the crack detection using 

the bounding box and the score, it was confirmed that the image 

augmentation improved the score by an average of 17.5% when 

the amount of training dataset was increased by seven times 

 

 

Figure 10. Detection results of loss detection. 

 

Figure 11. Detection results of detachment. 

 

Figure 12. Detection results of biological colonization. 

We confirm that the confidence score is higher in the other three 

types of experiments. In loss of damage type, where the damaged 

part is noticeable in the image, the score is detected up to 99% 

and the bounding box is drawn. However, if the edge of the loss 

part or other foreign matters are mixed, the score is detected as 

50% and the damage is not detected in relatively small area. 

Also, detachment confirmed the detection of the extent of 

damage in the wide area of the damaged area, or the extent of the 

difference between the peripheral part and the shape, with an 

average of 98.67%. 

 

5. CONCLUSION AND FUTURE WORKS 

In this paper, we propose an automatic detection method using 

deep learning. Based on the highly accurate Faster R-CNN 

algorithm among multiple object detection networks, four types 

of damage dataset were constructed to detect damage location 

and extent and automatically classify the damage. To improve the 

detection performance, we used the image augmentation 

technique and the bounding box score increases by 17.5% on 

average. This study can improve the limitations of the existing 

methods in the field of damage detection of cultural properties.  

In addition, it is important to introduce a new conservation 

management method that can automatically detect early damage 

and enable preservation treatment in a short period of time, 

thereby continuing the value and beauty of cultural properties. 

In addition, since the damage area is small or boundary edges are 

not clear, future studies will be conducted to improve the 

accuracy of the damage detection, a study to detect other 

damages will be conducted, and also will conduct damage 

detection studies using images that are difficult to detect. 
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