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ABSTRACT:

We analyze the effects of additional height data for semantic segmentation of aerial images with a convolutional encoder-decoder
network. Besides a merely image-based semantic segmentation, we trained the same network with height as additional input and
furthermore, we defined a multi-task model, where we trained the network to estimate the relative height of objects in parallel to
semantic segmentation on the image data only. Our findings are, that excellent results are possible for image data only and additional
height information has no significant effect — neither when employed as extra input nor when used for multi-task training, even with
differently weighted losses. Based on our results, we, thus, hypothesize that a strong encoder-decoder network implicitly learns the

correlation of object categories and relative heights.

1. INTRODUCTION

Semantic segmentation, i.e., pixel-wise classification, using
Convolutional Networks (ConvNets) has been shown to pro-
duce very good results. Many different approaches have been
published in recent years, starting from adapting well-known
architectures for image classification and fine-tuning them for
semantic segmentation (Long et al., 2015), up to specific ar-
chitectures that are trained directly for semantic segmentation
without any pre-training (Jégou et al., 2017).

Other authors have presented a fusion model for semantic seg-
mentation of aerial images, combining image data as well as
height data in a single ConvNet (Zhang et al., 2017). In their ex-
periments, they examined the influence of the height data when
fusing it with the image data at different depths of the network
based on the sensitivity for single classes.

Yet other authors have dealt with multi-task learning (Kendall
et al., 2018), defining a ConvNet treating three tasks in parallel:
semantic segmentation, instance segmentation and depth esti-
mation from single images of road scenes.

Schmitz et al. (2019) have examined the behavior of different
strategies for training a ConvNet on multiple similar datasets
on the example of facade segmentation.

In this paper, we analyze how a ConvNet for semantic segmen-
tation is affected when height data in the form of a (standard-
ized) Digital Surface Model (DSM) is used additionally to im-
age data (here: IR-R-G) for training. Contrary to Zhang et al.
(2017), we do not examine the effects when additional height
data is fused at different depths within the ConvNet, but when
it is either used as additional input data or as an additional task.
We employ FC-DenseNet56 (Jégou et al., 2017) as architecture
for our experiments and train it as baseline directly with im-
age data only on the Vaihingen 2D Semantic Labeling dataset
(Cramer, 2010). Two modifications of the network architecture,
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depending on the usage of the height data, are the focus of our
analysis reported in this paper.

First, we include the height as additional input data. IL.e., we
concatenate the image and the height to a 4-channel IR-R-G-H
vector. The ConvNet is trained with this data and we analyze the
effect of the additional height information regarding the overall
accuracy (ratio of correctly classified pixels to all pixels).

Second, we use the DSM data for height regression in an addi-
tional task parallel to semantic segmentation. Le., we define a
multi-task learning problem and train both, semantic segmenta-
tion as well as height regression, in parallel on the same input
data. This is realized in a way where both tasks share the main
part of the network, but use independent parts for semantic seg-
mentation and height regression. The assumption behind this is
that both tasks are highly correlated, meaning that training one
of them affects the other and vise versa. As it is hardly possible
to estimate the absolute height of a scene from an image patch,
we standardize (subtracting mean, dividing by the standard de-
viation) the DSM input to train the network on relative height
differences.

In Figure 1 we present an abstract version of our network ar-
chitecture with optional height information. Please notice that
the height data (red dashed parts) is either used at the beginning
or at the end of the network, depending on whether height is
employed as additional input data or for height regression as an
additional task.

The paper is organized as follows: After discussing related
work we present our methodology in Section 3 and the exper-
iments in Section 4. Section 5 gives the results and discusses
them before the paper ends with the conclusion.

2. RELATED WORK

ConvNets outperform traditional approaches especially in
image-level classification (Krizhevsky et al., 2012) and pixel-
level semantic segmentation (Long et al., 2015). A review of
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Figure 1. The architecture and its modifications. The red dashed parts are optional in an exclusive-or manner. Input
channels: IR-R-G: infra-red, red and green, H: height. DB: dense block and C: convolutional layer. FC-DenseNet from

(Jégou et al., 2017).

deep learning methods for semantic segmentation can be found
in (Garcia-Garcia et al., 2017).

ConvNets have been successfully applied in remote sensing,
e.g., for classification tasks like semantic labeling (Mnih and
Hinton, 2010; Maggiori et al., 2017; Marmanis et al., 2018) as
well as landcover mapping (Chen et al., 2014; Kussul et al.,
2017). An overview of recent advances and an analysis of chal-
lenges of deep learning for remote sensing is given in (Zhu et
al., 2017).

Besides for classification, deep neural network-based architec-
tures can be used for regression to predict continuous variables,
e.g., the depth of each pixel in a single (monocular) image of a
scene (Eigen et al., 2014). Depth estimates and surface normals
are together with semantic labels an important component for
the understanding of geometric relations within a scene. The
exploitation of these related but different factors describing the
scene leads to essential improvements in recognition tasks (Sil-
berman et al., 2012) as well as in remote sensing applications
like classification of topographic objects and change detection.
Monocular depth estimation is equivalent to height prediction in
optical remote sensing images and, thus, an inherently ambigu-
ous problem. In spite of this (Mou and Zhu, 2018; Ghamisi and
Yokoya, 2018; Amirkolaee and Arefi, 2019) apply ConvNets to
predict height values in single aerial images and use the result-
ing height maps as additional input data to significantly improve
the classification accuracy for semantic segmentation.

The above discussion implies that semantic segmentation and
depth estimation in monocular images are related tasks. Con-
textual information about the scene, the perspective and rela-
tions between objects are essential when depth is to be esti-
mated in single images. The accuracy of semantic labeling may
in turn benefit from the depth, when an additional objective acts
as aregularizer during training, preserving object boundaries. A
joint estimation in a multi-task deep learning model of these ob-
jectives leads to mutual improvements in accuracy and training
time (Eigen and Fergus, 2015). An appropriate loss function
is assigned to each task of the model and generates different
target data for the branches. However, the loss functions are ag-
gregated as linear combination without considering the different
physical meaning of image intensity and depth.

Building upon this, Kendall et al. (2018) introduce a global
weighting of the differently behaving loss functions based on
the task-specific uncertainty. A convolutional encoder-decoder

network is employed, enabling simultaneous semantic segmen-
tation, instance segmentation and depth estimation for each
pixel in a single RGB image. Opposed to this, Jiao et al. (2018)
propose semantic and depth-aware objectives in a multi-task
learning framework, estimating class labels as well as depth
values for each pixel to take into account the imbalanced depth
and category distributions of existing datasets. Both approaches
significantly improve the accuracy of scene understanding tasks
and show the necessity of adequately defined objectives of a
multi-task model.

In their pioneering work, Srivastava et al. (2017) use a multi-
task ConvNet, learning both, height prediction as well as se-
mantic labeling for each pixel in aerial images. However, the
multi-task training loss is defined as a weighted combination
of the task-dependent loss functions. Hence, the estimated se-
mantic labels and height maps do not differ significantly from
those obtained by single-task models. Substantial improve-
ments exploiting a multi-task model for semantic segmentation
are shown in (Bischke et al., 2017). It preserves semantic seg-
mentation boundaries in aerial images by introducing a globally
weighted multi-task loss.

3. METHODOLOGY

The network architecture we have chosen for our experi-
ments, FC-DenseNet56 (Jégou et al., 2017), is an extension of
DenseNet (Huang et al., 2017) for semantic segmentation. It
is composed of 56 layers in total, organized as an initial con-
volution, 11 dense blocks (5 followed by a transition down
operation, a bottleneck block and another 5 headed by a tran-
sition up operation) and a final convolutional layer. Shallow
and deep layers are directly connected by shortcuts to take low-
level information, e.g., edges, into account for segmentation.
DenseNet is defined by a set of dense blocks, in which already
extracted features are directly used as input for all subsequent
layers within the block. Training such a network is more effi-
cient and also possible with smaller amounts of training data,
because there is no need for a repeated encoding of information
and due to a relatively small number of parameters.

As the data we use for our experiments consists of an infrared,
a red and a green channel (and additionally of height data for
one group of experiments) and common datasets usually con-
tain RGB-images, pre-training the networks would be difficult.
However, utilizing FC-DenseNet56 allows to train the networks
directly on the desired data, without any pre-training.
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We have defined three different settings to analyze the influence
of additional height data, which are introduced in the following
three sections.

3.1 Semantic Segmentation with Image Data

The baseline setting that we employ as reference for our exper-
iments is semantic segmentation on the image data only. No
height information is included and the network is trained on a
3-channel input on a single task.

3.2 Semantic Segmentation with Image Data and DSM

As an additional setting, the same network is trained on a 4-
channel input, concatenating image data and height informa-
tion. Except for increasing the input dimension from 3 to 4, the
network is not changed, i.e., the number of layers and kernels is
identical. Our goal is to determine if additional input data im-
proves the results for semantic segmentation. A big drawback
with this setting is that height data is necessary for producing
semantic segmentation not only during training but also at in-
ference.

3.3 Semantic Segmentation and DSM Estimation from
Image Data

Finally, we define a setting where the image data alone serves
as input and the DSM data is utilized for the additional task
of height estimation. Both tasks, semantic segmentation and
height estimation, are trained in parallel with independent, task-
specific loss functions. The idea behind this is that the semantic
class of an object is highly correlated to its (relative) height and
training a network on these tasks in parallel converges faster and
produces more stable results due to the mutual support. While
most of the network is shared by the individual tasks, we de-
cided to make the final convolutional layer as well as the last
dense block independent for each task. The total loss is defined
by the weighted sum of the individual losses. Details are speci-
fied in Section 4.

Training on an additional task, thus, acts like a regularization.
Another benefit is that height information is only necessary for
training, while at inference time the semantic segmentation can
be computed using the image data only. Furthermore, a rough
relative height estimate will be available for the input images.

4. EXPERIMENTS
4.1 Datasets

We trained and tested all networks on the ISPRS 2D semantic
labeling — Vaihingen dataset. It consists of 33 True Orthophoto
Mosaics (TOM), generated from aerial images (3 channels: in-
frared, red and green — IR-R-G) with corresponding DSMs
and dense ground-truth annotations. Semantic classes are im-
pervious surface, building, low vegetation, tree, car and clut-
ter/background. The data has a ground resolution of 9 cm and
is split into 16 training and 17 test images.

4.2 Training

For training, we randomly cropped patches with 448 x 448 pix-
els from the images and scaled them independently in both di-
mensions in the range [0.95,1.1]. The image and the DSM
were interpolated bilinearly while for the annotation we applied
nearest neighbor interpolation. Furthermore, we augmented the

patches by random rotation by k& x 90° (k € [0, 1,2, 3]) as well
as random flipping, leading to eight different states.

Depending on the setting, optimization was performed by min-
imization of the cross-entropy loss for semantic segmentation
or the combined loss, consisting of the weighted sum of cross-
entropy loss for semantic segmentation and mean squared error
loss for height regression. Adam (Kingma and Ba, 2014) with
decoupled weight decay (Loshchilov and Hutter, 2017) was uti-
lized as optimizer. Each network was trained for 150k iterations
with a batchsize of 2.

When height data was included, the DSM patches were stan-
dardized to ensure that only the relative height was taken
into account. As normalized DSM (nDSM) usually mean the
“height above ground”, we denote the standardized patches as
sDSM:

DSM,. , —
sDSMm,y:M, 1)
ODSM
with upsa the mean height and opsas the standard deviation

of the current patch.
4.3 Experiments

For a deeper analysis we trained each network with different
weight decays: 107*, 107°, 1075 and 0. The multi-task ver-
sion additionally was trained with different weights for the task-
specific losses (0.5:0.5, ... ,0.9:0.1).

Training time was about 14 hours for the single-task experi-
ments (only a minimal difference between 3- and 4-channel in-
put) and about 19 hours for the multi-task setting. Each network
was trained on a single Nvidia GTX 1080 Ti.

5. RESULTS AND DISCUSSION

Table 1 presents the overall accuracy (the ratio of correctly clas-
sified pixels to all pixels) for semantic segmentation with dif-
ferent settings. The Vaihingen dataset provides ground-truth
annotation with eroded object boundaries, to reduce the impact
of uncertain border definitions. Pixels under eroded areas were
ignored for evaluation.

Weight decay seems to have no notable effect with these set-
tings and data. Furthermore, no setting clearly outperforms the
others. However, it is surprising that the worst results come
from the setting including height data as input, even if there is
no big difference.

In contrast to Ghamisi and Yokoya (2018) and Amirkolaee and
Arefi (2019) who use ConvNets in single-task settings to esti-
mate height maps from single images which are then used as
additional input for semantic segmentation, we cannot observe
any significant improvement in terms of accuracy even when us-
ing ground-truth DSMs. In their studies, they observed positive
effects of additional height information in semantic labeling,
even when using estimated heights. The estimated height acts
as a coarse global prediction (Eigen et al., 2014) and leads to an
implicit refinement of the semantic segmentation. However, our
findings do not support their observations as the accuracies of
our baseline settings are slightly better than of the experiments
with IR-R-G-H input.
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wd | IR-R-G IR-R-G-H Multi-0.5 Multi-0.6 Multi-0.7 Multi-0.8 Multi-0.9
0 88.83 85.73 88.29 88.82 88.74 88.21 88.59
10~* 88.09 87.23 87.13 88.49 87.77 88.55 86.85
107° 88.49 85.3 88.37 88.65 88.32 88.41 88.41
10-° 88.09 88.23 87.56 88.37 88.43 88.26 88.14

Table 1. Overall test accuracy for semantic segmentation with different settings. 0.x in Multi-0.x denotes the weight
applied to the semantic segmentation loss. For regression, the corresponding weight is (1 - 0.x).

Changing the weights of the individual losses in the multi-task
models also has no clear effect on the result. Moreover, com-
paring the multi-task results to those from the baseline setting,
no regularization on the semantic segmentation task is observ-
able. The same observation has been made in (Srivastava et al.,
2017).

On the other hand, Kendall et al. (2018) have shown, that a
multi-task model with a shared encoder and separate decoders
as well as dynamic weights for the specific tasks, based on their
individual uncertainty, can lead to better results for each task,
including semantic segmentation. A multi-task network with
deeper independent parts might give better results, but would
suffer from higher memory consumption and from higher com-
putational complexity as more parameters have to be optimized.

Figure 2 gives results for each setting for the same tile. All
versions fail to classify greater parts of lower flat roofs between
higher buildings correctly, like in the upper left corner or near
the big building in the center with the gray roof.

Some missclassifications are plausible, like not annotated but
found cars in shadows and vice versa, trees/bushes annotated as
low vegetation or wrongly classified railroads, which are anno-
tated inconsistently in the ground-truth data. Due to the TOM
projection, edges of segmented objects are not straight while
the annotation always is.

In Figure 3, the color information from the input patch (top left)
is mapped to 3D points with x, y (pixel position) and (relative)
height from ground truth (top center) and our regression (top
right), respectively. For a meaningful comparison and visu-
alization, we shifted and rescaled the network’s height output
using the mean and the standard deviation of the ground-truth
data.

The results demonstrate that the multi-task network learns not
only semantic context, but also additional knowledge about ob-
ject categories in the form of relative height. While detailed
structures like ridges are imprecise, the rough 3D shapes of in-
dividual objects (buildings, cars and trees) are clearly observ-
able.

Taking into account that our baseline results using only image
data are comparable to other state-of-the-art methods, our ob-
servations from the other experiments lead us to the following
hypotheses:

e The baseline model implicitly learns an adequate model of
the (relative) height of semantic classes.

e The employed architecture and the individual loss func-
tions do not consider the different physical meaning of in-
tensity and height information.

e Due to the quality of ground-truth data (images as well
as DSM and annotations), an upper bound of achievable
accuracy may impede significantly better results.

6. CONCLUSION

We have applied FC-DenseNet56 for semantic segmentation
of aerial images with and without additional height data and
achieved state-of-the-art results regarding pixel-wise classifica-
tion accuracy. The use of height data in addition to image data
as well as the definition of a multi-task model, trained on se-
mantic segmentation as well as height regression in parallel on
single images, does not significantly affect the results.

Thus, we have come to the conclusion that ConvNets are able
to implicitly learn the (relative) height of objects. This could be
the reason for no significant differences in the versions.

For future work, we want to analyze how advanced loss func-
tions and their adaptive weighting can improve results on se-
mantic segmentation and on height estimation. Especially for
the latter, we are interested in how one could include contextual
information like shadows or the visible parts of facades in aerial
images.
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