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ABSTRACT:

Automatic extraction of buildings in urban scenes has become a subject of growing interest in the domain of photogrammetry 
and remote sensing, particularly with the emergence of LiDAR systems since mid-1990s. However, in reality, this task is still 
very challenging due to the complexity of building size and shape, as well as its surrounding environment. Active contour model, 
colloquially called snake model, which has been extensively used in many applications in computer vision and image processing, 
has also been applied to extract buildings from aerial/satellite imagery. Motivated by the limitations of existing snake models 
dedicated to the building extraction, this paper presents an unsupervised and automatic snake model to extract buildings using 
optical imagery and an unregistered airborne LiDAR dataset, without manual initial points or training data. The proposed method 
is shown to be capable of extracting buildings with varying color from complex environments, and yielding high overall accuracy.

1. CONTEXT

Automatic extraction of buildings from aerial/satellite imagery
in urban and residential scenes has become a subject of grow-
ing interest in the domain of photogrammetry and remote sens-
ing. Indeed, a large number of building detection and extraction
techniques have been reported over the last few decades, partic-
ularly with the emergence of LiDAR (Light Detection and Ran-
ging) systems. For instance, (Rottensteiner, Briese, 2003) pro-
posed a building detection method exploiting primarily LiDAR
data while removing vegetation using imagery data. (Sohn,
Dowman, 2007) focused on exploiting the synergy of IKONOS
multispectral imagery combined with a hierarchical segmenta-
tion of a LiDAR digital elevation model (DEM) to extract build-
ings. Another method of building detection was proposed by
(Awrangjeb et al., 2010) based on building masks obtained from
LiDAR and multispectral imagery. These methods using both
complementary sources, namely LiDAR data and optical im-
agery, achieve better building extraction results. Other building
detection and extraction methods utilize only LiDAR data such
as (Khoshelham et al., 2013, Zhang et al., 2013). They involve
segmentation algorithms and classification using attributes such
as building size, shape, height and PCA (Principal Compon-
ent Analysis) features. However, these approaches usually face
problem of misclassification of vegetation as buildings (Zhang,
Lin, 2017).

Originally introduced by (Kass et al., 1988), snake model has
been studied for building extraction from urban area using aer-
ial and satellite imagery. While (Guo, Yasuoka, 2002) used
snake model with balloon force to extract buildings, (Peng et
al., 2005) focused in increasing stability of snake convergence.
(Kabolizade et al., 2010) proposed to improve the model with
imagery data coupled with a Digital Surface Model (DSM) gen-
erated from LiDAR data. This improvement involves using
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two energy terms based on the variances of height and gray-
level between snake points. Hence, the height variance energy
term requires height information for every pixel of the image,
in other words, the DSM must be of same size and resolution as
the imagery data. This can be problematic since LiDAR dataset
does not often have a spatial resolution as high as aerial im-
agery, and height data interpolation may be unreliable. (Fazan,
Dal Poz, 2013) proposed another approach based on exhaustive
searches of rectilinear building corners from the image, optim-
ized by dynamic programing. However, this method depends
heavily on initial points to have decent results. (Ahmadi et al.,
2010) proposed an area-based geometrical snake model to de-
tect building boundaries without height information or initial
points. Nevertheless, this method requires a priori sampled
gray-levels of buildings and grounds (i.e. training data) to at-
tract the snakes toward desired buildings. It also may not work
well with building roofs with varying gray levels.

To summarize, the main common issues of snake models in
building boundary extraction are:

• Sensitivity to noise and image details;
• Dependence on initial points or training data;
• Weak convergence to building corners;
• Snake’s convergence sensitivity to its number of points and

weighting parameters.

Motivated by the limitations of existing snake models listed
above, this paper presents an unsupervised snake model to ex-
tract buildings using optical imagery and an unregistered air-
borne LiDAR dataset, without manual initial points or train-
ing data. Instead, we propose to initialize our proposed snake
model with projected LiDAR building boundary points. The
movement of snake model is then governed by an additional en-
ergy term related to its similarity to the LiDAR building bound-
ary. Our method is also able to extract buildings with varying
color, from complex environments.
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Figure 1. Flowchart of the proposed method.

The remainder of this paper is organized as follows. Section
2 is devoted to the description of the proposed method. Then,
experimental results are presented in Section 3. Finally, Section
4 provides conclusions and perspectives of this work.

2. METHOD

The novelty of our approach resides in an unsupervised method
that carries out effectively building extraction from urban scene.
This method is based on a snake model initialized and enhanced
by integrating with LiDAR data, followed by an improved build-
ing polygonization. Presented by Fig. 1, the proposed method
is composed of three parts: (i) determination of initial points
involving the registration of datasets, (ii) the snake model, and
(iii) the improved building boundary polygonization.

2.1 Determination of initial points

2.1.1 Registration This research study involves an airborne
LiDAR data set which has been acquired independently of the
optical imagery, i.e. two different surveys, done at different
time, with different platforms. Such a context yields spatial
discrepancies between data sets that provide the snake model
with wrong initial points. Therefore, a registration has been
carried out beforehand (Nguyen et al., 2019). Indeed, such a
registration is substantially important to a building extraction
procedure, since it involves many problems exemplified by the
work of (Gilani et al., 2016).

The registration consists in extracting building regions, on one
hand, from the LiDAR point cloud, and on the other hand,
from the optical image using a mean-shift segmentation. Ex-
tracted building segments are then matched using the Graph
Transformation Matching algorithm proposed by (Aguilar et
al., 2009). The resulting pairwise segments establish a set of
correspondences between the two data sets. They are used to
estimate a transformation model using the Gold Standard al-
gorithm (Hartley, Zisserman, 2003, p. 187). This transform-
ation model is used to register the image and LiDAR data sets
with an accuracy good enough to get relevant snake initial points.

2.1.2 Building region extraction from LiDAR point cloud
Presented by Fig. 2, the extraction of building regions from
LiDAR point cloud is carried out through a series of steps.
First, non-ground points are separated from ground points us-
ing an elevation thresholding. The threshold is set as follows,

LiDAR point cloud

Extracting building points

Vertical projection

Elevation thresholding

Non-ground points

Morphological opening

Connectivity labeling

Removing small regions

Labeled building mask

 Sets of 3D points for
each building

:
Sets of 3D building

boundary points

= { , , }�� �� �� ��

getConvexHull

Building mask
generation Building region

extraction

LiDAR point cloud

Extracting
building points

Vertical
projection

Elevation
thresholding

Non-ground
points

Morphological
opening

Connectivity
labeling

Removing
small regions

Labeled
building grid

 Sets of 3D points for
each building

:
Sets of 3D building

boundary points

= { , , }�� �� �� ��

getConvexHull

Building region extraction

Figure 2. Building region extraction from LiDAR point cloud.

Te = mean(zG) + max{2.5, std(zG)}, where zG denotes the
elevation of ground points. All non-ground points are then ver-
tically projected onto the plan z = 0. A raster grid representing
these projected points is created. The resolution of the grid is
set according to the LiDAR point cloud density in order to avoid
null-valued pixels. A binary grid of same resolution is also gen-
erated. Its cell value is set to 1 or 0 according to the presence
or absence of projected non-ground points in the cell (‘1’: pres-
ence, ‘0’: absence). A morphological opening operator is then
applied to remove small artifacts on the binary grid. Remaining
grid cells with value set to 1 are grouped into labeled segments
based on their connectivity. Next, small segments (e.g. smaller
than 10 m2) are removed. The resulting grid consists of a num-
ber of relatively large labeled segments that relate to buildings.
These segments are then used to select the building points in the
LiDAR point cloud. A convex hull is calculated on each set of
3D building points, yielding a set of boundary points, denoted
by Bi. These points are then projected onto the optical image
using the transformation model T. They will be used as the
initial points of the snake model for each building.

2.2 Snake models for building boundary extraction

2.2.1 Traditional snake models An active contour, or a snake
is a dynamic curve x(s) = (x(s), y(s)), where s ∈ [0, 1] is the
normalized arc length, defined within an image domain that is
deformable under the influence of internal and external forces
(Xu, Prince, 1997). Mathematically, the behaviors of the snake
are governed by an energy function, which is defined as follows,

Esnake =
∫ 1

0
(Eint(x(s)) + Eext(x(s)))ds

Eint(x(s)) =
1

2

(
α|x′(s)|2 + β|x′′(s)|2

)
Eext(x(s)) = Eimg(x(s)) + Econ(x(s))

(1)

where Eint and Eext, respectively, represent the internal and
external energy terms. The internal energy relates to the ten-
sion (the amount of stretch) and the rigidity (the amount of
curvature) of the snake, respectively controlled by weighting
parameters α and β. x′(s) and x′′(s) denote the first and second
derivatives of x(s) with respect to s. The external energy Eext

is composed of the forces due to the image itself Eimg, and
other constraint forces introduced by the users Econ, e.g. infla-
tion force introduced by balloon model (Cohen, 1991).

The external energy of an image I related to its salient features
i.e. lines, edges and terminations (i.e. line end-points, corners)
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can be generally formulated as follows,

Eimg = wlineEline + wedgeEedge + wtermEterm (2)

where wline, wedge, wterm are the weights of the respective sa-
lient features. Mathematical formulation of these energy terms
is described in (Kass et al., 1988).

A snake that minimizes Esnake must satisfy the Euler equation

αx′′(s)− βx′′′′(s)−∇Eext = 0 (3)

In order to solve (3), x is regarded as a function of time t as
well as of s. Then, the partial derivative of x with respect to t
is then set equal to the left hand side of (3), as follows,

xt(s, t) = αx′′(s)− βx′′′′(s)−∇Eext (4)

When x(s, t) stabilizes, the partial derivative term xt(s, t) van-
ishes and we obtain a solution for (3). This dynamic equation
can also be viewed as a gradient descent algorithm designed to
solve (1). A numerical solution to (4) can be found by discret-
izing the equation and solving the discrete system iteratively
(Kass et al., 1988).

2.2.2 Gradient vector flow (GVF) is proposed by (Xu, Prince,
1997) to allow more flexible initialization of snake and encour-
age convergence to boundary concavities, as well as improving
the model’s robustness versus image noise. GVF field is defined
as the vector field v(x, y) = (u(x, y), v(x, y)) that minimizes
the energy functional

EGVF =

∫ ∫
µ(u2

x + u2
y + v2x + v2y) + |∇f |2|v−∇f |2dxdy

(5)
with µ is a controllable smoothing term, and f represents ex-
ternal forces from Eq. 3, i.e. f(x, y) = −Eext. Using the
calculus of variations (Courant, Hilbert, 2008), the GVF can be
found by solving:

µ∇2u− (u− fx)(f2
x + f2

y ) = 0

µ∇2v − (v − fy)(f2
x + f2

y ) = 0
(6)

where ∇2 is the Laplacian operator. The Euler equations (6)
can be solved by regarding u and v as functions of time and
solving

ut(x, y, t) = µ∇2u(x, y, t)−
[u(x, y, t)− fx(x, y)] · [fx(x, y)2 + fy(x, y)

2]

vt(x, y, t) = µ∇2v(x, y, t)−
[v(x, y, t)− fy(x, y)] · [fx(x, y)2 + fy(x, y)

2]

(7)

Once computed, v(x, y) will replace the potential force−∇Eext

in the dynamic equation (3), yielding

xt(s, t) = αx′′(s)− βx′′′′(s) + v (8)

This equation is solved similarly as the traditional snake model,
i.e. by discretization and iterative solution. The parametric
curve solving the above dynamic equation is thus called a GVF
snake.

2.2.3 Proposed snake model In this paper, we propose adding
a new energy term as a constrained force (i.e. Econ), which is

Figure 3. 3D building boundary points projected onto the optical
image, i.e. TBi, which are used to initialize the snake model

and for the energy term EShapeSim.

calculated based on the similarity between the shape formed by
snake points and the projected LiDAR building boundary, as
follows,

EShapeSim(x) = 1− exp

(
−d

2
H(x,TBi)

δ

)
(9)

where dH denotes the Hausdorff distance, δ is the scale factor
set accordingly to the size of the building, and x is the current
snake. Bi represents the 3D building boundary extracted from
LiDAR data, and TBi is its projection onto the image using the
transformation model T provided by the registration. The role
of this energy term is to encourage the snake to maintain the
same shape as the building boundary extracted from the LiDAR
data while being attracted by the image salient features and un-
der the influence of GVF fields.

In our approach, the projected LiDAR building boundaries, de-
noted by TBi, have an important role. They provide the snake
algorithm with relevant initial points, and they are used in the
energy term EShapeSim and the polygonization. Fig. 3 shows
three examples of 3D building boundary points projected onto
the optical image.

Up to this point, the proposed snake model has involved a num-
ber of parameters, such asα, β (fromEint),wline, wedge, wterm

and σ (fromEimg), µ (from GVF) and lastly δ (fromEShapeSim).
To the best of our knowledge, the know-how to set these para-
meters for the snake to extract buildings from an imagery data-
set still remains unresolved. This has driven many existing
works to perform a trial-and-error approach to determine them
(Peng et al., 2005, Kabolizade et al., 2010, Ahmadi et al., 2010).
Similar approach is applied for our snake model, empirically
setting α = β = 0.01, wline = 0.04, wedge = 2, wterm =
0.01, with standard deviation σ = 10 used for image smooth-
ing in Eimg, µ = 0.2 and lastly δ = 50.

2.3 Polygonization of building boundary

The polygonization step is then applied to each set of building
boundary points extracted with the snake model, i.e. bi. It in-
volves formulating these boundary points into regular building
polygons. Such polygon usually consists of several parallel and
perpendicular straight line segments. Many researches have ad-
dressed this topic for various purposes, such as building bound-
ary (Dutter, 2007), cartography (Samsonov, Yakimova, 2017),
and classification maps (Maggiori et al., 2017).

In this paper, we modified the method proposed by (Dutter,
2007) which polygonizes a building into three levels of shape:
rectangular; Z-, T- or L-shape; U-shape. The original method
starts with a Minimum Bounding Rectangle (MBR) (Freeman,
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Figure 4. Polygonization of the proposed snake model on an
L-shaped building.

Shapira, 1975) containing all snake points, and the edges of
building polygon are set to be parallel to the MBR edges. This
setting may bias the polygonization result and eventually lead
to errors in building orientation. In our proposed approach, in-
stead of detecting the MBR containing snake points, we detect
and use the MBR of the projected LiDAR building boundary
points which yields more reliable building orientation.

A comparison of building boundary polygonization methods
has been carried out. It involves our approach, Dutter’s ori-
ginal polygonization (Dutter, 2007) and Douglas-Peucker line
simplification algorithm (Douglas, Peucker, 1973). Results are
provided by Fig. 4, which underline the significant reduction
of building orientation error yielded by our approach. Since
Douglas-Peucker algorithm only reduces the number of points
of a boundary, it does not yield a building orientation.

3. RESULTS

This section is devoted to the assessments of the snake model
and the overall building extraction performance.

3.1 Evaluation metrics

In order to assess performance of a building extraction method
with respect to a ground truth, the following metrics are used:

1. Intersection over Union (IoU) (Jaccard, 1901):

IoU =
A(E ∩R)
A(E ∪R) × 100% (10)

where A(·) represents the area measurement. IoU meas-
ures the ratio between the area of the intersection of an ex-
tracted building boundary E and the ground-truth building
boundary R, over the area of their union.

Two related criteria, namely Completeness (Cp) and Cor-
rectness (Cr), are also used to facilitate the comparison of
our approach with other works, e.g. (Fazan, Dal Poz, 2013,
Gilani et al., 2016). Full descriptions of these metrics can
be found in the paper of (Rutzinger et al., 2009).

• Completeness, measured by the Recall criterion:

Cp =
TP

TP + FN
=
A(E ∩R)
A(R) × 100% (11)

• Correctness, measured by the Precision criterion:

Cr =
TP

TP + FP
=
A(E ∩R)
A(E)

× 100% (12)

where TP , FP and FN respectively denote the number
of true positive (i.e. building pixels correctly identified
as building pixels), false positive (i.e. non-building pixels
identified as building pixels) and false negative pixels (i.e.
building pixels not identified).

All three metrics IoU, Cp and Cr reach their best value at
100% and worst at 0%.

While the IoU metric reflects the overall accuracy of a
building extraction method according to a ground truth,
Cp represents the fraction of relevant identified building
pixels over total number of actual building pixels, and Cr

represents the fraction of relevant identified building pixels
among all identified pixels.

2. Euclidean distance between centroids (EDC):

EDC = d(CE , CR) (13)

where d(·) is the Euclidean distance, whereas CE and CR,
respectively, stand for the centroid coordinates of the ex-
tracted building and the ground truth building.

3. Dominant angle rotation error (DARE):

DARE = |θE − θR| (14)

where θE and θR represent the dominant angle of the ex-
tracted building and the ground truth building. The domin-
ant angle of a polygonized building is determined accord-
ing to its longest line segment.

3.2 Data sets

3.2.1 Quebec City The first data sets used for these assess-
ments were acquired in Quebec City (QC, Canada) and are de-
scribed in Table 1. Boundary of twenty buildings on this test
area are manually determined and used as ground truth.

Data type Aerial optical
imagery

Airborne LiDAR

Spectral resolution R, G, B, IR 1064 nm
Spatial resolution/ 15 cm 2 points/m2

Point density
Acquisition time June 2016 Oct-Nov 2011
(season) (summer) (winter)

Geometry/Properties Orthorectified Multi-return (4)
Georeferenced Classified

Relative
misalignment

1.41 m (before registration)
0.49 m (after registration)

Table 1. Description of Quebec City data set (LiDAR data
c©Ville de Québec, aerial imagery data c©Communauté

Métropolitaine de Québec).

3.2.2 Vaihingen The proposed method is also tested using
the ISPRS benchmark data set on Vaihingen, Germany (Cramer,
2010). This additional test aims to demonstrate its effectiveness
on complex environments, and to compare it with other existing
methods.

We use the true orthophoto mosaic given as a RGB image of
9-cm resolution generated from aerial images that are taken
between July 24 and August 06, 2008; whereas the airborne
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Basic snake
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(Guo and Yasuoka, 2002)

(Kabolizade et al., 2010)
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Figure 5. Results of snake models on simple and complex buildings. From left to right, (a) a rectangular building with varying color,
then (b) an L-shaped building, (c) an L-shaped building with similar gray level to the background, (d) a gable roof building with its

shadow, and (e) a gable roof building with similar gray level to the background.

LiDAR dataset of an average point density of 4 points/m2 is ac-
quired on August 21, 2008. Since the misalignment between
the orthophoto and the airborne LiDAR data was already small,
a registration between the datasets was not carried out.

This benchmark data set provides three test areas consisting of
buildings with diversified characteristics, as well as their ground
truth boundaries. Area 1 is situated in the center of the city and
characterized by dense construction consisting of historic build-
ings with complex shapes and some trees. Area 2 is composed
of high-rise residential buildings surrounded by trees. Finally,
Area 3 is purely residential with detached houses and many sur-
rounding trees.

3.3 Evaluation of snake models

Fig. 5 presents the results of different snake models applied
to extract buildings from the Quebec City data set: basic snake
without GVF andEimg, GVF snake, snake model of (Guo, Yas-
uoka, 2002), snake model of (Kabolizade et al., 2010), and
our proposed method. In this comparison, all snake models
are initialized by the LiDAR building boundaries projected on
the optical image (i.e. TBi). As we focus on an unsuper-
vised approach for snake models without a priori information
of building gray-level, method of (Ahmadi et al., 2010) is not
considered. Visual comparison shows that our proposed snake
model always converges better toward the building true bound-
aries than other snake models on all presented buildings.

Table 2 summarizes the IoU metrics computed based on snake
models with respect to ground truth building boundaries. All
the snake models except the basic snake model show a high
average IoU value, i.e. more than 88 %, which demonstrate
the gain of using the projected LiDAR building boundaries as
initial points for snake models.

However, we notice unstable IoU metric values from GVF snake
and snake model of (Kabolizade et al., 2010), underlined by the
IoU minimum values. Furthermore, IoU value of snake model
of (Kabolizade et al., 2010) worsens if the building has sim-
ilar color to its background (cf. Fig. 5c and 5e). On the other
hand, snake model of (Guo, Yasuoka, 2002) yields good IoU
but it is usually unable to converge toward building corners and
boundary concavities (cf. Fig. 5c-5e).

3.4 Overall performance assessment

This sub-section is dedicated to the evaluation of the overall
performance of our proposed method on both data sets. In addi-

Snake models IoU
Mean Min Max

Basic snake 61.45 % 36.42 % 72.61 %
GVF snake 88.55 % 58.10 % 97.57 %

(Guo and Yasuoka, 2002) 89.04 % 79.85 % 96.83 %
(Kabolizade et al., 2010) 88.32 % 57.68 % 97.52 %

(Proposed model) 90.36 % 74.23 % 97.74 %

Table 2. Performance of snake models initialized by TBi on
Quebec City data set, based on IoU metric measured between

snake models and ground truth building boundaries.

tion, using the Quebec City data set, we compare it with the ap-
proach using only LiDAR data, in order to demonstrate the be-
nefit of using jointly imagery data with LiDAR data. Then, us-
ing the ISPRS Vaihingen data set, we compare the result provided
by our method with six existing non-snake building extraction
methods.

3.4.1 Performance results using Quebec City data set
Building extraction result yielded by our proposed method on
urban area of Quebec City can be visually assessed through
Fig. 6. Snake initial points and snake result (before polygon-
ization) are also depicted. Many buildings with varying color,
or color similar to the background or gable roofs are well delin-
eated. The metric values averaged on the area are summarized
by Table 3.

Metric LiDAR only Proposed method
IoU 85.51 % 91.12%
Cp 87.83 % 97.07 %
Cr 97.05 % 92.88 %

EDC 1.48 m 0.89 m
DARE 0.62◦ 0.81◦

Table 3. Average pixel-based building extraction accuracy
metrics on Quebec City data set.

Compared with metrics of LiDAR-only method, the proposed
method yields more accurate IoU and EDC metrics. However, it
can be remarked that the value of Correctness Cr of the LiDAR-
only method is higher than the proposed method, i.e. 97.05%
versus 92.88%. The reason is because in many cases, LiDAR
boundary points can be found inside the true building boundar-
ies, e.g. Fig. 3. These cases yield a Cr value equal to 100%
(since E ∩ R = E when E ⊆ R), which increase the average
value of Cr . Also, the DARE value of the proposed method is
relatively small which confirms its reliability and accuracy in
determining building orientation.

3.4.2 Performance results using ISPRS Vaihingen data set
The proposed method is applied on all three test areas, respect-
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Figure 6. Building extraction result on urban area (Quebec City).

ively presented by Fig. 7a, 7c and 7e. Extraction results are
then evaluated according to the ground truth building boundar-
ies, provided within the benchmark data set. Fig. 7b, 7d and
7f illustrate this evaluation denoting true positive, false positive
and false negative pixels. Their significations were mentioned
in sub-section 3.1.

First, the results are visually assessed. Although a high per-
centage of building pixels are well extracted (represented by
yellow pixels), several issues can be identified in all three test
areas. Firstly, several buildings are not entirely extracted but
only partially, causing false negative pixels. This issue is due
to complex building roofs and connected buildings. Also, sev-
eral small buildings are also not extracted. Secondly, several
vegetation regions that are close to buildings are also extracted
as buildings, causing false positive pixels.

Area IoU Cp Cr

1 82.27 % 89.43 % 91.13 %
2 87.35 % 92.13 % 94.39 %
3 80.07 % 87.21 % 90.72 %

Avg 83.23 % 89.59 % 92.08 %

Table 4. Pixel-based building extraction accuracy metrics on
ISPRS Vaihingen benchmark data set.

Pixel-based assessment metrics on each area are provided by
Table 4. These metrics are then compared with other meth-
ods that are selectively proposed by (Gilani et al., 2016), and
synthesized in Table 5. The first two methods are categorized
supervised, as they involve a supervised classification methodo-
logy based on training data, according to the taxonomy by (Rot-
tensteiner et al., 2014). On the other hand, the others proposed
unsupervised and data-driven approaches which consist in ex-
tracting buildings without predefined constraint on the building
appearance (Gilani et al., 2016).

Fig. 8 depicts graphically the performance of each method with
relation to IoU, Correctness and Completeness metrics. Despite
the discussed issues on this data set, our proposed method, be-
ing automatic and unsupervised, shows very competitive quant-
itative results. Indeed, it achieves relevant accuracy results on
all three test areas. For instance, on Area 1 and 3, our proposed

(a) Area 1 (b) Result on Area 1

(c) Area 2 (d) Result on Area 2

(e) Area 3 (f) Result on Area 3

Figure 7. Evaluation of building extraction using our proposed
method with respect to the ground truth building boundaries on

test areas of the ISPRS Vaihingen benchmark data set.

method yields better IoU than most of the other methods, ex-
cept the supervised method KNTU, or on Area 2 where ours
exceeds all the others.

However the tests conducted on the ISPRS data set underlined
a limitation in our approach. Indeed, there are several null-
valued regions in the orthophoto as shown in Fig. 9. These
regions perturb the snake model convergence as they involve
high gradient values in the image-based external energy term
that attract the snake model.

4. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed and evaluated an unsupervised method
to extract buildings from urban scenes, using snake model on
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Method Data types Processing strategy
KNTU (Zarea, Moham-
madzadeh, 2015) LiDAR +

image
supervised

Whuz (Zhan et al., 2012)
IIST (Gilani et al., 2016)

unsupervised and
data-driven

Fed 2 (Gilani et al., 2016)
Mon2 (Awrangjeb et al.,
2014) LiDAR
Yang (Yang et al., 2013)

Table 5. Methods that have been compared with the proposed
method, using ISPRS Vaihingen data set.

Figure 8. Comparison of building extraction accuracy metrics on
ISPRS Vaihingen benchmark data set among various methods.

The ‘∗’ sign indicates that a method is supervised.

aerial optical imagery with airborne LiDAR data. Without need-
ing manual initial points nor training data, the proposed method
is highly automatic and achieves a high accuracy of building ex-
traction, indicated by different metrics on many test areas (cf.
Tables 3 and 4). Indeed, compared to other methods dedicated
to building extraction, our work provide an alternative solution
that is unsupervised and yields a better accuracy than most of
them, except the supervised method proposed by (Zarea, Mo-
hammadzadeh, 2015).

These results also demonstrate significantly the advantage of
the conjoint use of optical imagery with LiDAR data, even with
a LiDAR dataset collected a long time before, e.g. five years.
Indeed, by the virtue of LiDAR-based initialization and guid-
ance, our proposed method succeeds to extract buildings with
gable roofs and/or having varying color, or even when the roof
has very similar color to its background. It also overcomes the
problem of disturbed shadow regions near buildings which is
usually problematic to a building extraction method, e.g. (Fazan,
Dal Poz, 2013). Compared with methods that use only LiDAR
data, the proposed approach provides more accurate building
extraction results. Moreover, the fact that this approach uses
an optical image with a LiDAR dataset that is acquired several
years in advance also means a cheaper and timelier solution,
instead of requiring updated LiDAR data.

Ground truth

Snake result

(a) Building ground truth (cyan) and
extracted boundary (green).

(b) Binary mask denoting null-valued
pixels (white: null, black: non-null).

Figure 9. Illustration of a wrongly extracted building due to
null-valued image pixels.

However, like other snake model-based building extraction meth-
ods, our proposed method is also still dependent to snake para-
metrization in order to work well on complex areas. Future
work will investigate on an automated contextualization of scene
(either residential, industrial, or mixed) allowing to automatic-
ally parametrize the snake model. Nevertheless, more efforts
will also be put on increasing effectiveness of the snake model
on complex environments, such as the areas from the ISPRS
benchmark data set. As a matter of fact, the results obtained
on Vaihingen data set, even though being relevant compared to
other methods, can still be improved in order to reach perform-
ances similar to those of Quebec City data set, i.e. average IoU
values respectively of 83.23% versus 91.12%. There are two
reasons that explain this difference. The process of building
boundary extraction from the LiDAR point cloud of Vaihingen
data set is less effective, due to the misclassification problem
of vegetation and buildings. LiDAR points from Quebec City
data set have a class value which facilitate the discrimination of
building regions from trees. The second reason is the problem
of null-valued regions in the orthophoto as mentioned above.
Future works will also concentrate on these two issues.
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