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ABSTRACT: 

This paper identifies the application domain, context of use, processes and goals of low-cost street-level photogrammetry after urban 

disasters. The proposal seeks a synergy between top-down and bottom-up initiatives carried out by different actors during the 

humanitarian response phase in data scarce contexts. By focusing on the self-organisation capacities of local people, this paper suggests 

using collaborative photogrammetry to empower communities hit by disasters and foster their active participation in recovery and 

reconstruction planning. It shows that this task may prove technically challenging depending on the specifics of the collected imagery 

and develops a grounded framework to produce user-centred image acquisition guidelines and fit-for-purpose photogrammetric 

reconstruction workflows, useful in future post-disaster scenarios. To this end, it presents an in-depth analysis of a collaborative 

photographic mapping initiative undergone by a group of citizen-scientists after the 2016 Central Italy earthquake, followed by the 

explorative processing of some sample datasets. Specifically, the paper firstly presents a visual ethnographic study of the photographic 

material uploaded by participants from September 2016 to November 2018 in the two Italian municipalities of Arquata del Tronto and 

Norcia. Secondly, it illustrates from a technical point of view issues concerning the processing of crowdsourced data (e.g. image 

filtering, selection, quality, semantic content and 3D model scaling) and discusses the viability of using it to enrich the pool of geo-

information available to stakeholders and decision-makers. Final considerations are discussed as part of a grounded framework for 

future guidelines tailored to multiple goals and data processing scenarios. 

1. INTRODUCTION

The growing exposure of contemporary cities to natural and man-

made hazards calls for a better management of urban 

contingencies (Borsekova & Nijkamp, 2019). As these are 

becoming an integral part of urban planning practice, instruments 

such as Geographic Information Systems (GIS) and (Historic) 

Building Information Modelling (BIM and HBIM), are now a 

crucial component of the toolbox of planners and disaster 

managers seeking sustainable urban futures (Billen et al., 2014). 

They allow managing complex collaborative projects involving 

several actors and can be used to guide decision-making through 

scenario-building techniques and simulations at all scales 

(Breunig et al., 2017). Despite GIS and BIM require access to a 

rather large amount of geographic data, which could be hardly 

available after a disaster, novel opportunities for their use in data 

scarce contexts are emerging as a result of rapid technological 

advances in the 3D documentation of the built environment. An 

example are increasingly accessible scanning techniques, low-

cost photogrammetric methods and flexible software solutions 

(Wilson et al., 2009), supported by the continuous development 

of powerful computer vision algorithms for the semantic mining 

of 3D models (e.g. deep segmentation). Another opportunity is 

represented by the ubiquitous availability of low-cost imaging 

devices.  

Past studies have demonstrated that in the aftermath of a disaster, 

high-resolution satellite images can be insufficient to fully record 

buildings and urban aggregates or may be simply unavailable due 

to weather-related factors, besides lacking in accuracy and 

coverage of vertical plans (Toschi et al., 2017). Considering that 

many authors suggest compensating for these shortcomings by 

using UAV imagery (Erdelj et al., 2017; Petrides et al. 2017; 

Copernicus EMS, 2016), this paper argues that crowdsourced 

street-level imagery can be an additional valuable resource to 

complete missing information useful to urban designers and 

planners in circumstances where other data were either 

unavailable, too poor or excessively delayed. The UN Action 

Guidelines (UNISDR, 2017) highlight the potential benefits of 

using crowdsourcing to collect geographic information: beyond 

the rapid gathering of data at a large scale, these include building 

community resilience by indirectly educating participants about 

risks in their areas. Nonetheless, enabling a safe participation of 

the general public in data capture operations after disasters 

remains an open challenge. Some advantages and limits are 

analysed by Poblet et al. (2014).  

Within this framework, the paper claims that photogrammetry 

can play a key role in building back better (UNDRR, 2015) by 

effectively bridging the efforts of citizen scientists (members of 

the public collecting data about the built environment) and 

professionals from the humanitarian sector. It suggests that, a 

synergy between top-down responses by relief actors and bottom-

up initiatives by local communities can be achieved in the context 

of a temporary - yet often enduring - urban crisis, by positively 

focusing on the resourcefulness and self-organisation capacities 

of local activists and by supporting an open flow of data and 

knowledge produced by citizen-scientists (UN environment, 

2018). To this end, it discusses the technical and methodological 

challenges of using collaborative, low-cost, street-level 

photogrammetry as a tool to orient strategic decisions, empower 

the affected communities and foster their active participation in 

post-disaster planning. I.e., for the crowdsourced data to be 

efficiently processed with state-of-the-art tools, it can be useful 
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to instruct people on how to collect images that match the current 

technical needs and constraints of photogrammetry. This paper 

develops a framework to produce guidelines for non-technicians 

aiming at enhancing the value of collaborative photographic 

mapping efforts as wells some processing tips so the data can turn 

useful to the many, by tracing a shared recovery path towards 

resilience.  

 

1.1 Background and related work 

The last two decades have been characterised by a revolution in 

3D surveying techniques due to the impact of the computer vision 

community in the field of photogrammetry and the web, which 

have pushed forward the computational possibilities for 3D data 

acquisition and processing as well as the ease of the associated 

methods. Initially, only trained professionals could perform 

photogrammetric surveys. They were required to capture pictures 

with a metric camera moving through a certain scene at a given 

time and subsequently process those using stereo pairs. Thus, the 

interval between the observations used to have a certain temporal 

consistency in line with the required overlap (usually 60% in one 

direction and 20% on the perpendicular axis), homogeneous 

lighting conditions, and fixed internal camera parameters. While 

this pipeline allowed a better control on the data acquisition 

process, it was dependent upon both expensive equipment and 

professional expertise. Therefore, terrestrial laser scanners (TLS) 

became a highly popular alternative even if past technologies 

were at times impractical (e.g. survey of narrow staircases or high 

buildings). Despite their recent diffusion and improvement, TLS 

remain rather expensive. Therefore, for many applications such 

as heritage conservation, geography studies and medical 

scanning, there is now an interest in producing 3D data using 

much cheaper and portable technologies such as photogrammetry 

from smartphones (Barbero-García et al. 2017; Kirchhöfer et al., 

2011; Micheletti et al., 2015; Zhang et al., 2016), which became 

viable when traditional survey requirements were relaxed thanks 

to the integration in the processing pipeline of analytical 

approaches and automated procedures developed by the machine 

vision community at the beginning of the 2000s. The ease with 

which some algorithms model geometrical distortions associated 

with image acquisition has allowed the range of usable sensors to 

increase significantly. The automated tracking of points across 

multiple images using SIFT and SURF for feature design, and 

more recently deep learning methods, has supported the handling 

of large image datasets. Furthermore, an increased flexibility in 

photogrammetric 3D modelling is achieved by using in sequence 

Structure-from-Motion (SfM) and Multi-View Stereo (MVS) 

algorithms. In the SfM case the camera is not initially calibrated 

and the goals are to estimate the extrinsic and the intrinsic (these 

are possibly unknown or perhaps constrained) parameters and 

reconstruct the sparse 3D scene. SfM starts by identifying 

correspondent feature points across many images whose position, 

orientation and distortion, are unknown. These parameters are 

then inductively inferred by the algorithm, which proceeds in an 

iterative manner by sampling an object multiple times. Hence, 

SfM needs numerous images to reconstruct the sparse 3D point 

cloud. In the MSV case, the camera is calibrated, thus the internal 

parameters (intrinsic) of each camera as well as its position and 

pose (extrinsic) are known and the goal is to estimate the dense 

3D scene. Then, a scaled 3D model is obtained using ground 

control points (GCPs). This pipeline differs from traditional ones, 

where to estimate a 3D shape just a couple of stereo pictures are 

required together with data about the position, orientation, and 

geometrical distortions of a specific camera sensor. Differently 

from SfM methods, classic photogrammetry uses the stereo 

matching to identify correspondent points, whose 3D coordinates 

are then directly determined.   

Early studies such as that of Gruen, Remondino, & Zhang (2004) 

demonstrate an early interest in exploiting images found on the 

internet and/or collected by tourists for use in photogrammetry 

applications in contexts where the collection of data presents 

difficult challenges. However, proposed 3D reconstruction 

methods were still difficult to apply and required the intervention 

of trained specialists. One of the first key papers paving the way 

for the combined use of SfM and unordered image collections by 

exploiting the power of bundle adjustment and self-calibration 

was written by Snavely, Seitz, & Szeliski in 2007. Later, SfM-

MSV have allowed the development of many photogrammetric 

projects based on crowdsourcing such as BigSFM (Snavely et al., 

n.d.). These include the 3D modelling of city scale monuments 

using tourists’ pictures (see the case study of Rome in Agarwal 

et al., 2011) as well as the reconstruction of heritage buildings 

and sites destroyed by terrorism such as Palmira (Wahbeh, 

Nebiker, & Fangi, 2016). Others address disastrous incidents 

such as the recent fire of Notre Dame de Paris, for which some 

experimental photogrammetric models have started appearing on 

©Sketchfab (Bandera, 2019). Another relevant advance in the 

direction of fast, automated and low-cost photogrammetry from 

smartphone-acquired images is represented by the diffusion of 

cloud-based processing services such as ®Recap Photo or free 

mobile Apps for 3D scanning such as ®3DSizeME, ®3D Creator 

or ®Bevel, just to name a few. These services allow uploading 

images (in the case of ®Recap up to 300) on external servers for 

processing, and then download a textured 3D model from the 

cloud. Using a similar system, an international research team is 

now developing a mobile application with on-the-fly feedback 

for collaborative mapping projects as part of the European 

Replicate project (Nocerino et al., 2017). Arguably, these new 

technologies will help putting further down costs and need for 

expert supervision and, possibly, processing time as well. 

This paper will not repeat a demonstration of the potential of the 

SfM approach for crowdsourcing applications. Rather, it seeks to 

highlight the specific needs of SfM-MSV methods regarding 

image acquisition to enable the maximum exploitation of novel 

photogrammetry pipelines in post-disaster contexts. We want to 

leverage empirical data to set the ground to produce user-centred 

image acquisition guidelines and fit-for-purpose reconstruction 

workflows that would enhance the results of future collective 

mapping efforts. The paper clarifies the technical challenges and 

the practical constraints of using crowdsourced image data to 

produce qualitative and/or quantitative data, but a detailed 

assessment of the results falls out of its scope. A relevant 

precedent in the literature is represented by the work of Griffiths 

et al. (2015) on the Heritage Together project, which emphasise 

the importance of generating novel research processes to 

maximise the outcomes of public archaeology initiatives. 

However, our paper differs from it in the analysis approach, as 

we study the behaviour of citizen scientists post factum, that is, 

without exchanging knowledge during the process. Operatively a 

visual ethnographic analysis (Bryman, 2016) is used to examine 

the way people documented their reality in a collaborative 

photographic mapping initiative carried out between the towns of 

Arquata del Tronto and Norcia after the 2016 central Italy 

earthquake. The study is conducted by considering the technical 

needs of SfM-MSV processes and results are tested by post-

processing the imagery, illustrating three different examples: a 

successful, an acceptable and an unsuccessful one.  

 

2. METHODS AND ANALYSIS 

The analysis of the data collected starts by examining the quality 

of it in relation to the technical components involved in 

reconstructing a 3D model, specifically: (i) Image coverage and 

overlap, (ii) Camera sensor and image collection mode, and (iii) 
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Camera pose. A visual ethnographic analysis is used to illustrate 

how the behaviour of citizen-scientists during image acquisition 

affected the quality of the photographs so realistic guidelines to 

collaborative mapping can be outlined. This data is then post-

processed using standard photogrammetry techniques and 

assessed in relation to image selection, 3D model reconstruction 

and scaling, followed by examples illustrating three different 

quality of results and related issues. As a preamble for the 

analysis, we present an overview of how a group of citizen-

scientists got involved in this image acquisition process, by 

explaining their motivations within the Italian Humanitarian 

context. This contextualization is important to develop a 

framework for the provision of successful guidelines for 

collaborative mapping because it shows they are grounded in a 

user-centred perspective aimed at fostering best practices in the 

ubiquitous deployment of photogrammetry witnessed to date.  

  

2.1 The motivation within a humanitarian context 

As images reflect specific habits and personal narratives, 

including an interpretation of history, space and truth (Pink, 

2006), photos have long been used as a research tool in visual 

ethnographic studies tackling certain aspects of culture and 

society (Schwartz, 1989). Setting the context in which images are 

produced provides comprehensive understanding of what is 

possible to achieve from a user-centred perspective. An analysis 

of an image dataset depicting the aftermath of the 2016 Central 

Italy earthquake is undertaken using photos gathered in two 

municipalities, in conjunction with additional information such 

as geographic maps, time data, official reports and other relevant 

documents from the web, and via its photogrammetric 

processing. Motivations, main drivers and promoters of the 

initiative in the Italian humanitarian context are outlined from the 

first call for action, made soon after the disaster by the civic 

hacking website Terremoto Centro Italia (2016), which opened 

only a few days after the first seismic wave. The needs behind 

the request of open photographic contributions were: (i) 

storytelling by reconstructing the post-earthquake narrative to 

communicate with people outside the affected area who cannot 

visit the territory; (ii) freedom to choose the subjects, including 

less popular areas and remote villages; (iii) better coverage, by 

mapping off-road paths were global mapping services do not go 

(e.g. rural/mountainous territories); (iv) frequent updates with 

possibility to compare situations at different times and with data 

from other services such as ®Google Street View (GSV); (v) 

freeing data from everyone's photos to transfer on cartographic 

maps as Points of Interest (POIs); (vi) obtain a 3D reconstruction 

of the photographed subjects; (vii) strengthen civic activism and 

community participation.  

Mapillary, a crowdsourcing platform able to manage and extract 

data from images using computer vision techniques (Mapillary, 

2018), was suggested as a suitable tool because it authorises the 

open use of the images uploaded (CC BY-SA licence). No 

limitations were given in terms of survey organisation and 

objective or camera type (smartphones, action cameras and SLR 

ones were equally welcomed). One year later Act!Onaid Italia 

organised in Arquata del Tronto a Monitoring and Civic Action 

School (SMAC) involving a collaborative mapping challenge 

aimed at empowering local people through civic activism. There, 

a group of 39 people surveyed 18 km of streets (716 images) 

during a 1-hour walk (green areas in fig.1). Some guidance was 

given to participants to read before the survey (see table 3): 

mainly a summary of those in the Mapillary website. The use of 

®Flickr was suggested as a further alternative to capture pictures 

with geotags using GPS data. Geotags were recommended to 

label records at specific times and places to allow cross-

comparisons with data captured during official inspections. 

 
Figure 1. Areas to map, Mapillary challenge Arquata del Tronto 

 

2.2 The technical components of reconstructing a 3D model 

These humanitarian initiatives illustrate an ambition for broader 

coverage and more frequent update of photographic mapping 

data. In order to compare crowdsourced data with commercial 

data (tab. 1), we first map and overlay data about the spatial and 

temporal distribution of imagery collected by global mapping 

services such as Google, and the people (fig. 2). Then, image 

density, orientation and content are analysed in order to account 

for concentration of information in certain points or on certain 

subjects (fig. 3). The number of contributors and the timing of 

data capture for each photographed area is contextually recorded 

in GIS. Finally, a classification of sensor types, image resolution, 

exposure levels as well as frame typologies (wide angle, 360 and 

standard lens) is done to account for the level of variation of 

image quality in the dataset (tab 2). This first part of the study is 

largely conducted using QGIS (an open GIS platform) as it 

allows to parallelly connect to Google and Open Street Map web 

layers and Mapillary’s image repository (with the possibility to 

filter data according to shooting time or contributors’ names) and 

overlay the different information layers so to get a 

comprehensive account of the described phenomena. By 

enabling the semantic enrichment of map-data through tags, 

QGIS also serves as a base for the analysis of image content 

enabling the verification of the level of compliance to the 

guidelines provided to participants in the SMAC (see table 3). 

 

2.2.1  Coverage and overlap 

The greatest part of Google Street View surveys in both Arquata 

del Tronto and Norcia is dated 2011, with very little official later 

updates referring to the area of Norcia only. In Norcia, some 

citizen-scientists have decided to contribute directly to the GSV 

platform rather than to Mapillary exclusively, so the latter 

presents a poorer coverage and a lesser number of contributors if 

compared with the case of Arquata del Tronto (see table 1). 

 Norcia Arquata 

GSV km 277 87 

Mapp.km 15 18 

OSM km 758 253 

GSV coverage 36,54% 34,43% 

GSV update number 4 3 

GVS year update 2011; 2017; 2018 2011 

Map. coverage 1,98% 13,82% 

Map update number 3   17 

Map year update 2016; 2017  2016; 2017 

Table 1 coverage and update frequency in Norcia and Arquata 
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Figure 2. GSV, OSM and Mapillary coverage (in the zoom a dot represents a single pictures) of Norcia and Arquata del Tronto, Italy  

Despite the coverage rate of Arquata del Tronto seems 

encouraging (even more so if we consider just urbanised area), 

from the perspective of SfM-MVS methods, a more fine grain 

analysis of mapping density, overlap and content is needed 

(Carbonneau et al., 2017). As most pictures were taken without a 

360 camera but rather while walking around with a smartphone 

or a tablet, information about their orientation and content 

(photographed subject and distance from it) become relevant to 

determine their suitability for the photogrammetric 

reconstruction of an artefact. 

 
Figure 3. Image orientation and density in Borgo 1, Arquata 

To illustrate the issue we take the example of Borgo 1, a site 

selected by the municipality of Arquata to build a Temporary 

Housing (TH) camp, where ~ 210 pictures were taken with 

different orientations (see blue and red arrows in figure 3), but 

mostly from the same location: the main road passing on the 

Northern side of the temporary settlement. Along this path (~ 265 

m) the mapping density is ~ 0.58 images per meter. However this 

value decreases dramatically (half of the initial value in the best 

cases) if we filter the data by date (some images refer to the 

emergency phase with the tents, others to the urbanisation of the 

site or to the finished TH camp), or by photographed subject 

(some images focus on the road, others on the TH site or on the 

temporary service structures built on the other side of the road). 

Moreover, in some pictures the presence of external objects such 

as cars and street signals in the foreground obstructs the view and 

hence diminishes the visual information available as well as the 

actual overlap between pictures. Even if the image density was 

higher, the presence of elements in the foreground could hinder 

the capacity of the software to correctly detect and match 

corresponding feature points. In similar cases, a proper image 

selection, effective masking of noisy elements or the introduction 

of mark points may be critical to boost the 3D reconstruction. 

Despite the TH site being an area rather than an isolated object, 

we can still consider it a case of close-range photogrammetry as 

the maximum distance of the subjects from the camera sensor is 

always below 200 meters. However, because the range of 

distances varies continuously from 200 to 20 m, the 3D digital 

reconstruction task becomes highly challenging due to the noise 

introduced by this multi-scale distancing. 
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2.2.2 Sensors and image collection modes 

From table 2 we can see that a variety of sensors were used, with 

outcomes showing that all camera types were able to generate 

pictures with an acceptable resolution and within a relatively 

little variation range. Apart from one 360 camera, which was 

probably operated by a citizen-professional (e.g. a photographer 

or a surveyor), all the images collected in the two areas have 

standard frames (St.). Additionally, it is possible to infer that all 

images come from a single snapshot (S) instead of from video 

feeds, as there is little regularity among the frames. Most of the 

images are taken by manual (M) shooting while walking (W) but 

in a few cases an automatic shooting mode (A) was preferred, 

mostly when driving a car (D). At times, the same person 

switches between data collection modes. Walking was preferred 

within urban areas, where pedestrian routes are generally safer 

even in the absence of pavement. Driving was preferred for 

mapping the periphery, where there is no suitable space for 

pedestrians to walk or rest. The fact that six citizen-scientists 

appear documenting both cities shows that civic activists may be 

available to travel and collect data across a larger territory. 

 

CitizenS Sensor type resolution mode frame 

Arquata del Tronto 

TCI Apple iPhone7 3264 x 2448 W/M 

D/A 

St. /S 

Ooneplus A000 4096 x 2160 W/M St. /S 

verobog Apple iPad5 3264 x 2448 W/M 

D/A 

St. /S 

Apple iPad3 2592 x 1936 W/M St. /S 

chiccap Sam SM-G920F 3264 x 2448 W/M 

D/A 

St. /S 

cquintili Apple iPad3 2592 x 1936 D/A St. /S 

kia2vale Sam SM-N910F 5312 x 2988 W/M St. /S 

mfortini Oneplus A5 4608 x 3456 W/M St. /S 

michela. Apple iPhone9 4032 x 3024 W/M 

D/A 

St. /S 

Ilariaw. Apple iPhone 4032 x 3024 W/M St. /S 

adriano Sony D510 3264 x 2448 W/M St. /S 

jenkin LGE LG-H870 4160 x 3120 W/M St. /S 

francesc Apple iPhone 4032 x 3024 W/M St. /S 

fenar Sam SM-G900F 5312 x 2988 W/M St. /S 

Franc69 Sam SM-N9005 4128 x 3096 W/M St. /S 

Lara211 HUA VTR-L09 3968 x 2976 W/M St. /S 

starchild HUA FRD-L09 3968 x 2240 W/M St. /S 

kymolos Apple iPhone5 3264 x 2448 D/A St. /S 

saraveg Sam SM-G920F 3264 x 1836 W/M 

D/A 

St. /S 

consta Canon eos 450D 4272 x 2848 W/M St. /S 

 ASUS Z00ED 3264 x 1836 W/M St. /S 

gtfabio Apple iPhone5 3264 x 2448 W/M St. /S 

Vale.p Ricoh Theta S 5376 x 2688 W/M 360/S 

Norcia (besides 6 in common with Arquata) 

gem Apple iPhoneSE 4032 x 3024 W/M St. /S 

blind Sam SM-J730F 4128 x 3096 W/M St. /S 

Table 2 sensor types and shooting mode 

2.2.3 Camera pose 

Another aspect to consider is the object or area being 

photographed in relation the position of the camera, i.e. camera 

view. The dataset shows that many people decide to map main 

roads (very few paths are represented) frontally. Others map what 

is on the right or left side of a road by moving parallel to it and 

perpendicular to the street. It was not uncommon to see people 

switching from one mode to the other, thus creating gaps in the 

data collected and inconsistencies related to alternating oblique 

with frontal views (see example in fig. 6). Occasionally, instead 

of moving in one direction or the other, citizen-scientists were 

standing in a fixed position and rotating around themselves 

attempting to get a panoramic view. However, the black spots in 

the post-processed stitched image of figure 4a, show the 

alignment with the terrain was not maintained all the way 

through, with image sets captured in this way covering angles of 

much less than 180 degrees (see fig. 4b), which is insufficient to 

recreate a full panorama (left aside a full 360 picture for which 

vertical rotations are required). This observation is relevant in 

relation to the declared aim of the mapping event to generate a 

proxy of the service offered by GSV. For photogrammetry 

purposes this represents an issue as stereo is a requirement, 

meaning that it is necessary to physically move the camera in one 

direction (translation) instead of around a point (rotation). 

Furthermore, the centre of rotation cannot be too close to the 

object being photographed (as see in fig. 4c), as this would make 

it inevitably prominent in the scene. Finally, since pictures are 

taken along the streets, the distance to the building façades varies 

continuously. Cameras mounted on cars, despite providing more 

consistency in relation to orientation, tend to: (i) present motion 

blur; (ii) capture other vehicles/objects in the foreground, 

occluding facade views completely or (iii) portrait poorly 

textured surfaces or views that are indistinguishable from one 

another, becoming useless in 3D reconstruction. 

 

a 

b 

 
c 

 
d 

Figure 4. Stitched panoramic images, Arquata del Tronto 

This analysis shows that photogrammetric processing from 

crowdsourced data needs to cater for: issues related to low image 

quality, occlusions and scale as well as differences in image sizes, 

proportions and orientation. Additionally, they need to address 

all the challenges coming from differences in time of acquisition 

such as missing parts (those present in one image and absent in 

another) and related to changes in illumination and weather (e.g. 

sharp shadows and/or significant glare and contrast). Computer 

vision algorithms may help dealing with these issues but 

regardless of how advanced they are many pictures are still 

needed to compensate for uncertainties and inconsistencies in 

image acquisition. If this is not possible or images are not 

available, as in our case studies, then the collection phase 

becomes critical to maximise the usefulness and completeness of 

the final output, making guidelines an essential instrument to 

drive collective efforts. Table 3 presents a summary of guidelines 

given to citizen-scientists participating to the SMAC including a 

brief account of how much on average they have been followed 

by participants.
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 Guidelines Respected  

Y N N.A. 

Camera handling • Hold the camera straight 

• Walk using the single-shot mode 

• Pedal with sequential shooting 

• Shoot from a car in sequence mode 

• Landscape orientation (until in tight spaces or extra height makes a difference) 

x   

x   

  x 

  x 

x   

Camera orientation  • Roads, cycle and pedestrian paths (in direction of the route or in the opposite) 

• Buildings and buildings’ entrances (front side view) 

• Squares, parks and open spaces (everything of interest) 

 x  

 x  

x   

Content (Don’ts) • Avoid taking pictures when privacy is an issue (e.g many people present; risk to 

identify a person; close-ups of private properties, private or restricted access 

areas; military areas and sensitive areas) 

• Avoid photos against the sun 

• Check your photos in the APP before uploading 

 x  

x   

 x  

Survey Management • Plan ahead 

• Go when fewer cars and people are around (Sundays) 

• Move when the sun is out 

• Organized for an adequate time in path and acquisition (consider battery life)  

• In a car, make sure the windows are clean and that the car is not in the picture 

• Use an external Bluetooth GPS for better accuracy (especially in cars) 

• Do it with friends  

  x 

  x 

x   

x   

  x 

 x  

x   

 Table 3. Overall compliance (Yes, No, Not Applicable) to guidelines provided to participants in the SMAC, Arquata del Tronto

2.3 Image processing 

Three image subsets, representing a successful (21 photos), an 

acceptable (31 photos) and an unsuccessful (10 photos) example, 

are extracted from the Mapillary dataset and processed using 

®Photoscan. Images are elaborated using a standard processing 

pipeline in order to identify difficulties that could be better 

addressed during the collection and processing phases. For each 

image subset, the reconstruction process consists of photo 

orientation, bundle adjustment, point cloud and mesh generation, 

and finally texture mapping. Observed problems and positive 

outcomes are reported and discussed in the following paragraphs. 

 

2.3.1 Image filtering and selection 

In this study images are selected manually, but it is anticipated 

that for large scale applications an automatic selection process 

based on their quality (e.g. in focus, not blurred) and content (e.g. 

quantity of new visual information, overlap) would be preferable.  

For instance, it may be possible to automatically filter images 

according to their sharpness, which clearly improves processing 

outcomes by allowing the extraction of good feature points. This 

can be done in a first instance, simply by exploiting the Estimate 

Image Quality algorithm of ®Photoscan. However, because it 

mainly accounts for contrast between pixels, it is not suitable to 

detect motion blur, which could be treated in a second filtering 

step, deploying more specialised algorithms (Sieberth et al., 

2016). Depending on the amount and type of data available it may 

be advisable to relax the sharpness requirements to compensate 

for poor coverage as shown by Griffiths et al., (2015). 

Subsequently, images can be selected according to the number of 

new features they present; which can be found by firstly matching 

feature points in image pairs (using any measure of distance) and 

then calculating the difference between the number of new and 

old ones. This information is useful also to compute image 

overlaps. For example, Nocerino et al. (2017) automatically 

select frames from video feeds  presenting a minimum of 20% 

and a maximum of 80% overlap (to prevent inaccuracies in the 

SfM triangulation), which is estimated by dividing the number of 

new features by the amount of those already present in all 

previously selected images, storing feature information and 

updating them at every step.  

 

2.3.2 Model scaling 

Photogrammetric models are inherently dimensionless, with a 

number of ways available for them to be scaled, all of them 

requiring the retrieval of at least one known distance. One 

possibility is to use the official cartography to get the real-world 

coordinates of some key points. Then, these coordinates can be 

assigned to the corresponding points on the point cloud or used 

to compute a distance useful to scale the model. This method is 

limited to the resolution of the typically available cartographic 

data, which normally presents an error of approximately 1 meter 

(in maps with scale 1:5000 and even more in maps with scale 

1:10:000). This limit becomes expecially critical in rural areas 

where a finer grain cartography is often simply not available. An 

alternative is then to scale the model using measurable objects 

captured in the pictures, for instance a road signal because it has 

a standard dimension. If measurable objects are not present in the 

images, another possibility would be their deliberate inclusion 

while photographing (e.g. a scale bar). This option limits the 

capacity of citizen-scientists to collect data spontaneously. Using 

GPS data is not a viable alternative as accuracy is normally worse 

than that of coarse cartographic data and precision instruments 

are not commonly available to people. 

 
2.3.3 Examples: Successful, acceptable and unsuccessful 

Figure 5 shows the positive results of an experiment concerning 

the 3D reconstruction of a fragment of Norcia’s historic urban 

walls. The output looks promising and shows the potential of the 

method to provide valuable 3D information about, for instance, 

damage to vertical structures of urban heritage. The images were 

taken from the same citizen-scientist, following a path parallel to 

the walls from a fixed distance while driving. Pictures were 

automatically captured by an action camera installed on the 

vehicle and present an acceptable sharpness and degree of 

overlap. Overall, the 3D reconstruction is rather satisfying 

considering that heavy manual interventions during post-

processing were not necessary.  
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Figure 5. 3D Reconstruction of Norcia historic urban walls 

In other cases, photogrammetric tests have produced quite 

acceptable results after the introduction of a set of mark points 

and the subsequent use of ®Photoscans’ optimisation function to 

improve the calculation of internal orientation parameters. An 

example is shown in figure 6. The 3D model was obtained using 

data collected by a citizen-scientist walking frontally in the 

direction of a street and shooting pictures in a not-automatic way. 

This collection mode prevents an accurate reconstruction of the 

vertical façades as they are always recorded from an oblique 

angle, which causes an uneven distribution of homologous points 

in the scene worsened by the presence of the plain texture of the 

plaster finishing. The consequent loose camera calibration in turn 

provokes the introduction of noise in the 3D model as well as the 

presence of holes. Moreover, the variation of relative position 

between the object and the photographer causes the issues in the 

3D reconstruction, due to the variability of spatial 

correspondence between pixels in the foreground and pixels in 

the background, introducing additional noise in the model. Here, 

the manual introduction of mark points in the post processing 

allows to reduce the noise and enhance the 3D output. 

 
Figure 6. 3D reconstruction of a fragment of Norcia city centre 

At times, despite the images being frontal and rich in information 

(see fig.7), serious problems arise in the reconstruction due to the 

“geometry” used for image capture, as the lack of stereo simply 

prevents the creation of a 3D model. In this last example 7 images 

out of 10 were taken with a polar symmetry (fig. 4a), 6 had to be 

discarded from the initial dataset, leaving just 4 images for the 

final processing. Excluded images were the most representative 

and complete but caused the result to be ultimately unusable.   

 

 
Figure 7. 3D point cloud of some ruins, SMAC data, Arquata  

3. DISCUSSION AND RESULTS 

Well beyond a simple description of the disaster trajectory, this 

paper suggests exploiting image crowdsourcing to better deal 

with the complex interweaving dynamics of post-disaster 

recovery and reconstruction. By drafting the scope of relevant 

applications in relation to urban disasters this study identifies 

opportunities for the development of fit-for-purpose semi-

automatic collaborative mapping procedures. Lessons learned 

constitute a grounded framework to improve future guidelines 

enhancing citizen-scientists’ efforts and supporting the use of 

photogrammetry as a participatory recovery tool after disasters. 

Experiments highlighted that objects captured at multiple scales 

(pixel-wise) and difficulties in model scaling are critical issues. 

Results indicate that as it is unlikely that citizen-scientists will 

carry sophisticated external GPS devices, it is crucial to give 

better guidance on how to introduce measurable elements in the 

pictures that allow scaling the 3D models in the post-processing 

phase; especially in cases where complementary data such as 

UAV imagery and detailed cartographies are not available. 

Failing to do this would put into serious question the usefulness 

of the entire street-level photogrammetric reconstruction process.  

Many of the analysed datasets present poor image quality, 

insufficient overlapping, occlusions or are excessively close to or 

far from the photographed object. Compliance to guidelines in 

the SMAC group survey proved generally high apart from two 

key aspects: camera orientation and content of the images, which 

are closely related issues. Future guidelines should include 

targeted indications aimed at clarifying points that proved to be 

too general or unclear and add a few missing ones, such as:  

• Guidance for different goals (e.g. GSV-like panoramas 

vs qualitative or quantitative 3D reconstruction) 

• Distance from the target and scale 

• Measurable references for scaling 

• Awareness of obstacles and occlusions 

• Use of videos to extract frames instead of single-shots 

• Use of multiple sensors (e.g. GPS + accelerometers)  

• How to check images (lighting exposure, blur/focus)  

Additionally, external risk factors (e.g. debris, interference with 

other operations, exposure to hazards etc.) should be considered. 

When improving data collection is not possible or people simply 

do not comply to any guideline, some tailoring may be needed in 

the photogrammetric processing pipeline such as: (i) Automatic 

filtering of images, (ii) Retrieval of customised features (via deep 

learning); (iii) Smart grouping of images into subsets/chunks; 

(iv) Use of information from external sensors to refine results.  

To implement these features, is recommendable to use open 

photogrammetry software with scripting possibilities such as 

®MicMac or ®ColMap. If, on the contrary, a full automation of 

processing is required, it may be worth considering the 

deployment of cloud-based services such as ®Recap Photo. A 

comparison between models obtained in one and in the other 

way, using increasingly challenging datasets (such as the 3 

presented in this paper) could indeed represent an interesting line 

for future research. Future work should then address the problem 

of merging street-level data with UAV or/and high-resolution 

satellite imagery and evaluate the final precision of the models 

obtained. The approach to the analysis adopted in this paper 

could be extended to other fields beyond that of disaster 

management, to address cases where rapid collaborative mapping 

is desirable. The methodology is transferable to develop 

grounded frameworks and user-centred guidelines aimed at 

supporting the surveying activity of lay people in all cases where 

short terms action is needed (e.g. to support untrained 

professionals in circumstances where time is an issue such as 

some policemen in newly found crime scenes) or a situation in 

which 3D information is required (e.g. for insurance claims).  
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