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ABSTRACT:

Psychological evidence is given that perceptual grouping is an important help for various visual tasks. Object recognition and land 
use classification from remotely sensed imagery is an example. In machine vision, such a grouping process can be implemented by 
coding Gestalt laws such as proximity, symmetry, or good continuation. Since geometric relations are rarely fulfilled exactly, soft 
membership functions are utilized called Gestalt assessments. Hierarchical grouping is possible on increasing scales. Such an approach 
to hierarchical Gestalt grouping is modified in this paper. In its original form, the approach uses rather heuristic default assessment 
functions, which are a possible choice as long as no labeled example data are given. The assessment functions can be parameterized so 
as to improve the perceptual grouping, guiding it by the Gestalten salient to human perception. To this end, we use orientation statistics 
from the publicly available data set given for the ICCV symmetry recognition competition 2017. Also, with a particular recognition task 
at hand, labeled example data can serve as the desired foreground. Here we use the ground-truth layer for buildings of the Vaihingen 
benchmark of the ISPRS. A mixture distribution containing two von Mises-distributions and the uniform component for the clutter in 
the background is fitted using expectation maximization.

1. INTRODUCTION

Perceptual grouping along the Gestalt laws may have considera-
ble improvement potential for various visual tasks, such as figure-
ground organization or object recognition (Pizlo et al., 2014, Ka-
nizsa, 1980). In (Michaelsen and Meidow, 2019) also remotely
sensed examples are presented. A perceptual group is a finite set
of parts that are seen together as one aggregate, i.e., the visual
apparatus infers a common cause of the parts. Certain geometric
relations must hold between the parts so that pre-attentive grou-
ping occurs. These relations are known as the Gestalt laws. They
include: reflection symmetry, i.e., the parts are mapped onto each
other with respect to a mirror axis, good continuation, i.e., parts
are repeated along a straight or at least smooth bending line, so
that a frieze results in the discrete case, or a stripe in the continu-
ous case, proximity — there is a tendency to group adjacent parts,
etc. Such topics are not in the focus of machine vision or pattern
recognition today. Yet, there is a large body of corresponding li-
terature for which (Pizlo et al., 2014, Kanizsa, 1980, Desolneux
et al., 2008) and (Michaelsen and Meidow, 2019) is only a very
small sample. They contain references to a much wider scien-
tific community, which agrees on the following points: Gestalt
grouping is pre-attentive, it is fast, and it sets a third category of
perception — beside perception based on training, and perception
as an act of reasoning and logic inference.

The paper at hand can be seen on the interface between the first
and the third category, i.e., between machine learning and per-
ceptual grouping. The inherent parameters of perceptual grou-
ping processes may well be subject to training or adjustment. In
the last chapter of (Michaelsen and Meidow, 2019), we already
augmented the Gestalt grouping approach by estimating optimal
parameter settings for the assessment functions used in the grou-
ping process. In particular, we addressed the orientation domain
used in many grouping laws, such as parallelism or orthogonality
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or reflection symmetry. Several adjustment rationales are possi-
ble: Mathematical inference would derive parameters of orienta-
tion assessment functions from probabilistic assumptions about
the perceived world, and the nature of the projection between the
scene and the image, a heuristic adjustment would use common
sense and trial and error on data at hand, and parameter estima-
tion would assemble statistics on the mutual features of parts that
are known to form a Gestalt-aggregate. In the paper at hand, we
follow the latter path.

In this context, the grouping of gestalts is based on functions
which assess the similarity and proximity of two or more enti-
ties considering various features, such as orientation or distance.
Therefore, a distance function is required, which takes possibly
correlated features of different kinds into consideration. Such
a metric or distance function has to obey four axioms: non-
negativity, identity of indiscernibles, symmetry, and subadditi-
vity. In practice, metric learning algorithms ignore the condition
of identity of indiscernibles and learn a pseudo-metric.

Thus the goal is to learn from examples the parameter values of
a function that measures how similar or related two objects are.
Corresponding distance functions such as the Mahalanobis dis-
tance should be unitless and scale-invariant. To learn the metrics,
we exploit the statistics of labeled data sets. From such statistics,
a parameterized density function for the relative orientation of
parts of good gestalts can be estimated. This allows the design of
better assessment functions for the similarity-in-orientation law.
This idea has been proposed before for the determination of do-
minant orientations by fitting parametric distributions to the data
(Pohl et al., 2017). However, here we assume the offset parame-
ter of such distributions to be fixed, because for the Gestalt law
parallelism the offset must be 0, and for orthogonality it must be
π. Only the deviation parameters remain to be estimated.

Section 2 sets the context of hierarchical perceptual grouping.
Section 3 constitutes the technical core of the paper, the conti-
nuous functions that define the model and the estimation of their

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-169-2019 | © Authors 2019. CC BY 4.0 License.

 
169



parameters. Section 4 gives the data and the resulting histograms
and parameters. Finally, in Section 5, we discuss what has been
achieved, conclude, and give an outline on the directions of rela-
ted possible future research.

2. HIERARCHICAL GESTALT GROUPING – THE
ROLE OF ASSESSMENT FUNCTIONS

Following (Michaelsen and Meidow, 2019), the domain for Ge-
stalten g has five components: location xg — a point in the or-
dinary 2D vector-space on the real field; orientation og — a real
number representing an arc; scale sg — a positive real number;
frequency fg with respect to rotational self-similarity — a non
zero positive integer; and assessment ag — a continuous mea-
sure for salience with values between 0 and 1. The latter can
be interpreted as a fuzzy membership function. A Gestalt with
assessment 1 is very meaningful and salient and a Gestalt with
assessment 0 is meaningless.

Figure 1 shows the set of operations on the Gestalt domain, each
standing for a specific visual grouping phenomenon. From top to
down there are:

• Reflection Symmetry, aggregating a pair of Gestalten into
one Gestalt.

• Frieze Symmetry, aggregating an n-tuple of Gestalten into
one Gestalt.

• Rotational Symmetry, aggregating an n-tuple of Gestalten
into one Gestalt.

• Parallelism, aggregating a pair of Gestalten into one Gestalt.

• Good continuation and gap closing, aggregating a finite set
of Gestalten into one Gestalt.

• Lattices, aggregating an n×m-tuple of Gestalten into one
Gestalt.

On remotely sensed data, e.g., for building recognition or road
extraction, parallelism and good continuation are most important.
However, the other four aggregation laws can also contribute sig-
nificantly.

For each aggregation, the laws of seeing are coded in the functi-
ons assessing the newly constructed aggregate. For example,
proximity is coded as continuous function taking the location and
scale features of two Gestalten as input and giving a result be-
tween 0 and 1. Proximity should not be confused with inverse
distance. Objects positioned at the same location are not in prox-
imity. The proximity assessment for such configuration should
be zero, just as objects which are very far away from each ot-
her should have proximity assessment 0. The maximal proximity
assessment 1 must be reached somewhere where the objects are
adjacent to each other, i.e., where the distance equals the scale of
the objects. (Michaelsen and Meidow, 2019) propose the use of

aprox (g, h) = exp

(
2− d(xg,xh)√

sg · sh
−
√
sg · sh

d(xg,xh)

)
(1)

for two gestalts g and h with the Euclidean distance d(xg,xh).
Another possible choice is a function that has the shape of the
standard Rayleigh density but is normalized to maximum 1.

Figure 1. Operations on the Gestalt domain as given in (Micha-
elsen and Meidow, 2019), gestalts are displayed as circles with
location at the center, scale as diameter, orientation as radius line,
frequency as number of spokes, and assessment as gray tone

Proximity is combined with other laws, an important one being
similarity in orientation. Recall orientations are given in a conti-
nuous additive group which is not a metric space. In (Michaelsen
and Meidow, 2019) we proposed the use of functions that give
1 for no orientation difference, and 0 for maximal difference in
orientation such as

aori (g, h) =
1

2
+

1

2
· cos (og − oh) . (2)

Here g and h are again arbitrary gestalts, which must however
have the same rotational frequency so that their orientations can
be compared at all.

It is the intention of the paper at hand to improve this default
choice using statistics on a labeled data set. From such statis-
tics a parametrized density function for orientations of parts of
good gestalts can be estimated. This allows the design of a better
assessment function for the similarity in orientation law.

3. MODELING AND PARAMETER ESTIMATION

The histograms shown in Figures 2, 4, and 5 suggest that domi-
nant orientations exist in our data. E.g., changes in building out-
lines can be modeled by a mixture of continuous parametric dis-
tributions on the unit circle. The peaks at 0 and π correspond to
the omnipresent relations parallelism and orthogonality in man-
made environments. Of course, further angles occur which are
considered as background clutter since they hinder the grouping
process.

3.1 Circular Distributions and Mixture Model

For the representation of orientation changes we utilzed the von
Mises distribution which is in many respect the “natural” analo-
gue on the circle of the normal distribution on the real line (Fisher,
1995). The probability density function reads

p(α|φ, κ) = 1

2πI0(κ)
exp {κ cos(α− φ)} , (3)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-169-2019 | © Authors 2019. CC BY 4.0 License.

 
170



0 ≤ α ≤ 2π, 0 ≤ κ ≤ ∞, where I0(κ) is the modified Bessel
function of order zero, φ is the mean direction, and κ is the so-
called concentration parameter. As the concentration parameter
κ approaches 0, the distribution converges to the uniform distri-
bution; as κ approaches infinity, the distribution tends to the point
distribution concentrated in the direction φ. Maximum likelihood
estimates for the distribution parameters can be found in (Fisher,
1995) and (Best and Fisher, 1981).

Since we are dealing with orientation data, we have to consi-
der distributions on the unit circle. For the statistical analysis,
we transform the observed orientations αi mod π by doubling
them, estimate the distribution parameters, and back-transform
the results. Furthermore, since we are dealing with orientation
changes, we expect φ = 0 for parallelism and prolongation and
φ = π for orthogonality and therefore fix the parameter φ.

The background clutter, i.e., orientation changes not caused by
parallelism or orthogonality, are modeled by the circular uniform
distribution

p(α) =
1

2π
, 0 ≤ α ≤ 2π (4)

i.e., all orientation changes are equiprobable.

Thus, we utilize a mixture of at least D=2 von Mises distributi-
ons (3) and the uniform distribution (4), i.e.,

p(α) = w0 · p(α) +
D∑

d=1

wd · p(α|φd, κd),

D∑
i=0

wi = 1 (5)

with φd ∈ {0, π} and unknown weights wi for the components.

In the experiments, we check if further components are required
to model the distributions appropriately.

3.2 Parameter Estimation and Model Selection

For the representation of the orientation changes we study two
mixture models: The first one models orthogonality and paral-
lelism with two von Mises distributions at 0 and π, plus a uni-
form distribution for the background noise (“2+1 model”, see Fi-
gure 4). The second model sets two von Mises distributions in
each case at 0 and π respectively to take additional clusters with
less variation into account (“2×+1 model”, see Figure 5). For
the estimation of the distribution parameters and the weights of
the mixture components, we apply the well-known expectation-
maximization algorithm (Dempster et al., 1977) (EM). The itera-
tive procedure can easily be initialized with equal weights for all
components and moderate concentration parameters of κ = 100
for both von Mises distribution. For the model with five com-
ponents (“2×+1 model”), we initialize with κ1 = 100 for the
narrow peak and κ2 = 10 for the broader peak. For the latter
case the algorithm converges after 2,690 iterations and provides
the results depicted in Figure 5. For the time being, we visually
inspect such results to assess the goodness-of-fit for the two mo-
dels, bearing in mind their complexities.

4. RESULTS

We introduced mixture distributions with an in-between compo-
nent between definite inliers and unrelated outliers in (Michael-
sen and Meidow, 2014). The first experience with such estima-
tions was made with a machine vision benchmark (Michaelsen
and Meidow, 2019, Chapter 13). We recapitulate the accomplis-
hed evidence in Section 4.1. For the paper at hand, we augmented

Figure 2. Histogram of observed orientations and estimated pro-
bability density functions of the mixture model.

the investigation using a well-known remote sensing benchmark,
and the resulting evidence is given in Section 4.2.

4.1 Experiments – Utilizing the Frieze Competition of 2017

Along with the International Conference on Computer Vision
2017 in Venice, a research team from the Pennsylvania State Uni-
versity organized a competition on symmetry recognition (Funk
et al., 2017). Among other categories, there also was frieze re-
cognition. Fifty images were published with manually marked
ground truth. In most of these images, one frieze is marked,
in some images, more than one (but a small number), and in
one none. For this work, we use at most one ground-truth per
image, the first, so we have forty-nine ground truth frieze objects.
In each of the forty-nine images, a set of primitive Gestalten is
extracted using SLIC super-pixel segmentation (Achanta et al.,
2012). Then an assessment-driven constant-false-alarm-rate se-
arch is performed on each set of such primitives. It searches for
shallow-hierarchy gestalts using the laws for reflection symmetry
and frieze formation of (Michaelsen and Meidow, 2019). The first
criterion for the comparison of ground-truth frieze gestalts with
automatically found gestalts is the number of parts that should
exactly match. Then a gestalt distance is computed weighting
location, scale, and orientation suitably. The best fitting Gestalt
among the hierarchy 1 or 2 is selected, if it is closer than a suita-
ble threshold.

If the best row Gestalt is found, the statistics of the orientations
of the parts were centered to the mean orientation and recorded.
On this statistic, we estimate the parameters of a mixture using
the methods outlined above. More than half of the mass is uni-
formly distributed. There is a sharp narrow peak component that
accounts for success examples where the orientations of the parts
are very similar. Interestingly, between such outlier and inlier
components, there exists an intermediate component, which is
still narrower than the default assessment function. This result
suggests that on these data such heuristic default function is sub-
optimal.

Instead, we estimated parameters for a corresponding mixture
model on the statistics, using three components, one uniform for
those parts where the parallelism law is more or less violated, one
sharply peaked von Mises for those parts that obey the law, and
a broader part. The latter captures in-between samples where the
law of parallelism is weakened, e.g., due to perspective distorti-
ons, etc. The resulting mixture is displayed in Figure 2.
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Figure 3. Extracted building outlines for the first index image.

4.2 Remotely Sensed Reference Data – the ISPRS-
Vaihingen Benchmark

Different application domains may well yield different statistics.
For this paper we made a comparative investigation using the Va-
hingen data set provided by the German Society for Photogram-
metry, Remote Sensing and Geoinformation (Cramer, 2010).
Among other things, the data set provides 16 indexed images for
common classes, e.g., buildings. The way corresponding to the
work outlined above in Section 4.1 would be using the pseudo-
color aerial images as input data. Then the standard perceptual
grouping process would start. It would have to be modified so
as to specialize in building recognition for instance. Then the
building layer of the ground truth coming with the data would
provide the target aggregates. The desired orientation statistics
would result from the predecessors of the matching positives.

Instead, for simplicity, we used the building ground-truth ima-
ges directly, assuming that their margin contours correspond well
enough to the desired parts of the aerial image, i.e., those parts
that should be preferably grouped in the image for the building
recognition task. The corresponding Gestalt laws are of course
parallelism and orthogonality.

For the vectorization of the buildings’ outlines we initially trace
the boundaries in the binaries images. Subsequently, the vertices
of the resulting polygons are decimated. To do so, we consider
the distance between a vertex and the straight line defined by the
two adjacent vertices. We remove the vertices with a distance
greater than five pixels in a greedy manner. Figure 3 shows the
extracted outlines for the first ground truth image. In sum, we
compiled 770 building outlines found in 16 images and obtained
6,635 polygon edges. For the specification of orientation chan-
ges, we determined the longest edge of each building can compu-
ted the angle between this edge and all other edges of this outline.
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Figure 4. Histogram of the edge directions with 64 bins and es-
timated distributions of the mixture model with two von Mises
distributions and the uniform circular distribution modeling the
background clutter (“2+1 model”).
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Figure 5. Histogram of the edge directions with 64 bins and es-
timated distributions of the mixture model with four von Mises
distributions and the uniform circular distribution modeling the
background clutter (“2×2+1 model”).

Figure 4 shows the histogram of the directions with 64 bins and
the estimated distribution of the mixture model with two von
Mises distributions capturing parallelism and orthogonality and
the circular uniform distribution (“2+1 model”). The background
noise comprises 47.6 % of all observations.

The goodness-of-fit appears to be sub-optimal at the flanks of the
peaks. Therefore, we introduced two additional von Mises dis-
tribution to model further orientation changes with a larger vari-
ation. Figure 5 shows the corresponding result.

Given an estimated concentration parameter, the circular standard
deviation σc =

√
−2 log ρ with ρ= I1(κ)/I0(κ) can be compu-

ted to specify the variation of the orientation changes. For the
mixture model with five components we estimated κ1 ≈ 165 for
the narrow peaks and κ2 ≈ 20 for the more broader peaks. Thus,
we obtain σ1=4.5◦ and σ2=13.0◦ which can be used to specify
metrics used in distance functions.

5. DISCUSSION AND CONCLUSION

The very idea of hierarchical Gestalt grouping rests on its univer-
sal claim to be valid independent of any learning data — repre-
sentative always only for a portion of the world. Such perceptual
grouping should be already working to some degree even with
inputs of a kind never seen before. However, some parameters
in the system may have initial default values turning out to be
sub-optimal. Gestaltists never denied the merit of machine le-
arning (Sarkar and Boyer, 1994). Always, better results can be
achieved if some of these parameter values are trained using suit-
able data. In this paper, the focus was on the orientation similarity
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assessment. It turns out that additive mixture models are required 
to capture what is encountered in the orientations of the parts of 
true positive Gestalten. It is essential to utilize data not selected 
and labeled by the authors of the system themselves.

For this paper we acknowledge the work provided by the team 
of the Pennsylvania State University as well as the ISPRS bench- 
marking services. Comparing Figures 2 and 5 we conclude that 
the outcome is qualitatively similar as well for “images in the 
wild” as for remotely sensed imagery: Two inlier components, 
one very narrow and one more liberal, were modeled by von 
Mises-distributions. The third component is a uniformly distribu- 
ted component. This copes for the cases when aggregates do well 
suit the ground-truth, that are made from parts whose orientations 
are not similar at all. There are, however, significant differences 
in the obtained parameters: The inlier component resulting from 
the symmetry benchmark is very peaked and has only a compa- 
ratively small weight, while the in-between component is quite 
broad and has a large weight. In contrast, on the remotely sensed 
data these two components turn out closer to each other as well 
in width as in weight.

There remain serious issues to be investigated and discussed.

• We are well aware that for mixture models the maximum-
likelihood estimation is not consistent, i.e., in principle, for 
any setting, there is no guarantee to find the right mixture 
when the number of observations approaches infinity. Our 
visual inspection on the fit of the curves with the histograms
can only serve as a preliminary result.

• As long as assessment functions are only used to compare or
sort with respect to the fitness of configurations of the same 
type, e.g., only compare how well parallelism is given, no- 
thing has been gained. Any similar monotone function will 
do the same, including the previous default assessments. 
Only if the assessment functions are combined, e.g., in the 
styles listed in (Michaelsen and Meidow, 2019), a benefit 
will appear along lines given here near the end of Section 1. 
E.g., already if configurations are assessed with respect to 
parallelism and proximity, a mutually sound assessment for 
both will be required. So the paper at hand is a step in this 
rationale. However, such combinations will also require the 
investigation of correlations between parallelism and prox- 
imity, and the further goal is of course the propagation of
such assessments through larger hierarchies.
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