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ABSTRACT: 

The segmentation of a point cloud presents an important step in the 3D modelling process of heritage structures. This is true in many 

scale levels, including the segmentation, identification, and classification of architectural elements from the point cloud of a 

building. In this regard, historical buildings often present complex elements which render the 3D modelling process longer when 

performed manually. The aim of this paper is to explore approaches based on certain common geometric rules in order to segment, 

identify, and classify point clouds into architectural elements. In particular, the detection of attics and structural supports (i.e. 

columns and piers) will be addressed. Results show that the developed algorithm manages to detect supports in three separate data 

sets representing three different types of architecture. The algorithm also managed to identify the type of support and divide them 

into two groups: columns and piers. Overall, the developed method provides a fast and simple approach to classify point clouds 

automatically into several classes, with a mean success rate of 81.61% and median success rate of 85.61% for three tested data sets.  

*
Corresponding author 

1. INTRODUCTION

The segmentation of 3D point cloud data is a much discussed 

problem in the geomatics community. Recent advances in 

photogrammetry and laser scanning, coupled with the advent of 

the democratisation of drones, meant that 3D point cloud can 

now be obtained with higher levels of detail (Murtiyoso et al., 

2018). While this presents a great advantage to heritage 

recording, it also adds to the complexity of the point cloud 

segmentation. This is more so in the case of complex heritage 

buildings, which translates further into more effort and time 

required to perform it manually (Barsanti et al., 2017).  

There are two often distinct parts in the pre-processing of point 

clouds within the 3D modelling workflow. The raw point cloud 

is usually segmented into smaller clusters representing certain 

elements of the object, and then classified into object classes 

(e.g. pillar, arch, floor, etc.). Unfortunately, the 3D modelling 

process still retains a large part which requires manual 

intervention (Macher et al., 2017). Attempts to automate any 

part of this process will greatly save both time and resources in 

the overall workflow.  

Segmentation is an important part of the 3D modelling process, 

from which we may derive semantic-rich models such as 3D 

GIS or BIM (Building Information Model) (Campanaro et al., 

2016; Wang et al., 2015). Depending on the level of 

complexity, the process of manual segmentation may take a lot 

of time. Furthermore, point cloud automatic classification has 

also become more and more important in this regard. 

Classification will confer classes into the point cloud clusters 

resulting from the segmentation step. 

This paper will describe an approach to automatically segment a 

historical building point cloud into architectural elements. In 

doing this, several simple Euclidean geometry-based rules are 

used in order to first distinguish the different building element 

units e.g. roofs, structural support, floors, etc. Afterwards, by 

using a slicing approach to the point cloud, structural supports 

will be identified as point cloud clusters. Geometric rules will 

then be employed to help classify the segmented results into 

either the “column” or “pier” class automatically.  

2. RELATED WORK

Structural supports such as columns present a particular interest 

for the heritage community, as often times they present a 

valuable example of historical engineering and architectural 

design. Much study has been done in the field of structural 

support automatic 3D modelling (Luo and Wang, 2008; Riveiro 

et al., 2016), but most focuses on simple pillars or supports. In 

this regard, automation for heritage-related structural support 

remains difficult due to the many different types linked to the 

architectural style. Murphy et al. (2013) focused on the creation 

of a library of parametric objects, following some common rules 

found in historical structural supports, while Antonopoulos and 

Antonopoulou (2017) opted for manual drawing by combining 

existing libraries and creating new parametric models. However, 

some common geometric rules can still be identified, e.g. the 

cross-section of a column is mostly circular. 

Many approaches to point cloud segmentation automation are 

described in the literature. As pointed out by Nguyen and Le 

(2013), two general approaches exist in this regard: reliance on 

geometric axioms and mathematical functions (e.g. Macher et 

al., 2015) and the use of machine learning techniques (e.g. 

Bassier et al., 2017). While machine learning approaches are 

more robust against noise and occlusions, its main disadvantage 

is the time required to train the programme. In simpler cases, 

geometrical rules are often enough and may provide a faster 

result. In terms of point cloud classification, the process can be 

performed in a supervised (data-training), unsupervised, or 
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interactive manner (Grilli et al., 2017). In this paper, the use of 

geometrical rules ensures a simple implementation and quicker 

results to segment and classify the point cloud. The use of these 

rules also enables a classification based on geometric 

characteristics of some typical architectural elements. A similar 

approach was also demonstrated in several other works 

concerning as-built BIM (Macher et al., 2017) and engineering 

applications (Riveiro et al., 2016). Another precedent to this 

study is a similar research by Luo and Wang (2008), which was 

nevertheless performed on modern columns and did not take 

into account point cloud classification. 

3. METHODOLOGY

The proposed method employs several geometrical 

characteristics of typical historical buildings in performing the 

segmentation and classification process. The algorithm uses as a 

starting point the point cloud of a building. The first part of the 

developed approach was the identification and segmentation of 

the building’s body and attic (Figure 1). The attic in this case is 

defined as the space between the roofs and ceilings of the 

uppermost story. This vertical segmentation is meant to 

facilitate further segmentation process and point cloud 

management. To this end, horizontal profiles of the object were 

extracted and their geometric properties were used to identify 

the attic from its main body. The area surface of the profiles was 

assessed, and a significant reduction of area surface was 

interpreted as the limit between the attic and the main body. In 

this manner, the algorithm was able to quickly and quite reliably 

determine these two parts of the building. In the absence of a 

tilted roof (such as the case with some modern buildings), the 

algorithm will simply determine that the building has no attic. 

function [Struct] = attigsegment(ptCloud) 
Slices = slices(ptCloud); 
for i=1:numSlices 

ProjectedPts = project(ThisSlice, z_mean); 
Area = convhull (ProjectedPts); 
AreaList(i) = Area; 

end 

for i=1:size(AreaList)-1 
delta=abs(diff(AreaList(i);AreaList(i+1); 
if (delta>tolerance) 
Zlimit = ThisSlice(z); 

end 

Struct.Body = find(ptCloud(z)<=Zlimit; 
Struct.Attic = find(ptCloud(z)>Zlimit; 

Figure 1. Pseudocode for the attic detection function. 

function [Struct,SupportType] = supportdetect(Body) 
Slices = slices(ptCloud); 
SliceUsed = size(Slices)/2; 
Clusters = pcsegdist(SliceUsed); 
for i=1:numClusters 

ProjectedPts = project(ThisSlice, z_mean); 
Area = convhull (ProjectedPts); 
AreaList(i) = Area; 
if (Area<0.1*SliceArea && area>noise_thres) 
TypeList = “support”; 

elseif area<noise_thres 
TypeList = “noise”; 

else 

TypeList = “wall”; 
end 

end 

for i=1:nbSupport 
circularity = (chull_perimeter.^2)./(4*pi*area); 
if (circularity<circularity_threshold) 
SupportType = “column”; 

else 

SupportType = “pier”; 
end 

CookieCutter=polybuffer(chull,bufferSize); 
index=isinterior(CookieCutter,Body); 
if (index=='TRUE') 
PtCloudIn=PtCloud(index,:); 

else 

PtCloudOut=PtCloud(index,:); 
end 

Struct.PtCloud{i}=PtCloudIn; 
end 

Figure 2. Pseudocode for the support segmentation and 

classification function. 

Further segmentation was performed to detect architectural 

elements from the building’s body. Figure 2 shows a 

pseudocode of the developed approach to detect specifically 

structural supports. The supportdetect function consists of 

two parts. The first part concerns the detection of the structural 

supports, and successive segmentation into potential point cloud 

clusters. In this case, a 2D approach to a 3D problem was used 

to help with the process; a method similar to the one described 

by Macher et al. (2017). Consequently, a cross-section of the 

building’s body (result of the previous attigsegment 

function) was extracted. From the cross-section, various 

“islands” represent different vertical elements of the building. In 

order to segment these elements into individual clusters, a 

region-growing segmentation based on Euclidean distance was 

performed. A preliminary filtering and immediate classification 

was then performed to distinguish between potential structural 

supports, walls, and point cloud noise. The filtering was done 

using the convex hull area criterion.  

From the list of structural support clusters generated from this 

process, other geometrical rules were then used to determine if a 

structural support is a column or a pier. While there is no single 

agreed definition as to the distinction between a column and a 

pier, this study defined a column as a vertical support which 

mostly possesses a circular cross-section. On the other hand, a 

pier was defined as a support having a non-circular cross-

section, mostly rectangular. This definition corresponds to the 

one taken from the UK-based Designing Buildings website 

(https://www.designingbuildings.co.uk/wiki/Types_of_column 

accessed on 3 June 2019). 

In order to distinguish between a circular and non-circular 

cross-section, again the convex hull is computed for each 

support’s cross-section. For each structural support, the 

circularity parameter is computed from the convex hull 

parameters. This value follows the following formula, slightly 

modified from Takashimizu and Iiyoshi (2016): 

(1) 

In this setup, a circularity value of a perfect circle is 1, while as 

the value increases the form of the object departs from a round 

form. While the circularity parameter is very easy to compute, it 

should be noted that it is not robust and is therefore prone to 

errors due to noises which may distort the form of the cross-

section’s convex hull. 

In the final part of the code as shown by Figure 2, the 

segmentation and classification was extended back into the 3D 

space. Note that up to this point, only the building’s cross-

section’s clusters of islands were segmented and classified. In 

order to do so, a similar approach to a previous research 

(Murtiyoso and Grussenmeyer, 2019)  was used. In this 

approach, the convex hull of each support’s cross-section is 

used as a “cookie-cutter” to obtain the 3D point cloud of all 

elevations corresponding to each island cluster. A buffering 

threshold was applied to the convex hull in order to give a 

tolerance to the process. A RANSAC plane fitting was then 

subsequently applied to remove the floor part of the segmented 

result. Finally, a last Euclidean distance-based region growing 

segmentation was performed in order to delete noises.  

In this way, a form of automatic classification of the segmented 

point cloud clusters was conducted. The output of the general 

workflow consists of clusters of point clouds, segmented and 

classified into the attic and the main building body, which were 

then further classified into columns and piers.  
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(a) (b) (c) 

Figure 3. The three cultural heritage sites used as test sites in this paper: (a) the Royal Pavilion of the Kasepuhan Palace in Cirebon, 

Indonesia; (b) the choir of the Catholic church of St-Pierre-le-Jeune in Strasbourg, France; and (c) the Temple of Hera or 

colloquially the “Basilica” of the Paestum site in Italy. 

 

4. AVAILABLE DATA SETS 

Case studies were conducted using three data sets (Figure 3). 

The first data set was taken at the Siti Inggil complex of the 

Kasepuhan Palace, Cirebon, Indonesia. This area dated to the 

15th century and includes several historical pavilions within its 

1,200 m2 brick-walled perimeters. The site was digitised in 

2018 using a combination of terrestrial laser scanner (TLS) and 

photogrammetry (both terrestrial and UAV), and was 

georeferenced to the Indonesian national projection system. The 

area was then segmented into individual building clusters which 

are automatically annotated with semantic information using 

pre-existing GIS data (Murtiyoso and Grussenmeyer, 2019). 

The Royal Pavilion located in these premises was thereafter 

used as case study for the developed method.  

Another test was also conducted using a second data set 

obtained from the 19th century St-Pierre-le-Jeune Catholic 

church located in Strasbourg, France. The data was acquired in 

2016 and 2017 using UAV photogrammetry for the exterior and 

TLS scanning for the interior (Murtiyoso and Grussenmeyer, 

2018). The resulting point cloud was then georeferenced to the 

French national projection system to facilitate future 

documentation of the site. The church was constructed in the 

Neo-Romanesque architectural style and is therefore 

characterised by columns and semi-circular arches. The church 

is part of the Neustadt UNESCO World Heritage site of the city 

of Strasbourg. For this study, the choir of the church which is 

characterised by twin pillars was used. The twin pillars provide 

a further challenge for the algorithm as they are conjoined. 

Furthermore, the posterior pillars are attached to iron fences. 

The third data set was obtained from a laser scanning mission at 

the Paestum archaeological site in southern Italy. The data was 

acquired by the 3DOM-FBK Trento team (Fiorillo et al., 2013) 

and has been shared to the authors to be used as a case study in 

this paper. Specifically, the point cloud data of the “Basilica” or 

the Temple of Hera was used in this paper. The Basilica is the 

ruins of a Greek-style temple with Doric orders; Paestum itself 

being a Greek colony in the 7th century BC. The Paestum site is 

also a UNESCO World Heritage site. 

The three available data sets provide very different styles of 

architecture. While Paestum’s Doric columns provide a prime 

example of ancient Greek architecture, it is vastly different to 

the 15th century Javanese architecture of the Kasepuhan site. In 

the same manner, the 19th century St-Pierre church provides an 

example of Neo-Romanesque columns. The differences between 

the three available data set’s architectural styles provide an 

interesting opportunity to assess the developed algorithm. 

 
Figure 4. Automatically segmented building attic and body for 

the Kasepuhan Royal Pavilion dataset; the attic is here shown in 

green and the body in purple. 

 

5. RESULTS AND DISCUSSIONS 

The first function as described in Figure 1 was applied to the 

Kasepuhan data set in order to separate the building’s body 

from its attic, while the second function (Figure 2) was applied 

to all three data sets to detect, segment, and classify their 

respective structural supports. 

The first result concerning the attic segmentation algorithm can 

be seen in Figure 4. The algorithm detects an abrupt change in 

overall cross-section convex hull area and determines 

automatically the upper part as the attic and the lower part as 

the building’s body. In this regard, the programme managed to 

detect the attic automatically and quickly (about 5 seconds). 

This part of the algorithm is aimed as a sort of pre-processing 

for the point clouds of buildings which possess an attic, as a 

precursor to the structural support detection part of the 

developed algorithm. This preliminary processing will enable a 

fully automatic workflow which begins with the point cloud of 

the entire building as input, therefore minimising as much as 

possible human intervention during the process. 

In the developed workflow, this step is followed immediately by 

the structural support detection as expressed in the pseudocode 

of Figure 2. For the Kasepuhan dataset, the building body part 

which was previously segmented was used as input, while for 

the St-Pierre and Paestum data sets the original point clouds 

were directly used as inputs. As has been described in section 3, 

there are two main parts of the algorithm which are performed 

simultaneously; namely the segmentation and the classification. 
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Original 

point cloud 

   

Data set Kasepuhan St-Pierre Paestum 

Arch. style Javanese Neo-Romanesque Greek 

Object type Pavilion Church choir Temple ruins 

Point count 155,115 1,852,162 1,181,025 

Detected 20 supports 8 supports 58 supports 

Ground 

Truth 
20 supports 4 twin pillars 58 supports 

Result 

 

 

Table 1. Comparison of the results of the segmentation part of the algorithm on the three available data sets. The resulting segmented 

clusters are displayed in random colours denoting one cluster for each colour. 

 

   
(a) (b) (c) 

Figure 5. Sample support clusters of the resulting segmented 

point cloud from each data set: (a) Kasepuhan, (b) St-Pierre, 

and (c) Paestum. Blue colour denotes true positive points, while 

grey ones are false positive points. 

 

Although both steps were integrally implemented in the same 

function, the following discussion will be divided into the 

segmentation and classification sections to help understand the 

consecutive steps of the workflow. All analysis was conducted 

using an Intel(R) Xeon(R) E5645 2.4 GHz CPU. 

5.1 Point cloud detection and segmentation  

As regards to the detection and segmentation of the input point 

cloud into potential building structural supports, a summary of 

the results from the three case studies is showcased in Table 1. 

As has been previously described, the three available data sets 

present a unique set of test data with three very different styles 

of architecture. That being said, the three shares a common 

characteristic in that columns within the three architectural 

types have circular cross-sections.  

The Kasepuhan data set is the smallest of the three, consisting 

of only a little over 155k points, while Paestum consists of 

1.1M points. The St-Pierre data set consists of 1.8M points for 

the choir part which is used in this study.  

In total, the algorithm managed to detect 20 supports for 

Kasepuhan, 8 supports for St-Pierre, and 58 supports for 

Paestum. This corresponds well with the ground truth data, 

where identical numbers of structural supports are found in each 

data set. While the detection of the supports in Kasepuhan and 

Paestum are quite straight-forward due to the fact that in both 

data sets the supports are fairly apart from each other, the case 

of St-Pierre is more complex. In the St-Pierre choir data, the 

eight pillars are actually four pairs of twin pillars, each pair 

consisting of two columns conjoined at the plinth and capital 

levels. Furthermore, the posterior columns of each pair are 

attached to an iron fence which links the four pairs and forms a 

barrier between the choir and the ambulatory located behind it. 

Difficulties arose when applying the algorithm by default, 

because the function arbitrarily takes the middle altitude cross-

section of the point cloud to perform the detection part. In this 

regard, the iron fence hinders a proper detection of the posterior 

columns as stand-alone supports. A tweak was necessary to be 

applied to the algorithm in order to properly detect each 

support, namely by setting the cross-section profile to be used 

in the detection part to the one just beneath the capitals where 

the iron fence ends. The buffering of the convex hull cookie 

cutter polygon also needed to be adjusted as to take into 

account the short space between two columns in a pair. 

Figure 5 shows a sample of some structural supports detected 

by the algorithm on the three data sets, while showcasing some 

of the problems encountered with each particular case. For the 

Kasepuhan data set, some erroneous points were segmented 

together with a pier, effectively presenting a case of 

overclassification or false positive points. In this case, the 

overclassified points are those belonging to a sign post which 

was attached to the pier. This error typically manifests due to 

the use of the cookie cutter and Euclidean distance-based region 
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growing approaches. Although the RANSAC-based plane 

fitting filter managed to exclude the floor part of the segmented 

cluster, the use of distance-based region growing did not 

manage to exclude that of the sign post. This is because the sign 

post is attached to the pier, effectively telling the algorithm that 

these points belong to the same cluster. 

A similar problem can be observed with the St-Pierre data set. 

As has been previously explained, the posterior columns are 

attached to an iron fence. Here the same problem with the 

combination of the cookie-cutter and distance-based region 

growing manifested itself. Indeed, the same reasoning can be 

followed to explain why a small part of the iron fence on each 

side of the support was included in the cluster. A similar, albeit 

more curious, problem can be seen in the Paestum data set. 

Here the same argument regarding the disadvantages of the 

cookie-cutter and distance-based region growing segmentation 

may explain the existence of the false positive points. However, 

the Paestum data set displays a systematic tendency to this, in 

that the same case happens to not only one support, but indeed 

many. This may be explained by the iterative nature of the 

algorithm, in which the previous iteration includes the left (in 

the relative directions of Figure 5) end of the cluster, while the 

current iteration takes what is rest. This happens consecutively, 

therefore creating this impression of systematic error. A 

possible solution would be to refine the algorithm’s parameter, 

for example by fine tuning the buffering radius of the support’s 

cross section convex hull. 

Numerically speaking, some statistics related to this detection 

and segmentation part of the function can be seen in Table 2. In 

this table, the overclassified column describes the number of 

points considered as false positives, while the unclassified 

column denotes the true negative points. False negative points 

are not showed since the values are negligible due to the 

cookie-cutter approach of taking all points of all elevations of a 

particular polygon shape. St-Pierre displays the highest 

percentage of unclassified points, amounting to 28.09%. This is 

easily explained by the condition surrounding the object of 

interest, namely the church choir. Ambiguities were evident due 

to the existence of the iron fence between the choir and the 

ambulatory, while the twin nature of the columns also generated 

errors. Furthermore, the input point cloud was not pre-

processed or cleaned; several artefacts which can be considered 

as noise were present in the scene e.g. folded chairs, both open 

and folded (some are stored between the columns of a twin pair, 

thereby presenting significant uncleaned noise).  

This problem can also be observed from the cloud-to-cloud 

analysis also presented in Table 2. The cloud-to-cloud analysis 

computed a Euclidean distance for each point to its nearest 

reference point, and was computed using the software 

CloudCompare (https://www.danielgm.net/cc/ accessed on 4 

June 2019). The standard deviation value for the St-Pierre data 

is quite high (40.6 mm). 

As regards to the results for the Paestum and Kasepuhan data 

sets, both showed good results in terms of unclassified 

percentage, amounting to around 10-15%. The Kasepuhan data 

set also fared well in terms of the cloud-to-cloud analysis, 

although this may be a little biased due to the fact that 

Kasepuhan presents the lowest number of points and the 

supports are located fairly apart from each other, as well as the 

fact that it is the smallest object of the three in terms of scale. 

For Paestum, the higher order of values, both for the mean and 

standard deviation values reflected the larger scale of the object 

compared to the other two data sets. Indeed, Paestum’s 

dimension is about 5 times that of Kasepuhan and St-Pierre. 

Data set 
Point Count Mis-classified C2C Analysis 

Manual Auto Overclassified Unclassified % Unclassified Mean (mm) σ (mm) 

Kasepuhan 37 185 32 230 397 5 352 14.39 1.3 15.8 

Paestum 616 766 594 030 55 434 78 170 12.67 24.2 89.6 

St-Pierre 595 964 476 250 47 713 167 427 28.09 11.0 40.6 

Mean 18.39 

Median 14.39 

Table 2. Segmentation statistics for the three data sets, also showing a cloud-to-cloud analysis which used the manually segmented 

clusters as reference. 

 

Data set Kasepuhan St-Pierre Paestum 

Classified 6 pillars, 14 piers 8 pillars 56 pillars, 2 piers 

Ground 

truth 
6 pillars, 14 piers 4 twin pillars 56 pillars, 2 piers 

Processing 

time 
38.28 seconds 83.56 seconds 341.16 seconds 

Result 

 

Table 3. Comparison of the results of the classification part of the algorithm on the three data sets. Red denotes the column class 

while blue the pier class. Note that processing time is for both the segmentation and classification steps, which were integrated into 

one function. 
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However, Paestum’s high standard deviation once again 

reflected the problem with the overclassification and its 

systematic nature, as has been described in the previous 

paragraph. Overall, the segmentation step presents an average 

success rate of 81.61% and median success rate of 85.61% for 

three tested data sets which are available. 

 

5.2 Classification and processing time 

The classification part of the algorithm is performed integrally 

with the detection and segmentation part within the function of 

Figure 2. This section will discuss the results strictly from the 

perspective of the classification part, in order to give a more 

systematic description in the paper. 

Table 3 summarises the results obtained for the classification 

step. The algorithm utilises the circularity value for each 

support cluster’s cross-section convex hull to determine if a 

cluster is attributed the class of column or pier; the column class 

being characterised by a more circular form denoted by a 

circularity value of around 1. An empiric value of 1.12, 

computed from the average circularity of ground truth columns, 

was used as the threshold between the “column” and “pier” 

classes. In this regard, results from all three data sets show 

promising results as the algorithm managed to correctly identify 

the form of all structural supports.  

In the case of the Paestum data set, the ground truth data gave a 

total of 58 supports, comprising of 56 circular columns and 2 

rectangular ones. Within the pre-defined context identified at 

section 3, these two rectangular columns can be considered as 

piers. The algorithm managed to detect the same number of 

support types, and correctly determined which support belonged 

to which class. The whole processing of the Paestum data, 

comprising the detection, segmentation, and classification, takes 

a total of 341.16 seconds.  

For the Kasepuhan data set, the algorithm managed to detect the 

6 columns located at the inner part of the pavilion, of which 

three are located on an elevated dais. The surrounding 14 

wooden piers were also correctly identified. The algorithm took 

38.28 seconds to generate this result.  

The St-Pierre data also showed promising results, as the 

programme managed to identify the eight supports as columns, 

their twin nature notwithstanding. In this case, the processing 

time amounts to 83.56 seconds. Although the algorithm 

managed to perform the classification task well enough, it 

should be noted that fine tuning of some important parameters 

must be performed to address specific cases. 

As may be observed from the processing time of the three data 

sets, it is not directly linked to the point count of their 

respective input data as much as to the number of supports 

detected and the density of the point cloud. The Paestum data 

took more time to process compared to the denser St-Pierre data 

due to the amount of supports detected (58). However, density 

also plays a role as can be seen in the comparison between St-

Pierre and Kasepuhan. This can be explained by the fact that the 

algorithm works by relying on cross-sections; thus accelerating 

the classification part. The segmentation is therefore the part 

that takes more time depending on point cloud density and the 

number of identified structural supports. However, the overall 

processing time is still faster by at least a factor of 2 when 

roughly compared to the time it takes to perform the same task 

manually, without taking into account the time required to 

identify and classify each cluster into the appropriate classes.  

6. CONCLUSIONS AND FURTHER WORK 

This paper has attempted to describe an algorithm which 

enables the automation in heritage point cloud segmentation 

and classification using simple geometrical rules, such as 

convex hull areas and circularity values. The main focus of the 

algorithm is the detection of architectural elements; in this 

preliminary phase it is the structural support of the building. It 

has also showcased the results generated by said algorithm on 

three test sites with very different architectural styles with 

promising results. The method was implemented in the Matlab© 

language, but the main algorithm is open source and other 

implementations using other languages such as C++ and Python 

is perfectly possible.  

Tests on the three available data sets showed that in terms of 

segmentation, the algorithm managed to correctly identify 

potential structural supports. The segmentation was then 

performed using the cookie-cutter approach, followed by 

additional filtering using RANSAC-based plane fitting 

segmentation to exclude floors and a Euclidean distance-based 

region growing segmentation to filter out the noises within the 

cluster. While this approach provided results in a fairly short 

processing time, it has its own downfalls as evidenced in section 

5. Mainly, the approach is dependent on the particular condition 

of each case, with a deviation to the ideal condition (e.g. 

existence of attached sign posts or iron fence) resulting in 

overclassification. That being said, the algorithm managed to be 

quite reliable in some specific cases, such as the segmentation 

of the twin pillars in the St-Pierre data set. As has been stated 

previously, judging from the three available data sets, the 

algorithm attained mean and median success rates of 81.61% 

and 85.61% respectively. 

In terms of the classification results, the use of the circularity 

value as a geometric parameter proved to be effective in 

differentiating between the column and pier classes. The 

developed algorithm is also fairly fast and contrary to machine 

learning-based techniques, it does not require training data; 

something which may be complex to implement due to the 

innumerable types of structural support architectural styles in 

the heritage domain. However, the algorithm which is based on 

geometrical rules is quite sensitive towards noise as has been 

previously hypothesised and shown in this paper. 

Future studies will involve the refinement of the algorithm as 

well as its extension for other architectural elements (e.g. 

wooden beams, plinths, capitals, etc.). Later research will also 

address the generation of geometrical primitives from these 

segmented point cloud clusters. The final objective is to be able 

to generate the 3D model primitives for the segmented 

architectural elements. This will hopefully facilitate and save 

time in further processes down the 3D modelling workflow 

pipeline, such as the creation of 3D GIS and HBIM (Heritage 

Building Information Models). Furthermore, the (partial) 

automation of the classification process also aids in the 

semantic enrichment of these end products. 
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