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ABSTRACT:

In recent years, the task of land cover classification from airborne image and elevation data advanced considerably due to enhanced
applicability of CNNs (Convolutional Neural Networks). Nevertheless, CNNs require a huge amount of training data. Traditionally,
few essential feature values, such as elevation or vegetation index, had been chosen to provide a coarse distinction of classes, but
very often these values have to be adapted depending on the imagery. To improve this process, freely available GIS data are
combined with spectral and spatial features (and their variations) following the K-Means and Mean-Shift algorithm. Based on
cluster assignments to pixels, statistical analysis for extracting plausible values for distinguishing between land cover classes is
applied. The resulting labeled databases are evaluated using ground truth data, and will form the basis for the training data required

for CNNs.

1. INTRODUCTION

Land cover classification from actual airborne sensor data is im-
portant for many applications. One can mention analysis of ac-
cessibility after natural disasters, crops health monitoring in ap-
plications related to farming, estimation of climatically vulner-
able zones due to urbanization, as well as the creation of virtual
city models for city planners and civil engineers. This is why
this topic has been extensively studied by many research facili-
ties for several decades. The fast progress in sensor technology
allows cost-saving data acquisition in temporarily regular in-
tervals and in such a high resolution that smaller and narrower
objects like pools, cars and footpath brings about certain chal-
lenges such as increasing intra-class variation and decreasing
interclass variation (Bruzzone , Carlin, 2006). This means that
objects belonging to the same class may have completely differ-
ent appearances; for example, while a footpath in a forest has a
completely different appearance an asphalted and gravel road,
it may look more similar to an bare earth area somewhere else.
The human brain is able to capture the context while taking
into account the surrounding areas, and this is why in the last
years, algorithms simulating the functionality of human brain
have been developed and successfully applied.

In fact, with the advent of the deep learning techniques, in
particular, Convolutional Neural Networks (CNN), tremendous
progress has been achieved on land cover classification (Long
et al., 2015 Maggiori et al., 2016, [Marcos et al., 2018). As
many authors have shown, even small objects of different ap-
pearances may be detected (Schilling et al., 2018| [Li et al.,
2016) and additional features, such as (relative) elevation or
NDVI can be successfully integrated (Schilling et al., 2018)),
(Audebert et al., 2016). The aforementioned context is consid-
ered by the large receptive fields because convolutions evidently
take place over large image regions. In order to reduce the
computational burden, multiple pooling layers are introduced
and, when it comes to labeling at original resolution, the im-
ages are rescaled using a encoder-decoder architectures or U-

like connections. However, even with these tricks, the number
of parameters to be estimated are extremely, high, for example
in ImageNet (Krizhevsky et al., 2012), this number was, ac-
cording to (Nayak, 2019), 62,378,344. It is therefore obvious
that huge amounts of training data must be available and the
claim that land cover classification is basically solved is only
true given the fact that sufficient, quite huge amounts of train-
ing data are available. Thus, the challenge and the focus of
the research are moving from architectures of nets to acquisi-
tion and management of training data. In this paper, we will
exploit the OpenStreetMap (OSM, (Geofabrik, 2017))) data and
other freely available data for creating densely labeled regions
of land cover classes. The advantages of the strategy are that
this data can be obtained in wider areas of the world and that it
many cases it is correct, it allows staying flexible with different
data acquisition conditions, like seasonal changes and sensor
incidence angle. There are two disadvantages. Firstly, OSM
data are not complete or not available at the desired level of
details because of no entries for single trees and smaller grass
areas. Furthermore, a certain risk exists they are incorrect due
to changes in the scenery or due to the danger of manipula-
tion by non-cooperative actors. In order to deal with it, this
work will combine these OSM data with the actual sensor data.
Features will be derived from the combined image and eleva-
tion data, after which clusters of plausible feature points will
be stored using two statistical methods, namely Mean-Shift and
K-Means.

2. RELATED WORK

Land cover classification is applied for distinguishing between
man-made structures such as buildings or roads but also for
differentiating between vegetation types or natural areas. For
(Deng et al., 2015)), land cover classification is a prerequisite
for urban planning and environmental management. His main
topic is a further development of the normalized difference soil
index getting a better differentiation between bare soil and im-
pervious surfaces, which are difficult to separate during land
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cover classification. In (Helmholz et al., 2014), first, segmen-
tation of those regions of a very high resolution image which
contain agricultural areas is carried out using Markov Random
Fields and then distinction into cropland and grassland is ac-
complished using the SVM classifier using a combined set of
features (spectral, geometric, histogram-based, and textural) to
distinguish between agricultural and non-agricultural objects.
GIS-data are used to perform the coarse classification or filter-
ing between these two steps.

In the last years, additional GIS information has been incremen-
tally employed to support land cover classification. In (Grippal
et al., 2018), OpenStreetMap data is used as additional lan-
duse information, for segment-based landuse mapping, despite
the fact that in some areas OSM data may be incomplete and
incorrect. Furthermore, OSM data is also used in (Lopes et
al., 2017), supporting special LCZ-based (Local Urban Zones)
classes. These classes are divided into urban areas containing
different building types and rural land cover synonymous with
e.g. vegetation or soil areas. Similar to (Cheriyadat, 2014) and
to remove classification inconsistencies, a buffer around OSM
shapefiles such as roads or railways is attached. In (Frohlich
et al., 2013), satellite images are used for land cover classifi-
cation which is carried out without human interaction based on
segmentation and classification for each pixel. Additionally, in-
formation about relative elevation is utilized for classification
using Iterative Context Forest. In (Kaiser et al., 2017), CNNs
were employed using buildings and roads from OSM as training
data whereby constant values were assigned to roads. Multi-
source datasets concerning spectral reflectance and spectral in-
dices of Sentinal-2 and Landsat-8, and OpenStreetMap data are
fused together in (Qiu et al., 2018). This data stems from the
So2Sat LCZA4?2 dataset and is distributed over 42 cities. Classi-
fication is performed using ResNet, whereby data of eight cities
are selected for training. The best feature combinations for clas-
sification are determined, comparing the out comings and using
majority voting. Finally, these results are used to classify the
test city. Nevertheless, the authors mentioned two remaining
difficulties. The height differences have to be considered and
the class imbalance in the data was disregarded.

In (Bulatov et al., 2019), an approach for supervised land cover
classification of aerial images is proposed. The training data
generation was based on the extensive use of OSM data. To
support a region-based approach for classification, a fast seg-
mentation algorithm (Wassenberg et al., 2009) was applied re-
sulting in the fusion of segments and rasterized OSM data. The
segments were verified with respect to their relative elevation
and averaged vegetation indices. After training data acquisition,
more segment-based features were derived, labeled with the
corresponding OSM classes, fed into a classifier, such as Ran-
dom Forest, and postprocessed using smoothness priors typical
for Markov Random Fields. The problem about filtering train-
ing data according to simple rules, such as relative elevation, is
that the classifier will learn this simple rule and classify the data
accordingly. Therefore, several suspicious segments were re-
classified interactively while the authors of (Haufel et al., 2018)),
relied on more features and more statistical measures. Still, set-
ting of thresholds had to be performed by the user.

Freely available GIS data offer the possibility to create large
pools of training data or at least to perform a pre-selection.
However, they are often given in the vector form and the raster-
ization without knowledge of e.g. road widths is carried out us-
ing heuristics like segmentation algorithms (Haufel et al., 2018},
Bulatov et al., 2019) or constant values (Kaiser et al., 2017)).

Also, sometimes classes needed are not provided. For example,
instead of natural areas, the user may be interested in trees,
grass and bare soil regions: Roads may be further subdivided
into parking lots, roadwork areas, junctions, and many others.
This, additionally to the fact that not the whole image is la-
beled with OSM data, represents the main challenges. Never-
theless, our assumption is that all variation of relevant classes
are present in rasterized shapefiles and consider it as our goal
to identify characteristic clusters of features using the methods
which are more typical for unsupervised classification. This
will allow an extensive data bank of actual data exhibiting all
those varieties the previous approaches had a problem with: il-
luminated and shaded instances, deciduous and coniferous trees
and shrubs, and many others. To deal with the intraclass varia-
tions, we decided to utilize the Mean-Shift algorithm, because
it only needs the pixel features itself and a bandwidth. The
result is a set of cluster centers and labelings assigning some
pixels to cluster. For a comparative result and to get a better im-
pression of a second clustering algorithm, K-Means algorithm
was chosen. Summarizing, our method is a semi-automatic ap-
proach relying on OSM-data, but we do not need to define in-
teractively plausible feature values which are needed to distin-
guish between land cover classes. The aforementioned thresh-
old values which had to be defined interactively in previous
work (Hiufel et al., 2018)), shall be automised using this semi-
automatic method.

3. METHODOLOGY

To explain our method in a nutshell, we will rasterize the avail-
able OSM data and combine the pixels sets resulted from the
rasterization with the actual sensor data. We perform extraction
of the typical spectra of these data using Mean-Shift algorithms
and cluster them by K-Means. The procedure is visualized in

FigurdT]

This section is structured in the following way. We provide a
brief description of the the basic tools for clustering, namely, K-
Means and Mean-Shift, in section Then, we refer in section
[B2] to OSM data preparation and extraction of those spectral
and spatial features that are useful for distinguishing between
land cover classes. Since we use K-Means and Mean-Shift for
clustering, feature normalization must be performed, so that the
normalized features are scale-invariant. The GIS mask prepa-
ration for selecting the training data for man-made (buildings
and roads) and natural training classes (soil, trees, grass) are
described more precisely in sections [3.3] and [3.4] respectively.
Water bodies, mainly pools and a small lake, were not covered
by OSM data. Thus, instead of clustering, quantile of a charac-
teristic water index was used (see section [3.5) for labeling.

3.1 Clustering algorithms: Mean-Shift and K-Means

In this section, we provide a short overview about both applied
clustering methods, their advantages and disadvantages. The
K-Means algorithm due to (Kanungo et al., 2002)) presupposed
minimizing pairwise squared distances of points in each of k
clusters where k is the user-specified parameter. In the stan-
dard implementation, the algorithm starts at a random set of k
cluster centers, computes the closest center to each data points,
and recalculates the centers. This sequence of steps continues
until convergence or for a fixed number of steps. The function-
ality of the Mean-Shift method (Comaniciu , Meer, 2002), for
which we used the approach provided by B. Feldman as a MAT-
LAB function, is roughly the same, however, with quite differ-
ent priorities. At the beginning, all data points are unassigned.
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Figure 1: Process chain: Training data generation, fusion
of GIS data, spectral and spatial features; clustering of
pixels inside GIS areas; statistical analysis of cluster
results.

An unassigned random point is selected and those data points
within a certain range around it are assigned a new cluster. Its
center is recalculated according to the new clusters’ center of
gravity. After this, the process is repeated until the cluster cen-
ter does not move (convergence), whereby it must be checked
if the current cluster must be merged with one of the previously
retrieved. These steps are repeated until there are no unassigned
clusters.

The main advantage of K-Means, namely its speed, is shadow-
cast by two disadvantages: the sensitivity against the initial
choice of the cluster centers and of the unknown parameter k.
The only parameter of Mean-Shift, the bandwidth, can be cho-
sen more easily if some information about data accuracy (co-
variances) is available. The winner-takes-all mechanism is not
advantageous in pathological situations (assume an 8-formed
shape); however, in the majority of cases, its results are more
stable. The only disadvantage is the running time. The au-
thors try to accelerate this function by pre-computing neigh-
boring structures using kd-trees has not been successful for big
data because of memory requirements. In the following, we
will show how cautious and meaningful handling of both tools
allows compensating their shortcomings when it comes to un-
supervised heterogeneous data classification.

3.2 Feature Extraction and Adaption for Clustering

Usually, land cover classification is based on the combination
of features and a variety of features improves the results signif-

icantly. In the dataset considered in this work, a multispectral
image was available from which we considered the four bands
Red, Green, Blue and Near Infrared, which we will here de-
note as R, G, B and N respectively. From these features, other
meaningful variables can be derived that are extensively used in
remote sensing. These are NDVI (normalized difference vege-
tation index), NDWI (normalized difference water index), and
NDSI (normalized difference soil index) (Wolf, 2012):

G-Y
G+Y’

N—-R
N+ R’

_G-N
T G+ N’

NDVI = NDWI NDSI = (€))
whereby Y means yellow and is computed by transforming the
RGB image into the CMYK (Cyan, Magenta, Yellow, Black)
color space. Additionally, we will occasionally employ the
hue channel H of the HSV (Hue, Saturation, Value) color rep-
resentation, whose advantages have already been successfully
demonstrated by (Iwaszczuk et al., 2018) even though value

channel was replaced by elevation.

In case of available elevation information, for example, a Li-
DAR point cloud, it can be resampled into DSM (digital sur-
face model) and from there, the DTM (digital terrain model)
and NDSM (normalized digital surface model) are calculated
using tools of (Bulatov et al., 2012)). These are our main spec-
tral 3D features contrarily to 2D ones mentioned in the previous
paragraph.

Additionally to spectral features, many authors (Bulatov et al.,
2019, [Frohlich et al., 2013) employ the so-called spatial vari-
ables, which exploit a pixel’s local neighborhood. In 3D case,
the planarity feature (P) is computed from the structure tensor
in order to assess how well the 3D points surrounding may be
approximated by a plane (West et al., 2004). An example for a
texture-based 2D feature is the entropy (E), which we mention
for the sake of completeness in our Table[I} It turned out that
it only barely provides an improvement, so we do not use it in
our further processing. Due to the fact that the value ranges of
the derived features are not scale-invariant, some of these fea-
tures have to be normalized. According to the normalization,
we have to consider the importance of the included features,
e.g. NDSM distinguish between high and low land cover areas.

Table 1: Applied features

| 2D 3D
spectral | R,G,N,H,Y NDSM
NDVI, NDSI, NDWI
spatial E p

First, we supposed that the used features are normally distributed,
the Z-transform was used for normalization but led to unsatis-
factory results. Looking in more detail at the features showed
that a normal distribution cannot be expected at all (see Fig-
ure ). Independent features, captured from different sensors
have to be normalized due to their value ranges and dispersion
feature. In case of RGB imagery, the three channels can obtain
values between 0 and 255. In our research, NDSM values reach
from about 0 to 24 meters. Considering those conditions, for
each feature quantiles Q r with at most 95% cumulative proba-
bility are derived. Those features are scaled the equation below:

Features*

- . . 2
QR @

Featuresyorm =
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Figure 2: Histograms of NDSM (left) and Hue of HSV
colorspace (right).

Finally, we use following features, NDSM, NDVI, NDSI, NDWI,
P, E, H, R, G and Y, which are selectively included during the
clustering process concerning the different classes road, soil,
high vegetation (trees), and low vegetation (grass), building and
water bodies.

3.3 Road and Building Extraction

Independently of the road’s texture, luckily many roads with
different appearances are contained by freely available GIS data
(OSM) and can provide training examples for upcoming clas-
sification. Due to the fact that roads are stored as polygonal
chains in OSM data, a fixed width value, depending on the im-
age resolution, is attached to them to produce a raster image.
Based on the width and image dimensions, the GIS road mask
(background pixels = 0, road-pixels = 1) is generated. This pro-
cess is performed using the Bresenham algorithm (Bresenham,
1965). For buildings, this task is more straightforward since fast
algorithms exist allowing an assessment whether a point lies
within a closed polygon. Empirically, we found out that for road
extraction, most important spectral features are NDVI since it
allows distinguishing between low vegetation and road, NDSI
(especially for regions with forest/gravel roads), and NDSM.
For the discrimination between low vegetation and roads with
respect to the surface roughness, the planarity feature P is used.
Based on the rasterized road mask, the features

F,

'oad = (NDVL,NDSL,NDWL Y,NDSM, P),  (3)

together with the aforementioned weights, are combined to be
the main input for the Mean-Shift algorithm. First consider-
ations how to determine the bandwidth h, was to use Scott’s
normal reference rule (Scott, 2015))

350
VN’

whereby o is the standard deviation of used data and N is the
number of data points. With this approach, the bandwidth A
was approximately 0.1 (0.0969) and at first, it was used as a
reference value. During further studies, concerning the value
3.5 and the cardinality of used root (equation ). In (Martinez
, Martinez, 2015)), a modification of Scott’s normal reference
rule is described, changing the roots’ cardinality (equation 3)).

h

“

_215-0

Mentioning that the features may be characterized by a skewed
distribution, the bandwidth A is multiplied by the so called skew-
ness factor (Martinez , Martinez, 2015)). Based on our empirical
studies, varying the number of features and, depending on the
OSM mask, the number of pixels, the use of Scott’s normal ref-
erence rule could be confirmed.

h

&)

In the following step, all MS-clusters are analyzed with respect

to their cardinalities and smaller ones are suppressed. Since
outliers may occur, the cardinalities n; of the resulting clusters
are compared to the total number N of data points. If the ra-
tio n;/N is lower than a minimum ~min, these cluster pixels
are ignored and this cluster is removed. The resulting number
of Mean-Shift (MS) clusters together with the corresponding
feature (equal to Mean-Shift data) determines the input param-
eters for the K-Means (KM) algorithm. Clustering results, the
centers of gravity F}* and Ff™ (j, k: cluster indices) are an-
alyzed whether the clusters of the MS and KM can be fused.
The distances between F™ and F** are determined. The KM-
clusters, whose centers are below the specified distance Sys to
MS-centers, are fused. The cluster index of fitting KM indices
CyM are updated to the MS indices C}°. This fusion process
may lead to small shifts towards MS- and KM-clusters; there-
fore, the standard deviations oy, for the new clusters C}*™
have to be updated. Based on the number of C}*** and cor-
responding oy, constraints for road mask derivation are per-
formed.

The rasterized OSM building masks can be processed in a com-
pletely analogous way, however, with a slightly different feature
set (equation (@)).

Fiuilding = (NDVI, NDSI, NDSM, P). (6)

3.4 Soil and Vegetation Extraction

Concerning the geographic surroundings, soil areas may con-
stitute both natural areas and access roads or gateways to build-
ings. Nevertheless, they shall be distinguished from roads, im-
pervious surfaces, and low vegetation. Because soil areas are
not a part of GIS data, natural areas denoted in OSM data as
landuse.shp are inspected separately. Beside mentioned soil ar-
eas, high and low vegetation will also be present in these re-
gions. Thus, during the training data extraction process for soil,
vegetation types mentioned above may be extracted as well.
The training masks extraction process can be divided into three
steps:

1. If landuse data is available in the OSM data, a binary lan-
duse map is generated. For all pixels labeled by 1, follow-
ing features are chosen for clustering:

Fyoi1 = (NDVI,NDSI,NDSM, P, Y"). 7

2. This feature data is transferred to Mean-Shift and K-Means
algorithm. After deriving distances between cluster cen-
ters of gravity F}"* and Fj™, we perform fusion of clusters
analogous to previous section and the updated cluster cen-
ters respective statistics are recomputed (see Figure I))

3. According to updated cluster centers and their correspond-
ing standard deviations for applied features, soil masks for
each cluster centers are derived.

In Figure [3] orthophoto (left), the clustering result of Mean-
Shift and K-Means (middle) and a detailed view of the soil
masks is displayed (right). The non-dark-blue pixels of the mid-
dle image are those using for the K-Means clustering process.
The green-dotted line in the orthophoto defines the outline of
the natural area, the red outline reflects the boundary of the
detailed view showing the final result of the superposed soil
masks. The different colors are randomly set except the white
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color which denotes no soil class. Based on the clusters C},
the soil masks SL; are generated using centers F; and standard
deviations o; of features of data points in clusters as shown in
Equation (B) below.

Figure 3: Detailed view: orthophoto; middle: clustering
result; right: soil masks

1 if  NDSM(z,y) < NDSM; + o}
and P(z,y) > P, —of
and NDSI(z,y) > NDSIL; — o)™

SL’L ) = NDVIT
(@,y) and NDVI(z,y) < NDVI, + o}*"!

and Y(z,9) <Y +o07,

0 otherwise.
®)
In case of vegetation, all pixels lying inside the landuse area are
taken into account despite the fact that here the yellow channel
was ignored and not used for Mean-Shift and K-Means. Af-
ter the clustering, centers F; (NDSM;, P;, NDSI;, NDVI;, ;)
and the standard deviations o} of C; are computed. To dis-
tinct between high vegetation (HV) and low vegetation (LV),

the crucial features are NDSM and P.

1 if  NDSM(z,y) > N Mi — "M
HV;(z,y) = and P(z,y) <P +o
0 0therw1se7
)
1 if NDSM(z,y) < NDSM; — o;”M
LV;(z,y) = and P(z,y) > P, +of,
0 otherwise.
(10)

Similarly to Equation (8], the NDVI values have to be greater
than the corresponding cluster center values. All single masks
belonging to SL;, HV; and LV; are superposed.

3.5 Extraction of Water Bodies

Additionally to the aforementioned classes soil, building, grass,
tree, and road, we also decided to extract the water surfaces, for
which there existed no OSM data, while in the future it will be
interesting to see whether our statistical approach may work in
this case, too. Bearing in mind that NDWI values for water bod-
ies must be relatively high, we visually estimated the portion of
water surfaces in the data and chose the NDWI threshold corre-
sponding to its quantile value. Since in the dataset considered
in by our work, only a small lake and several pools make up
water surfaces, this value was quite high (0.99). The connected
components were finally assessed using their NDSM measure.

4. RESULTS

The aerial image combined with elevation data, we used for our
research was captured over the City of Melville, which is a sub-
urb of Perth, Australia. The spatial resolution of the image is
0.5 m and the image shows a residential area in the south and a
park located in the north. Roads or forest ways exhibit on the

one side asphalt or concrete surface while the roads in the in-
ner of the parks resemble bare soil. Similar textures can also be
seen in parking areas near to buildings. Considering the build-
ing roofs in the residential area, the roofs exhibit totally differ-
ent roof colors and shapes. We used OSM data to localize those
image pixels which belong to the corresponding OSM classes
and then applied our approaches for unsupervised classification

(sections [33]and [3:4).
e

Figure 4: Detailed views: left: orthophoto; right: details
of corresponding masks (white: road, red: building,
green: gras, yellow: trees, brown: soil)

Next, we need ground truth. Since no largescale ground mea-
surements were performed we relied on the approach
et al., 2019), which was applied by to the
Melville data and provided to the authors. Despite there were
some small errors, it is good enough for a qualitative perfor-
mance assessment of the proposed algorithm.

In Figure |5} two consciously selected areas superimposed in
our result and ground truth are displayed. The differences are
coded according to color: red = true positives (confirmed re-
sults), blue = false positives (or incorrectly assigned pixels),
orange = false negatives (missed pixels), and white = false neg-
atives. At a first glance, the major silhouettes are detected and
especially orange parts, can be easily improved using morpho-
logical dilations. This is true for buildings and trees. At the
same time, incorrect results mostly are typical for classes soil
and grass and can be partly corrected by morphological erosion.
In Figure [3] (results: 1st and 2nd row), one can easily identify
a large overlap in the road mask. Nevertheless some road ar-
eas concerning e.g. sideways to buildings were not classified
correctly. Contrary to Figure [5] (results: 3rd and 4th row), less
roads are confirmed which can be related to various road tex-
tures or neighboring grass areas. Most of the buildings could
be confirmed but also here there are some shortcomings caused
by complex roofs and following low planarity values (see Fig-
ureﬂ 2nd and 4th row, 3rd image), outer roof regions were not
confirmed. Large grass areas (see Figure |3) are classified cor-
rectly. However, in case of a small lake which is present in the
scenery (Figure 3] 3rd row, left corner of the orthophoto), the
lake was misclassified as grass texture (Figure [5| 3rd row, 3rd
image). Probably, it is because of abundant vegetation on the
water surface. Trees could be detected correctly. In some cases,
the center of the treetop exhibit large planarity values which led
to holes in the tree crown (Figure 5] 1st and 3rd row, right). For
both areas, there is a large overlap concerning soil areas (see
Figure 5] 2nd and 4th row right). Unfortunately, areas around
buildings are incorrectly declared as soil. Finally, as we men-
tioned before, some earthy surfaces are declared as roads in the
OSM data. Example are footpaths in parks and, in particular,
the road on the margin of the park, as depicted in Fig.[5] In the
ground truth, this belongs almost completely to soil area while
after applying our approach, it is split between soil and road.
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Melville
R B G T S w UA
R 52104 286 13680 0 31971 588 52.8 %
B 87 96872 1048 663 37190 326 71.1 %
G 18 25 121119 1283 7787 0 93 %
T 7 72 17899 83246 48075 7 55.8 %
N 19666 1445 48520 0 140833 6 66.9 %
w 417 69 2008 0 537 2125 41.2 %
PA 72.1 % 98.1 % 59.3 % 97.7 % 529 % 69.6 % 68.9 %

Table 2: Confusion matrix for Melville (R: road, B: building, G: grass, T: tree, S:
soil, W: water, UA: user accuracy, PA: producer accuracy)

Based on the result displayed in the confusion matrix shown in
Table we achieve an overall accuracy of 68.9 %. To complete
the confusion matrix, producer accuracy (PA) and user accuracy
(UA) are added. While evaluating the confusion matrix, it has
to be noticed that the unlabeled pixels of our result were not in-
cluded into the calculations of the confusion matrix. Referring
to Table 2] it can be noticed that buildings could be separated
from trees, but looking more precisely to the road class, one can
easily see that a lot of soil-labeled pixels were misclassified as
road class. Most remarkable miss-classifications occur between
soil, grass and road.

5. CONCLUSION AND DISCUSSION

In our work, we presented a semi-automatic approach for train-
ing data acquisition using OSM data and actual airborne im-
age and elevation data. We used combined image and eleva-
tion data to derive spectral and spatial features. For cluster-
ing, we used Mean-Shift and K-Means, whereby the result ob-
tained with Mean-Shift determined the number of classes for
K-Means and for the bandwidth parameter of Mean Shift, best
results were obtained with the equation of Scott. The fusion
result based on both clustering algorithms was analyzed.

For the mask generation concerning road, building, low-and
high vegetation and soil, statistical analysis of the pixels be-
longing to the clusters C; was carried out. After this, genera-
tion of the class masks took place. Nevertheless there still re-
main unlabeled pixels. Due to the fact that road textures are
similar to soil and even dry grass textures, some pixels inside
the natural area were misclassified and denoted as road pixels.
Comparable results could be observed in the residential area.
Here, more effort has to be put into integration of further fea-
tures enabling a refined and better distinction between classes
with low NDSM values and quite similar natural shades.

Despite the fact that the Mean-shift algorithm only needs the
feature vectors itself and the bandwidth, more research must be
done about feature normalization and bandwidth determination.
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Figure 5: Results of areal (1st and 2nd row) and area2 (3rd and 4th row): top row, left: orthophoto; middle to right:
evaluation results for classes road, grass, and trees; bottom row, left to right: NDSM, evaluation result for the class
building, planarity, evaluation result for the class soil.
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