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ABSTRACT: 

 
The Horizon 2020 project ECoLaSS (Evolution of Copernicus Land Services based on Sentinel data) contributes to 

improving existing and developing next-generation Copernicus Land Monitoring Service (CLMS) products. The High 

Resolution Layers (HRLs) are currently produced in regular 3-year intervals at 10-20 meter spatial resolution for 39 

European countries (EEA 39). Evolving scientific developments and user requirements are continuously analysed in a close 

stakeholder interaction process with the European Entrusted Entities (EEE), targeting a future pan-European roll-out of 

new/improved CLMS products and assessing transferability to global applications. Products and methods are being 

prototypically demonstrated. Representative sites (60,000 - 90,000 km²) were selected, covering boreal, Mediterranean, 

steppic, Atlantic, alpine and continental conditions. Improvements comprise yearly updates of enhanced dominant leaf types 

and tree cover change layers, better-quality permanent grassland classification and use categorisation. Novel products target 

agriculture products (i.e., crop mask, crop types). Temporal analysis, based on optical (Sentinel-2) and SAR (Sentinel-1) 

satellite data, makes use of temporal feature descriptors (multiple temporal statistical metrics) derived from spectral bands 

and indices (e.g., VV/VH ratio and NDVVVH from SAR data and NDWI, NDVI, Brightness and IRECI from optical data). 

Overall accuracies range from 77-98%. Rigorous benchmarking is applied to assess the prototypes’ operational readiness 

and technical maturity for integration into the CLMS architecture. 
 

  

 

 

  

 

 

 

 

1.INTRODUCTION

The  Copernicus  Programme, managed  and  coordinated  by 
the  European  Commission  (EC)  and  implemented  in 
partnership  with  the  European  Space  Agency  (ESA), 
member  states  and  various  EU  agencies,  offers  services 
mainly based on Earth Observation (EO) data provided by 
ESA  through  the  Copernicus  Space  Component. 
Complementing  the  operational-phase  implementation,  the 
Horizon  2020  project  ECoLaSS  (Evolution  of Copernicus

Land Services  based  on Sentinel  data) is  being  conducted 
from 2017–2019 and aims at developing and prototypically 
demonstrating selected innovative products and methods as 
candidates  for  future  next-generation  operational 
Copernicus  Land  Monitoring  Service  (CLMS)  products  of 
the  pan-European  and  Global  Components, assessing  the 
operational  readiness  of  such  candidate  products and 
suggesting  an implementation  schedule. This  shall  enable 
the  key  CLMS  stakeholders  (i.e.  mainly  the  Entrusted 
European Entities (EEEs) EEA and JRC) to take informed 
decisions  on  potential  procurement  as  (part  of)  the  next 
generation  of  Copernicus  Land services  from  2020 
onwards.

Among the key products of the pan-European component of 
the  CLMS  are  the  so-called High  Resolution  Layers

(HRLs),  which  are  thematic  products  currently  targeting 
land  cover characteristics  of five main  classes:

Imperviousness, Forest,  Grassland,  Water/Wetness  and 
Small Woody Features (HRL reference year 2015). Most of 
these  layers  are  produced  in  regular  3-year  intervals  from 
multi-temporal  EO  data  at  10-20  meter  spatial  resolution 
for  39  European  countries  (EEA  39).  Further similar  and

other products (such as a HR Arable Land Layer) are in the 

debate. The EEEs published some of the next generation 

HRLs products and services specifications, which include 

improved product provisions, production timeliness, etc. 

Rapidly evolving scientific developments as well as user 

requirements are continuously analysed in a close 

stakeholder interaction process, addressing the pan-

European roll-out of new/improved CLMS products, and 

exploring a potential transferability to global applications. 

The prototyping implementations in ECoLaSS 

acknowledge and meet such interests.  

At this stage in project development, the prototypes 

presented here account for identified needs and are in line 

with the user requirements compiled: higher interest in 

local components (i.e., implying higher resolution 

products), higher update frequencies and incremental 

updates, change detection, interest in Copernicus satellite 

data (mostly Sentinel-2), and in particular in production 

based on optics and SAR at 10 m derived from Sentinel. 

Specific products demanded are addressing the HRLs (e.g., 

improved Grassland identification, new Grassland Use 

Intensity product, Forest cover and change layers), 

enhanced CORINE Land Cover (i.e., CLC+ specifications 

to be published in 2019) and new services appealing to 

Agriculture (e.g., crop mask, crop types, yield products) 

and cross-cutting generic products (e.g., vegetation 

indicators, phenology, biophysical variables). The proof-of-

concept demos match the HRLs 2018 iteration.  

Methodological implementation is based on improved EO 

data pre-processing, multisensor integration, state of the art 

time series analysis and sophisticated change detection 
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concepts. ECoLaSS makes full use of dense time series of 
High-Resolution  (HR)  Sentinel-2  optical  and  Sentinel-1 
Synthetic  Aperture  Radar  (SAR)  data,  complemented  by 
ancillary optical  data (e.g.,  PROBA-V,  Landsat  8,  and 
additional VHR data from the ESA Data Warehouse DWH)

and elevation data (e.g., DEM) if needed and feasible.

Recent  developments  in  ECoLaSS  are  based  on  both, 
optical and SAR data and led to improved/new status layers 
at 10 m and associated change layers at 10-20 m. Thematic 
topics on the forest domain include improved status layers 
of  Tree  Cover  Density  (TCD)  and  Dominant  Leaf  Type

(DLT)  for  the  years  2017  and  2018 associated  to  the 
respective  Tree  Cover  Masks  (TCM),  as well  as  an 
associated  change  2017-2018 (Moser et  al. 2018a). 
Regarding  the  grasslands,  improved  2017  and  2018  status 
and change layers (Moser et al. 2018b), and a novel product 
on  the  use  intensity  (i.e.,  extensively/intensively 
management)  based  on  the  number  of  mowing  events 
throughout  the  year  are  contained  in  the  ECoLaSS 
portfolio. Linked to the new products developments in the 
agriculture domain, status layers 2017 and 2018 (i.e., crop 
mask) and  crop  types  are  generated,  for  which  pan- 
European  representative  categories  are  being  defined  and 
tested (Moser et  al. 2018a,  Moser et  al. 2018b).  To 
complement  categorical  maps  (i.e.,  binary  masks),  and 
responding  to  the  demands  of  generic  and  cross-cutting 
novel  products  allowing  for  multipurpose  applications, 
biophysical variables and phenology indicators are applied 
in  examples  of  crop  status  monitoring  (e.g.,  intraseasonal 
start,  peak  and  end  of  phenological  activity  derived  from 
vegetation activity intermediate products). Illustrations here 
presented of  higher-level  continuous  layers  adding  details 
into  the land  cover  presence mask  are  the  Tree  Cover 
Density in  forest,  and  the  number  of  detected  mowing 
events in grasslands.

This  paper introduces  the ECoLaSS  project  setup, 
embedding  an overview  of  the  collected  user  and 
stakeholder  requirements,  developed  processing 
methodologies and the candidate prototypes for operational 
service implementation. The focus is laid on the established 
prototypes  for  potential  next-generation  HRL  products  on 
Forest, Grassland and Agriculture, based on dense Sentinel-

1 and Sentinel-2 time series analytics.

2. MATERIALS AND METHODS       

The  following  selected  innovative  improved or  novel 
products presented in this work are being developed, tested 
and  prototypically  demonstrated:  Forest, Grassland  and 
Agriculture  layers. The  area  of  study,  data  sources  and

methods are described in this section.

2.1 Area of study

Throughout  Europe,  representative  demo  sites  of  approx. 
60,000 - 90,000  km²  size  each  were  selected,  covering 
boreal,  Mediterranean,  steppic,  Atlantic,  alpine  and 
continental  parts  of  14 European  countries, with  good 
access  to  specific  in-situ  data,  and  representing  the  spread 
of biogeographic regions in Europe.  

  

 

European sites cover  parts  of France,  Belgium, Spain, 
Andorra, Sweden,  Germany,  Austria, Switzerland,  Italy, 
Bulgaria, Serbia, Macedonia, Kosovo and Greece, as shown 
in Figure 1.  

 

Figure 1. ECoLaSS Sites distribution in Europe  
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South-East  (Bulgaria,  Serbia,  Macedonia,  Kosovo  and 
Greece) demonstration  sites and  consist  of  a  set  of 
improved status layers for 2017/2018: Dominant Leaf Type 
and  the  continuous-scale  Tree  Cover  Density  product

(Moser et  al. 2018a).  The  basis  for  these  layers  is  an 
improved  tree  cover  detection,  resulting  in  a  binary  Tree 
Cover  Mask  (TCM),  which  is  used  to  generate  an 
incremental  update  in  form  of  the  Tree  Cover  Change

(TCC) layer 2017-2018. The grassland masks presented in 
this  paper  are  produced  in  the  Central  demo  site:  status 
layers  2017  and  2018  (GRA)  and  grassland  change  layer 
2017-2018 (Moser et al. 2018b), whereas the Grassland use 
intensity is tested in a smaller site within the Central demo 
site. For  both  forest  and  grassland,  an  additional  change 
detection  between  the  HLR2015  and  the mask 2017 
prototypes is assessed. Also under production, the grassland 
status and change prototypes are located in the South-East 
and  West  (Belgium,  France)  sites.  As  for  agriculture,  the 
crop  mask  2017  and  2018  and  the  crop  types  2017  and 
2018 presented are also produced in the Central demo site

(Probeck et  al. 2019,  Moser et  al. 2018a,b).  Two  other 
prototypes will be produced in West (France/Belgium) sites

in order to cover different biogeographical regions.

2.2 Data sources

Time  series  of  optical  (Sentinel-2)  and  SAR  (Sentinel-1)

satellite data of 2017 and 2018 are subject to pre-processing 
workflows  to  optimize  geometric  and  radiometric 
consistency  of  the  spectral  bands,  for  which  a  digital 
elevation  model  (DEM)  is  necessary.  Indices  are  derived 
from  the  resulting  spectral  bands.  Several  ancillary  data 
sources are  employed  for  the  classification  (e.g.  LUCAS 
2018, LPIS/IACS, ESA  DWH VHR),  be  it  for  algorithm

training or validation purposes.

2.3 Methods

From a methodological point of view, the temporal analysis 
techniques  applied  make  use  of  a  multitude  of  temporal
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feature  descriptors  (multiple  temporal  statistical  metrics). 
Temporal  features describe  distinct  spectral,  temporal  and 
phenological  properties.  By  selecting  suitable  time 
windows, the mapping of phenological transition points and 
phases is  possible  by  simultaneously mitigation  of  cloud

cover issues within optical data.

2.3.1 Pre-processing:

In  the  case  of  optical  data,  atmospheric  correction, 
topographic  normalization  and  cloud  and  cloud  shadow 
detection  and  masking  are  the  key  pre-processing  steps. 
The ESA Sen2Cor package (Louis et al. 2016) and python 
scripts are used for this purpose. Cloud and cloud shadow 
masking embeds the generation of a binary mask, which is 
derived by a dedicated filtering and buffering process from 
the original Sen2Cor Scene Classification Layer (SCL). In 
the  South-East demo  site,  the  MACCS/MAJA  cloud 
masking  algorithm  (Lounjou et  al. 2016)  is  preferred  in 
view  of  test  performance  outcomes. The  topographic 
normalisation implemented in the Sen2Cor software uses a 
90m  DEM  and creates  slope,  aspect  and  terrain  shadow 
products. The output bands are resampled to 10 m using the 
cubic convolution method  whereas the SCL  is  resampled 
using  nearest  neighbourhood.  The  three  bands  with  60 m 
spatial  resolution  (Bands  1,  9  and  10) are omitted  in  the 
Level-2A output. Topographic  normalisation is performed 
to reduce illumination effects caused by certain topographic 
conditions and contributes to obtain a better consistency in 
the  time  series  (e.g. sun  angles  and shadows  dramatically 
vary throughout the seasons).

From  the  surface  reflectance  products,  the  following 
spectral indices are derived:

- NDVI (Normalized Difference Vegetation Index)

- NDWI (Normalized Difference Water Index)

- BRIGHTNESS  (derived  through  summation  of

the  values  of  the  bands  Green,  Red,  NIR  and

SWIR1)

- IRECI (Inverted Red-Edge Chlorophyll Index)

Together  with  the spectral  information,  these  vegetation 
indices  are  the  input  for  the  subsequent  thematic 
processing.

In turn, SAR time series are based on Level-1 products in 
Interferometric  Wide  swath  (IW)  mode  and  Level-1 
Ground Range Detected (GRD). The pre-processing steps is 
performed with the ESA SNAP tool: orbit update (includes 
automatic precise orbits download), thermal noise removal, 
radiometric  calibration  generating  a  beta  band,  terrain 
flattening  to  gamma  naught  based  on  SRTM  1sec  HGT, 
terrain  correction  using  the  same  DEM  generating  a  10m 
resolution product and the export of the scene in DN units. 
After the orthorectification of the images, a multitemporal 
speckle  filtering  has  been  applied  using  a  5x5 Frost filter. 
Python scripts are used in indices derivation: VV (Gamma 
naught),  VH  (Gamma  naught),  Normalized  Difference

VV/VH, Ratio VV/VH.

2.3.2 Temporal features computation:

Temporal feature descriptors are able to depict and quantify 
a surface’s status and its phenological behaviour over time 
as  well  as  to  capture  the  intensity  and  significance  of

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

  

 

 

 

 

change  information  and  time  series  related  statistical 
properties. Thus, they constitute powerful input features for 
various  classification  or  analysis  tasks.  Not  being  directly 
related to image acquisition dates, neither customised scene 
selection efforts nor prior knowledge of change event dates 
is required. Hence,  feature  descriptors  can  be  flexibly 
computed from reflectance or derived index data.

For grassland, the time windows testing included the spring 
period  (01.03-31.05),  late  winter  to  spring  (01.01-01.06)

and  a  larger  period  (01.01-30.11). In  the  case  of  Forest, 
tests  included  several  time  windows  (e.g.,  15.03-15.06). 
The selected time windows for the TCM and DLT is related 
to  the  growing  season  (e.g., 15.03-15.09). In  turn,  the 
periods  tested  in  Agriculture  were  selected  to  capture  the 
crop season key moments (e.g., 15.03-15.10).

Seven  temporal  feature  descriptors  represent  standard 
statistical  temporal  metrics  of  a time  series:  maximum, 
minimum, mean,  median,  standard  deviation,  covariance 
and  and percentiles  (10,  25,  50,  75,  90,  difference  90-10 
and difference 75-25).

In  parallel  to  the  new  feature  calculation  and  analysis, a 
feature  selection  method  is applied. The  K-Fold  Cross 
Validation method is based on a stratified k fold sampling 
integrated in the machine learning package. This sampling 
method splits the training and test dataset into a number of 
k-folds.  It  clones  the  classifier in every  iteration and 
produces accuracy  figures  and a new training and test set. 
The  algorithm  finally  yields  a  combination  of  the  features 
with  the  highest  accuracy.  This  subset  of  features  is  used

for the classification process.

2.3.3 Classification:

Classification was  applied  using  different  combinations  of 
sensor data and time periods to benchmark their respective 
feasibility, effort and accuracy: Sentinel-2, Sentinel-1, and 
the  combination  of  Sentinel-1  and  Sentinel-2 temporal 
features.

Two  independent  sample  datasets  were  used  for  the 
classification  and  validation. In  the  case  of  forest  and 
grasslands,  samples  were  automatically  extracted  from  a 
combined HRL 2015 sampling layer, consisting of the 20m 
Layers  Dominant  Leaf  Type,  Imperviousness,  Grassland 
and  Water  and  Wetness.  In  addition,  LUCAS  2018  points 
filtered  by  the  observation  type  1  attribute  and  visually 
inspected  if  required,  were  also  selected.  To  reduce  the 
number of possible outliers and errors in these samples, the 
following filtering steps were applied to the sampling layer:

reduction of edge effects and mixed pixels through negative 
buffering  (20  m)  of  the  HRL  product  classes  (e.g., 
coniferous  forest,  imperviousness,  water)  and  removal  of 
patches  smaller  than  1  ha. A  stratified  random  point 
sampling  has  been  performed  within  the  remaining  area. 
Subsequently, potential outliers  have  been  removed  by 
statistical  analysis  and  visual  checks,  if  required. For  the 
agriculture  crop  mask and  crop  types,  as  no  pre-existing 
HRL  was  available,  LUCAS  2018  and  LPIS  data  were 
respectively, employed  for  sampling  purposes,  following 
selection procedures as aforementioned. The sampling set is 
split  into  the  set  used  for  training  purposes  and  the
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validation  independent  sample  set,  in  a  50%-50% 
proportion.

Using  a  random  forest-based  classification  approach  on 
several  hundred  temporal  feature  descriptors, a  feature 
selection is performed to identify the most meaningful input 
features for classification, ensuring a high resultant product 
quality as well as a cost and time efficient processing with 
high accuracy. A probability layer indicating the percentage 
of reliability constitutes a pixel-based quality indicator by- 
product.

In the case of the intensity layer, NDVI time series are used 
to derive the number of mowing events, that are clipped to 
the  grassland  mask  and  reclassified  by  defining  the 
extensive use category when less than or equal to 2 mowing 
events are detected during the year.

A  final  post-classification  filtering  was  based  on  a five 
minimum  pixel  count  of  connected  patches  (e.g.,  GRA  as 
well  as  non-GRA),  and  case-wise  application  of  elevation 
thresholds  (e.g.,  Agriculture  >  1700  m  threshold).  All 
patches  smaller  than five pixels (i.e.,  minimum  mapping 
unit  5  pixels) were  removed  to  close  holes  in  grassland 
patches and remove very small patches.

Consistent with the TCM & DLT, a continuous-scale Tree 
Cover Density product with values ranging from 0-100% is 
produced  at  10m  spatial  resolution  using  band-specific 
temporal  features  from  Sentinel-2  and  a  multiple  linear 
regression  estimator.  The  pixel-based  TCD  product 
provides  information  on  the  proportional  crown  coverage 
per pixel in percent, whereas tree cover density is defined 
as  the  „vertical  projection  of  tree crowns  to  a  horizontal 
earth’s surface“. Two different approaches have been used 
to generate the status layer Tree Cover Density 2018 using 
a  linear  regression  estimator:  a  mono-temporal 
classification using a “best-of” scene approach and a multi- 
temporal classification  using  band-specific temporal 
features for  defined  time  windows. The  latter  one shows 
very  promising  results  and  is  recommended  for  an

operational roll-out on European level.

2.3.4 Change detection:

In  view  of  a  potential  future  HRL  Forest  Incremental 
Update layer, the delineation of forest change/loss is based 
on  the  comparison  of  a  pre- and  post-change  tree  cover 
mask (map-to-map change approach with subsequent MMU 
filtering,  followed  by  a  NDVI  plausibility  analysis  of 
detected  changes. The  Incremental  Update  layer  resulting 
thereof, hereinafter explicitly named as Tree Cover Change

(TCC),  compares  the  pre- and  post-change  mask  (TCM 
2017 and TCM  2018)  to  detect  areas  of change  with  a 
minimum mapping unit of 1 ha. Due to the very short time 
interval  of  mostly  <  1  year  between  the  two  masks, this 
layer  concentrates  on  negative  changes  (loss)  only.  The 
methodology  incorporates both,  Sentinel-1  and  Sentinel-2 
data and provides more flexibility in areas of frequent cloud 
cover. This  combination of a  map-to-map comparison and 
change indicators derived from Sentinel-2 time series (e.g., 
minimum NDVI differences) of both years provides a more 
robust  change  detection than  a  common  map-to-map 
change  approach. The  approach  has  been also applied

(slightly modified) to the grassland change.  

    

 

 

 

  

 

 

 

 

 

 

 

   

 

 

  

  

 

  

2.3.5 Validation and benchmarking:

A  statistical  validation  is  carried  out  on  the  basis  of  a 
stratified systematic sampling approach with area-weighted 
accuracy  calculation. Unequal  sampling  intensity  resulting 
from  the  stratified  systematic  sampling  approach  is 
accounted  for  by  applying  a weighting factor  to  each 
sample  unit  based  on  the  ratio  between  the  number  of 
samples  and  the  size  of  the  stratum  considered.  The 
weighing  factor  is  inversely  proportional  to  the  inclusion 
probability (i.e., the probability that a pixel will be included 
in  the  sample)  of  samples  from  a  given  stratum.  Within  a 
geographic stratum, the inclusion probabilities of all sample 
units are equal. To combine sample data over several strata, 
a  weighted  estimator  of  the  error  matrix  is  required  to 
account  for  the  different inclusion  probabilities  among 
strata. The estimation weight is the inverse of each sample 
unit´s  inclusion probability,  and the  proportion  of  area  for 
each  cell  of  the  error  matrix  is  estimated.  Else,  true  map 
accuracies  might  result  over  or  under  estimated.  Overall 
accuracy  and  class  specific  accuracies  (user  and  producer 
accuracy)  are  computed  for  all  thematic  classes  from  the 
weighted  sampling  probability-corrected  confusion  matrix 
Ci,j (for points classified into class i and validated in class 
j),  and 95%  confidence  intervals  are  calculated  for  each 
accuracy. From these, the F1 score statistic is computed per 
class for  the  status  layers and  change  layers, as  the 
harmonic mean between precision (i.e., User accuracy) and 
recall (i.e., producer accuracy), where an F1 score reaches 
its best value at 1 (perfect precision and recall) and worst at 
0. In  case  of  the  TCD,  the  regression  goodness-of-fit 
statistics are computed (i,e, i,e, Mean Absolute Error MAE, 
Root Mean  Square  Error  RMSE and  the  coefficient  of

2dtermination R ). The layers are also assessed qualitatively

by visual inspection using VHR data.

3. RESULTS AND DISCUSSION

The  overall  thematic  accuracies  for  all  Grassland,  Forest, 
and Arable Land layer prototype implementations produced 
so  far  are  promising,  ranging  from  77-98%.  The lessons- 
learned  from  the  first  temporal  feature  descriptors 
extraction and selection tests, together with the added value 
of  the  combined  use  of  both  optical  and  radar  data,  lead

now to refined workflows and results.

3.1 Forest products

To  derive  the 2018 TCM  and  DLT,  in  total,  234  features 
were available to feed the machine learning algorithm: 182 
features  for  the  Sentinel-2  indices  and  bands,  and  52 
features from the Sentinel-1 single bands and indices. SAR 
temporal  features derived  from  the  VH  polarisation  (e.g. 
VH_p025, VH_p010) turned out to have a high importance 
in  the  tree  cover  detection  followed  by  features  derived 
from  the  Sentinel-2  bands  B02  and  B03  as  well  as  NDVI 
and NDWI features. With respect to the DLT classification, 
SAR  features  show  no benefit  for  the  leaf  type 
discrimination. Here, band-specific features from Sentinel- 
2  dominate  clearly  over  all  other  derived  features.  Worth 
mentioning  is  the  dominance  of  features  derived  from  the 
SWIR  bands (B11,  B12). A  significant  influence  of  the 
feature  selection  method  on  the  overall  accuracy  figures

(retrieved by LUCAS 2018 points) could not be observed.
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Increasing the spring time window (15.03-15.06) to the 

extent of the whole growing season period (15.03-15.09) is 

drastically increasing the data volume and processing time 

(and logically also the production costs) but has a positive 

effect on the achieved overall accuracy of the TCM, which 

is in the magnitude of 2 to 4 percentage points. This is 

mainly due to the increased data availability and a 

potentially higher rate of data acquisitions without or with 

less cloud cover. However, the strongest influence on 

classification accuracies can be observed by the quality of 

the samples. A subsequently performed validation with 800 

LUCAS 2018 points confirmed very high overall 

accuracies for both, the TCM as well as the DLT 

classification (98% OA and 93% OA respectively in the 

Central demo site).  

In order to generate a comparable and future-oriented data 

basis for the incremental update, the same feature and 

sample sets have been used to derive improved TCMs and 

DLT layer for the reference year 2017. Then, the 

incremental update layer TCC 2017-2018 has been 

produced following a map-to-map change approach, 

leading to an improved geometric and thematic accuracy of 

the derived changes (forest loss).  

The continuous Tree Cover Density product 2018 (Figure 

2) adds unprecedented detail to the binary Tree Cover 

Mask. For the TCD, the mean and median features from the 

spectral Sentinel-2 bands provide promising results. Both 

classification approaches tested in the forest status layers 

rendered similar results (best-of-scene and mono-temporal), 

although in the end the multi-temporal classification using 

band-specific temporal features for the defined time 

windows was selected. The goodness-of-fit statistics for the 

linear regression model of the TCD 2018 obtained are: 7.65 

MAE, 8.14 RMSE, and 0.93 R2.   

 

Figure 2. Multi-temporal S-2 feature stack (upper figure) and

the derived TCD 2018  

  

  

 

  

 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

   

 

3.2  Grassland products

With the availability of dense optical and SAR time series 
from  Sentinel-1  and  Sentinel-2,  grassland  mapping  can 
profit  from  the  increased  information  content  provided  by 
temporal  measurements  of  the  reflectance  of  grassland 
areas  over  the  year.  Based  on  reinterpreted  LUCAS 
samples  a  supervised  classification  approach  using  the 
Random Forest classifier has been successfully applied.

The  feature  selection  tests  automatically  executed  by  the 
Random  Classifier  have  shown  that,  in  the  Central  demo 
site, best  performing input  indices  are NDVI, NDWI, 
IRECI and  Brightness.  Regarding  SAR  data  generally  the 
following  annual  coefficients  have  shown  the  best 
performance: VH polarisation, the VV polarisation and the 
NDVVVH Ratio.

The later winter to spring (January to June) time window in 
the  end did  not  bring  an  added value  for  classification. In 
different  biogeographical  regions  the  short  time  window 
can  differ (which  is  also  the  case  in  the  forest  and 
agriculture products). To better match the local conditions, 
it is important to define a time window where grassland and 
cropland (class generating most misclassifications) are best 
separable (e.g., define the period when grassland is already 
greening whilst cropland is not). In Mediterranean regions, 
for  instance,  this  window  may  be  shifted  more  towards 
winter (e.g. Dec-Mar).

After the visual interpretation of all classifications, it can be 
observed  that  using  optical  data  only  more  confusion 
between grasslands and cropland are present, whereas using 
SAR  data  only  more  misclassifications  between  grassland 
and roads are present. The combined approach shows more 
homogenous  patches  than  using  SAR  data  only, 
diminishing  confusion  with  other  classes  suchlike tree 
cover  and plantations,  that  otherwise  cannot  be  excluded 
when using only S-2. This is relevant as in fact the overall 
accuracy  values  obtained  are  misleading  while  the  visual 
inspection  demonstrates  the  combined  approach  performs 
best. A  main  requirement  however  is  the  precise  pre- 
processing of the dense time series including a topographic 
normalisation  for  hilly  to  mountainous  terrain.  For  SAR 
time-series  the  application  of  multi-temporal  filtering  on 
gamma naught corrected imagery is recommended

For  the  Central  site  Grassland  mask  2018,  the  overall 
accuracy  is  96.6%  (0.93%  Confidence  Interval),  producer 
accuracy is 91.0% and user accuracy 90.5%.

Regarding  the  change  layers,  as only  the  geometrical 
change  areas  are  shown  and  no  further  exclusion  of  non- 
change  by  the  usage  of  e.g.  NDVI minimum or  other 
change indicators is applied to the 2017-2015 change layer, 
there  are  many  more changes  visible  compared  to  the 
2017/18  change layer.  Most  of  them in  truth  are  no  real 
change,  instead  resulting  from weaknesses  in  the  2015 
layer.

In areas of higher elevation and where snow cover is found 
for long periods of the year in the South of the demo site, 
the classification is not that accurate for both years (2015 & 
2018)  which in  turn leads  to  greater  differences  and
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therefore change detection which is basically no change. 

An elevation threshold was applied to reduce such errors, 

which significantly improved the respective grassland 

masks in the most problematic regions. Filtering 

significantly contributes to keep meaningful changes while 

removing small areas, likely classification errors. All areas 

below 1 ha (25 pixels) were filtered.   

The figure below shows a detail of the grassland intensity 

2018 layer, consistent as derived from the areas defined as 

grassland within the grassland status layer, and based on a 

simple although effective NDVI time series analysis, with a 

good trade-off between computer resources and 

preprocessing timing (i.e., impact in updates production 

timeliness) and achieved thematic accuracy. The datasets 

used for validation for the use intensity grassland product 

are the IACS/LPIS, generating an overall accuracy of 

81.5%. 

 

  

 

 

 

  

 

 

 

Figure 3. Grassland intensity layer 2018 (upper figure)

compared to Bing Maps Aerial of the same region

The  current  temporal  density  of  optical  time-series  from 
Sentinel-2  for  the  years  2017  and  2016  restricted  the 
applicability  of  time  series  methods,  as  reflectance 
trajectories  depend  on  the  grassland  dynamics  over  the 
vegetation  period  such  as  e.g.  mowing events. The  high 
cloud coverage in 2018 in central Europe limits the method 
of  comparing  NDVIs  of  consecutive  acquisition  dates:

mowing  events  may  not be  detected  in  areas  covered  by 
clouds for long periods. Filtering improved look and feel by 
reducing  noise.  For  the  use  intensity  layer, a  filter  of  4 
pixels  in  size  was  applied.  All  areas  within  the  grassland 
mask  where  filtered,  so  that  there are  no intensity  classes 
smaller  than  5  pixels  in  the  end. Within  small  grassland

 

 

 

 

 

  

 

 

 

  

  

 

 

 

 

patches,  it  might  happen  that  e.g.  three pixels  are 
categorized  as extensive  and  two are  intensive.  In  such 
cases, the  filter  would  cause  the  class  values  to  jump 
between classes with each filter iteration without getting a 
patch of five unique values. If so, the patch was filtered in 
favour of intensive use because most of the areas are used

intensively in the demo site.

3.3 Agriculture Products

The  time  interval  algorithms  are  strongly  affected  by 
undetected clouds/cloud shadows as well as confusion with 
bright surfaces in the cloud mask. These algorithms present 
many artefacts and data gaps due to the short compositing 
period  and  the  interval  between  images  available  in  the 
time  series. To  avoid  potential  artefacts  derived  from  the 
presence  of  unmasked  cloud  cover  pixels,  time  periods 
were selected to guarantee a sufficient number of imagery 
to minimize the distortion that extreme  values  would pose 
to the statistics.

Concerning  Agriculture  classification  an  initial  set  of 
criteria  to  evaluate  the  best  compositing  method  for  crop 
recognition  (cropland-CL,  crop  type-CT)  and  crop  growth 
monitoring  (CG)  have  been  selected.  The  benchmark  is 
performed  on  Central  (Germany)  and  Belgium  site  and 
show promising accuracies and high potential of time series 
and derived temporal features for crop mask extraction and 
crop  type  monitoring. As  is  not  uncommon  in  agriculture 
products,  the  local  conditions  (e.g.,  climate,  soil,  altitude, 
topography, crop phenology) influencing this specific land 
cover makes it a challenge to target a HRL at a continental 
scale.  In  our  case,  stratification  was  applied  for  a  better 
adaptation  to  the  particularities  of  the  different  subregions 
within the Central demo site.

In Central tests, LUCAS data from 2018 constitute the main 
part  of  the  sample  base  and  additional  samples  for  forest, 
grassland,  water  and  urban  areas  have  been  taken  from 
HRL2015.  The  availability  and  representation of  crop  and 
specifically  crop  types  samples  is  essential  for  the  model 
training  and  significantly  impacts  the  performance  and 
quality. Results point out to the fact that the added value of 
using  S-1  data  is  dependent  on  density  of  optical  time 
series: e.g., due to the positive data situation in 2018 – high 
number of optical and cloud free imagery – the additional 
benefit of using S1 is low. This fact is also represented in 
the accuracy  figures  for the experiments  with S-1 and S-2 
only. The  combined  S-1  and  S-2  data  crop  mask  2018 
stratified classification  (i.e.,  accuracy  figures  computed 
separately  for  each  stratum)  provides  OA  in  the  range of 
98-99%  and F1Score ranges  between 98-99%  for  non 
cropland  and  89-91%  for  cropland  (user  and  producer 
accuracies  respectively  97-98%  and  98-99%  for  non- 
cropland and 90-94% and 88-90% for cropland).  
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  Figure 4. Crop mask 2018 (detail) together with the Grassland
mask 2018  

Different methods are applied for crop type classification 

where S-2 data sets and integration of S-1 and S-2 data are 

used for calculating input features. Unlike the other land 

covers addressed, in the agriculture domain, the temporal 

features contribution differs between the crop mask, crop 

types map and for each, within the strata. In the Central 

demo site, it could be stated that in the crop mask around 

2/3 selected features come from S-2 (from B8 and B12, 

also minimum, mean, maximum, standard deviation, and 

percentiles, NDVI, Brightness, NDWI), and 1/3 from S-1 

(minimum, mean, maximum, standard deviation). 

Analogously, in the crop mask the same features derived 

from S2 are selected and in this case the S1 contribution is 

of significantly minor relevance. It is worth mentioning that 

the used data are subjected to pre and post processing steps. 

The LPIS datasets, are used as reference data. The Random 

Forest (RF) classifier is selected due to the efficiency on 

large data bases, the ability of using thousands of input 

variables without deletion, estimation of the relative 

importance of the variables and the relative robustness to 

the outliers. Training and validation samples are derived 

from LPIS datasets. Specifically, the Crop Type map was 

calculated basing on LPIS data from Baden Württemberg 

and Austria. The majority filter is applied for 

harmonization of the results. 

 

    

 

Figure 5. Crop types map 2018 (detail)

A  newly  arranged  Crop  Type class  aggregation  which  is 
suitable  to  be  used  in  a  Pan-European  context  and  at  the 
same  time  adaptable  to  regional  conditions  to a  certain 
extent has  been  used  for  the  classification  approach.  The

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

  

Crop  Type  Legend  is  oriented  towards  the  LUCAS  class 
structure  (aiming  at  the  potential  of  LUCAS  data  being  a 
source of information available in most EEA countries). It 
comprises the most common crop types for the crop groups 
of  winter  and  summer  cereals,  vegetables,  dry  pulses  and 
legumes,  industrial  crops,  root/tuber  crops,  fodder  crops 
and  permanent  crops. The  legend  comprised  initially 
nineteen classes although in the end class aggregation was 
applied due to misrepresentation of minority classes in the 
samples  and  its  effects  on  accuracy. The  results  strongly 
suggest that a sufficient number of high quality samples has 
a strong impact on the accuracy  of the classification, both 
for the crop mask as well as for the crop type map (in the 
latter,  only  LPIS/IACS  provide  suitable  attributes).  Crop 
types which are not well represented in the sample base will 
lead to lower accuracies.

The  combined  S-1  and  S-2  data  classification  (using  the 
same technical workflow as for the Crop Mask) provides an 
OA  of  86%  and  F1Score ranging  from 69%  for  lentils  to 
98% for rape seed (differing for each of the crop types). All 
in  all,  five  classes  present  a  F1Score  >  90%  and  eight 
present a F1Score > 80%.

In case of the prototype for the Central demonstration site 
further  research  is  needed  to  optimize  the  validation 
methods both for the crop mask and the crop types, due to 
inconsistencies between the different ancillary data such as 
LPIS data of Baden Württemberg and those of  Austria, in 
terms  of  naming  and  general  class  structure.  Furthermore, 
improvements towards an enhanced separability of the crop 
types are being addressed. The provision of the LPIS data 
of  Bavaria  might  support  this  in  the  Central demo  site. 
Besides  actions related  to  extending  the  sample  base,  one 
promising approach that has outperformed the look and feel 
of  the  crop  mask is  the  stratification  basing  on 
biogeographic criteria. Still, the differentiation between the 
various  grassland  types,  between  managed  grassland  and 
agrarian  grass  types  remains  an  issue  and  should  be more 
deeply explored. More than with any other LC, the quality 
of  agricultural  products  highly  depends  on  additional 
information sources to define the suitable workflow.

Notwithstanding,  the  consistency  between  the  HRL 
prototypes for Grassland, Crop Mask and Tree Cover Mask 
is satisfactory.

Besides  quantitative  statistical  accuracy  assessments  and 
other quality metrics, a rigorous benchmarking procedure is 
applied  to  assess  the  prototypes’  overall  operational 
readiness  and  technical  maturity  for  integration  into the 
CLMS  overall  setup  and  architecture.  This  comprises 
assessing,  amongst  others,  automation  levels,  portfolio 
complementarity,  or  the  state  of the  art/innovation degree. 
Moreover,  an  integration  plan  for  the  most  suitable

prototypes will be set up.

4. CONCLUSIONS

Innovative  methods  for  automated  high  volume  data 
processing  of  Sentinel  (optical  and  SAR)  time  series  are 
being  developed in  the  fields  of  Sentinel-1/-2  time  series 
integration, time  series  pre-processing  methods, thematic 
classification  from  time series  analysis, change  detection
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from time series analysis and incremental update 

methodologies for the Copernicus Land High Resolution 

Layers (HRLs). 

With regards to accuracy, in addition to the time windows 

selection for time features computation, sampling is key. In 

ECoLaSS, a multi-stage sampling approach has been 

applied: automatic reference sampling based on a sampling 

layer generated from the HRLs 2015, outlier detection with 

visual/statistical validation of the samples and split of the 

sample dataset into training and validation dataset, initial 

classification and re-sampling based on an analysis of 

omission and commission errors with subsequent iteration 

loops. 

 

Iterative calculation over a time stack allows for 

implementing suitable dynamic change detection systems, 

which require to be frequently updated, such as it would be 

the case for the existing HRL forest and grassland services 

as well as for a potential future arable land service. The 

change layer products quality is totally relying on the 

quality of the respective status layers. The probability 

layers for each of the status products from which the 

change is assessed by indicating the pixel level accuracy 

confidence and the expert knowledge are relevant in a 

suitable production workflow for a comprehensive change 

detection.  

The improvement endeavours of existing products comprise 

assessing prototypes of enhanced tree cover, leaf types, tree 

cover density within, and tree cover change layers as yearly 

updates, as well as better-quality permanent grassland 

classification and use categorisation together with a yearly 

change identification approach. The production of an 

Incremental Update Layer for the Forest HRL and its roll-

out on European level has been rated as feasible. 

Entirely novel products are targeted, such as a possible 

future HRL on arable land, for which a prototype is 

presented, targeting a pan-European crop mask of high 

precision and a representative, robust classification of crop 

types.  

The prototype of the new agriculture service shows that the 

definition of a pan-European crop-types legend is not 

straightforward, as crop phenology follows rather regional 

and local scale patterns and not all classes are present at the 

continental scale. In addition, the availability of a sufficient 

number of high quality samples is essential to obtain 

reliable crop masks and crop types products within. The 

demo site in Central Europe proves that a locally-adapted 

stratification accounting for biogeographic heterogeneity 

(i.e., climate, soil, altitude) highly reduced 

 

   

 

 

 

 

  

  

 

 

 

 

 

misclassifications for both agricultural products.

In  ECoLaSS,  these  and  all  other  candidate  prototypes  are 
being produced with a view to a potential pan-European for 
service  roll-out.  For  the  most  promising  prototypes  a 
detailed  integration  plan  into  the  Copernicus  service

architecture is being developed.
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