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ABSTRACT:

Automatic city modeling from satellite imagery is a popular yet challenging topic in remote sensing, driven by numerous
applications such as telecommunications, defence and urban mamagement. In this paper, we present an automated chain for
large-scale 3D reconstruction of urban scenes with a Level of Detail 1 from satellite images. The proposed framework relies on
two key ingredient. First, from a stereo pair of images, we estimate a digital terrain model and a digital height model, by using a
novel set of feature descriptors based on multiscale morphological analysis. Second, inspired by recent works in machine learning,
we extract in an automatic way contour polygons of buildings, by adopting a fully convolutional network U-Net followed by a
polygonization of the predicted mask of buildings. We demonstrate the potential of our chain by reconstructing in an automated
way different areas of the world.

1. INTRODUCTION

Automatic 3D reconstruction of urban scenes from satellite
imagery is a popular yet challenging topic in remote
sensing (Bittner et al., 2017, G. Facciolo, 2017). The
required accuracy in industrial applications is very high
and ever-increasing, which is critical for several fields such
as: telecommunications, urban planning, defense, etc. To
reconstruct a 3D city model from stereo pairs of satellite
images, semi-automatic strategies are typically applied, which
are based either on procedural modeling (Vanegas et al., 2010),
or on the use of both image processing and machine learning
methods to infer scene geometries together with semantics
(i.e. distinguish roads, buildings etc.) (Tripodi et al., 2018).
In both cases, human interaction still plays a key role, in
particular for the rooftop buildings extraction regarding the
existing challenges such as occlusion, complex roof-structure,
big diversity, small dense buildings, etc. This increases the cost
of 3D city models.

In this paper, we propose an end-to-end automated chain
for large-scale 3D reconstruction of urban scenes with a
Level of Detail 1 (LOD1) of the CityGML formalism,
i.e. where buildings are represented as piecewise planar
objects with flat roofs and vertical facades (Groger , Plumer,
2012). The proposed chain is inspired by the most recent
computer vision and deep learning techniques, and features
two principal innovations: 1) We have developed a Digital
Terrain Model (DTM) generation method, which uses a novel
set of feature descriptors based on multiscale morphological
analysis to extract reliable bare-terrain elevations from Digital
Surface Models (DSMs). 2) We have developed an algorithm
for automatic extraction of contour polygons of buildings.
Following the outcomes of the building dense labeling
challenge (Huang et al., 2018), we have adopted a U-Net
convolutional neural network (Ronneberger et al., 2015) for
a building segmentation task. Furthermore, a polygonization
algorithm is designed, which processes a mask of buildings to
output an ensemble of polygons, where each polygon delineates
a building contour.

2. RELATED WORKS

A comprehensive overview of methods for building 3D urban
models can be found in the article of Musialski et al. (Musialski
et al., 2012). Aerial acquisitions with Lidar scanning (Verdie
et al., 2015) or multi-view optical imagery (Hane et al., 2017)
has been intensively used so far to reconstruct 3D models on
large-scale urban scenes. Because of high acquisition costs
and authorization constraints, aerial acquisitions are, however,
available only for a limited number of areas in the world.
Satellite optical images constitute an excellent alternative to
serve as an input data for 3D urban modeling, considering
their high-frequency and lower-cost acquisition, as well as
continuous worldwide coverage. However, as described in (Poli
, Caravaggi, 2013), until very recently the quality of satellite
imagery coupled with available methodologies did not allow
to produce 3D city models at a high spatial resolution in an
automatic way.

A few recent research works have proposed automated
methodologies for urban scene reconstruction in LOD 1 from
stereo pairs of high-resolution satellite images. The method
of (Duan , Lafarge, 2016) has used a semi-global matching
technique (Hirschmuller, 2008) to find correspondences in a
stereo pair of epipolar images, followed by a joint classification
using image radiometry coupled with estimated elevation
information to retrieve 3D city models. Even though this
method offered a solution for 3D urban reconstruction at a large
scale, small geometries could not be captured precisely. Wang
and Frahm developed an approach for 3D reconstruction from
multi-view stereo satellite images (Wang , Frahm, 2017). They
apply a Scale Invariant Feature Transform (SIFT) based (Lowe,
2004) approach to compute fast but reliable 2D feature matches
between image pairs, then use an edge-aware interpolation
of sparse feature matches followed by bilateral smoothing to
obtain dense correspondences, further reconstructed into 3D
point clouds. This method has been specifically designed for
multi-view stereo data, and gives poor results when applying on
one stereo pair only. Furthermore, the reconstructed point cloud
does not contain any semantic information, which is essential
nowadays for many real-life uses of 3D city models.
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Figure 1. Proposed automated chain for large-scale 3D reconstruction in LOD1.

To reconstruct semantic information, deep learning, in
particular convolutional neural networks (CNNs) have been
developed at a fast pace and have shown excellent performance
for image interpretation. Lately, end-to-end CNN-based
architectures have been designed to accurately estimate
semantic labels of every pixel for satellite and aerial images,
i.e. assign each pixel to one of the classes of interest, such as
building, tree, car, etc (Volpi , Tuia, 2017, Zhu et al., 2017).
Thanks to their capability to jointly learn to extract expressive
high-level contextual features and conduct the categorization,
CNNs have proven being able to generalize to different areas
of the earth and to take into account the important intra-class
variability encountered over large geographic areas (Huang et
al., 2018). As demonstrated in (Huang et al., 2018), U-Net
and SegNet are among the most successful CNN architectures
for semantic labeling. These algorithms estimate for every
pixel a probability to belong to a class of interest. By
thresholding these probabilities, a classification mask can be
computed, for example a building/non-building mask. To
integrate this semantic information within a 3D urban model,
the obtained raster mask must be polygonized, so that each
polygon corresponds to a building contour. While the
common polygonization methods such as the algorithm of
Douglas-Peucker (Douglas , Peucker, 1973) are very sensitive
to the quality of the input data, mesh-based approximation
approaches have been proposed (Tasar et al., 2018), which
are more robust but exhibit a high computational complexity.
Very recently, a few attempts have been made to design a
chain, which learns in an end-to-end fashion to predict building
polygons from input aerial images. However, either these
models are limited to regress very simple shapes (Girard ,
Tarabalka, 2018), or results are not accurate enough to be used
in real-life applications (Marcos et al., 2018). Thus, the design
of the algorithm which would allow to reconstruct contour
polygons of buildings with high speed and precision is still an
open research topic.

3. PROPOSED CHAIN

The scheme of our automated chain for large-scale 3D
reconstruction of urban scenes in LOD1 is illustrated in
Figure 1. At the input of the method, a stereo pair of
satellite images with the data associated as RPC (Rational
Polynomial Coefficients) models (Guo , Xiuxiao, 2006) is
given. The developed chain can manage various types of

optical satellite images, with different spatial resolutions, such
as WorldView, Pléiades, GeoEye, Spot, etc. Throughout this
article, we illustrate the workflow results by applying it on
satellite images with a spatial resolution of 50 cm/pixel, this
resolution being sufficient for extracting in an accurate way
footprints of buildings. The outcome of the proposed chain
presented here is a 3D model in LOD1 represented by a Digital
Terrain Model (DTM) and a set of building polygons with the
associated height.

This proposed chain consists of two main parts presented in the
following sub-sections, respectively:

• Height computation, which comprises estimation of a
Digital Surface Model (DSM) and a DTM.

• Semantic labeling, comprising the extraction and
polygonization of building contours.

The 3D model is then computed by combining height and
semantic information, as described in Section 3.3. In the
final part of the workflow, we texture the obtained 3D model;
however, the texturing procedure is out of scope of this paper.

3.1 Height computation

From the input stereo pairs of images, height information can be
efficiently extracted by using an epipolar geometry to estimate
a disparity map, followed by a DSM computation. We propose
to apply the following steps for this purpose:

1. Adjustment of the RPC model.

2. Construction of epipolar images.

3. Estimation of a disparity map.

4. DSM computation.

5. Generation of a DTM from a DSM.

6. Computation of a Digital Height Model (DHM), which can
be obtained by substracting a DTM from a DSM to get the
height of the objects above the ground.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-243-2019 | © Authors 2019. CC BY 4.0 License.

 
244



(a) Left image (b) Right image

Figure 2. Closeups of two epipolar images of Nairobi.

3.1.1 Adjustment of the RPC model. RPC camera models
encode both the intristic and extrinsic calibrations (Guo ,
Xiuxiao, 2006). As the RPC models provided by the vendors
of satellite images are not accurate enough to georeference an
image, the first step of our chain consists in adjusting an RPC
model using Ground Control Points (GCPs). For this purpose,
Image Tie Points (ITPs) are detected between the pair of images
and a reference. The absolute positioning of salient features on
the ground (ex., crossroads) can be measured and served as a
reference. If an orthoimage over the same area of interest is
available, this image can be used as a reference, and ITPs can
be computed by using any feature detection algorithm, such as
AKAZE, ORB, etc (Tareen , Saleem, 2018). The detected ITPs
can be further filtered to keep only the points on the ground, by
using one of the following approaches:

1. By computing locally for each ITP an epipolar image and
a disparity map, as described in Sections 3.1.2 and 3.1.3,
respectively. The ground points are then estimated from
the disparity map and a satellite angle of view.

2. By computing a mask of buildings and trees using deep
learning labeling, as detailed in Section 3.2.

Once the GCPs are determined, the RPC model is adjusted
by optimizing a polynomial model of order 3, followed by
updating RPC coefficients (we refer the reader to (Hartley ,
Zisserman, 2003) for more details).

3.1.2 Epipolar image reprojection. Epipolar images are
stereo pairs in which the left and right images are oriented
in such a way that common feature points have the same
y-coordinates on both images. This allows to match a pair of
images in a faster and more accurate fashion.

To compute epipolar images, ITPs are extracted on the stereo
pair of images, by applying one of feature detection methods as
described in Section 3.1.1. By using these ITPs and optimizing
a polynomial model of order 3, we adjust the RPC model to
build two epipolar images in such a way so that the collected
ITPs are positioned on the same line. The use of the polynomial
of the third order allows us to take into account and model a
terrain deformation in an accurate way. Figure 2 illustrates an
example of two epipolar images (750 × 750 closeups of the
full processed tiles) reprojected from a stereo pair of Pléiades
images acquired over the city of Nairobi, Kenya. In the
following figures, we will demonstrate the experimental results
on the same Nairobi dataset.

(a) Standard SGM on a panchromatic band

(b) Proposed algorithm

(c) Standard SGM on a panchromatic band

(d) Proposed algorithm

Figure 3. Closeups of DSMs, obtained by applying the
standard SGM (Hirschmuller, 2008) and the proposed

algorithm.
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3.1.3 Estimation of a disparity map and DSM
computation. From two epipolar images, a disparity map
is generated using a method based on semi global matching
(SGM) algorithm (Hirschmuller, 2008). The SGM technique
has proven its efficiency, however it fails under the certain
conditions, for example when computing a disparity map for
textureless regions. We have designed an algorithm which uses
SGM at its core, but includes pre- and postprocessing steps,
which make the workflow more robust and thus yield better
disparity maps. These improvements include:

1. In addition to an epipolar image pair, we also give at the
input the initial disparity map, which we generate by using
the elevation data at the best available resolution, such as
SRTM1. This allows to reduce the search range.

2. Disparity maps are computed for each spectral band of the
images, and are then fused into one disparity map. This
ensemble approach allows to fill missing values, remove
artefacts and increase an elevation accuracy.

3. Postfiltering is applied to align the edges in the source
satellite image and the disparity map.

The DSM is computed from the disparity map and RPC
model (Hartley , Zisserman, 2003). Figure 3 shows closeups
of DSMs, where the improvements obtained by our algorithm
are illustrated when compared to the standard SGM method.
While the SGM leaves a lot of non informed values (black
pixels in Figure 3a), our method yields a more uniform DSM,
where each pixel has an informative value (see Figure 3b).
Furthermore, our algorithm provides more accurate contours
(see a comparison on Figures 3c and 3d).

3.1.4 Generation of a DTM from a DSM. In Section 3.1.3,
we discussed about the generation of DSMs which include
various geographical information presented in the image
scene, such as ground, trees, buildings, mountains, etc. In
particular, buildings and trees are among the most interesting
above-ground semantic classes for 3D modeling of urban
scenes. The heights of these objects can be obtained by
subtracting a DTM from a DSM, where the DTM represents
the bare-earth elevation. We have developed a new DTM
generation algorithm (Duan et al., 2019) that consists of two
steps: classification and surface interpolation.

The proposed method applies a novel set of feature descriptors
to classify all pixels in the DSM into four classes: flat-ground,
above-ground-objects, slopes and other. The feature descriptors
are computed by applying a multi-scale morphological
profile analysis, and classifying each pixel by observing the
changes between adjacent profiles. Our approach is inspired
by (Pesaresi , Benediktsson, 2001), but adapted to elevation
maps by using multiscale erosion and opening operations
(instead of opening and closing, as in (Pesaresi , Benediktsson,
2001)). The proposed classification scheme extracts reliable
bare-terrain pixels, is robust to noise from the DSM and adapts
well to local reliefs in both flat and highly mountainous areas.

From the estimated bare-terrain elevations, we reconstruct the
final DTM by applying a least-squares smooth embedding
approach to interpolate the surface. We adapted the
spectral affine-kernel embedding (SAKE) algorithm proposed
in (Budninskiy et al., 2017), and developed its simpler

1https://www2.jpl.nasa.gov/srtm/index.html

expression that we call LAKE, as the Spectral solve in the
original approach is replaced by a faster Least-squared solve
in our specific application. As it turns out, this approach is
particularly appropriate to construct a DTM, as a bare terrain
can be thought of as a smooth two-dimensional embedding in
3D of a surface given as a few scattered elevations. The SAKE
method does not suffer form typical oscillations of interpolation
methods based on differential equations. Our experiments run
on worldwide scenarios show the potential of our algorithm to
produce reliable and accurate large-scale DTMs from a large
variety of DSMs of various qualities and spatial resolutions
from satellite data. Figure 4 shows an example of the DTM
generated by our method.

(a) DSM (b) DTM

Figure 4. Example of the generated DTM from a DSM.

3.2 Building classification and polygonization

In the previous section, we have explained how our chain
estimates the height information from a stereo pair of satellite
images. In this section, we describe our methodology aiming
at extracting contour polygons of buildings. Our algorithm
comprises two steps:

1. Semantic labeling.

2. Polygonization of building contours.

The first step aims at assigning each pixel of the satellite
image to a building or a no/building class. In the most recent
works, a U-Net convolutional neural network architecture
has exhibited the highest performance; in particular, it has
shown the best results in the challenge of building contour
segmentation from aerial images (Huang et al., 2018). The

Figure 5. U-Net architecture described in (Huang et al.,
2018) and used in our chain.
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(a) Classification

(b) Polygonization

Figure 6. Classification and polygonization of buildings.

U-Net architecture (Ronneberger et al., 2015) is built upon
the fully convolutional network and is modified by adding
skip connections between the downsampling path and the
upsampling path, which aim at preserving the local information
and thus better outlining contours of objects.

Inspired by the winning method of the Inria aerial image
labeling benchmark (Huang et al., 2018), we have adopted the
original U-Net architecture from (Ronneberger et al., 2015),
with a single major modification: we used half as many filters at
each layer (the modified architecture is illustrated in Figure 5).
For example, 32 filters are used instead of 64 in the first-level
convolutional layers, 64 filters instead of 128 filters in the
second-level layers, etc. As explained in (Huang et al., 2018),
the reduced number of filters in U-Net model decreases the risk
of overfitting to the training data.

The main bottleneck of applying deep learning for accurate
labeling tasks is the availability of training data set, comprising
satellite images and the corresponding masks delineating
objects of the thematic classes we are interested in. Providing
geodata for more than 20 years, we have a huge quantity of
ground-truth data. Using these data allowed us to train a
generic model able to predict good classification of the building
rooftops for the majority of use cases. It has been tested on
thousands of square kilometers, giving very good and useful
results in an industrial context.

Figure 6a illustrates an example of building labeling results.

U-Net provides as output a classification mask in a raster
format; however, a vector of each building is asked by
our customers. As discussed in Section 2, polygonization
of raster masks is not a trivial problem to solve. For
example, building polygons have several constraints, including
the fact that in the majority of cases building angles are
right. We have developed an algorithm for polygonization of
building contours, which consists of two steps: First, a naive
polygonization of the mask of every building is performed,
using the GDAL2 tool gdal polygonize. Then, we perform a
polygon simplification, by searching for a compressed polygon
with the best quality/complexity ratio, i.e. with the minimum
number of vertices within a specified tolerance of en error.
We have adapted a method of (Gribov , Bodansky, 2004)
to our task, where we reinforced the right angle constraint.
Figure 6b depicts the results of our polygonization algorithm,
where it can be seen that the shapes of buildings are accurately
preserved. The designed polygonization technique works very
well because the U-Net succeeds in yielding accurate building
masks. In the case of the moderate prediction results, a more
sophisticated algorithm similar to (Tasar et al., 2018) would be
needed to reconstruct contours of buildings.

Figure 7. Example of 3D reconstruction in LOD1.

3.3 3D Reconstruction

In the previous sections, we have described our workflow for 
the extraction of height information and building footprints. To 
reconstruct 3D model in LOD1, we have to assign a height for 
each building. For this purpose, we first compute a DHM, by 
subtracting a DTM from a DSM, as mentioned in Section 3.1.4. 
Then, for each building polygon we collect all pixel values of 
a DHM included in the considered polygon. We compute the 
median of this collected set of values, and assign the resulting 
median value as the height of the corresponding building; this 
allows to remove artefacts presented in the DHM.

As a result, we have for each building its footprint and its 
relative height with respect to the DTM. The DTM also allows 
us to georeference in an accurate way each building. Figure 7 
shows an example of the 3D urban reconstruction by combining 
the obtained footprints and corresponding heights.

2https://www.gdal.org
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4. EXPERIMENTS

We have illustrated an example of the application of our
automated chain on the stereo pair of Pléiades images over
Nairobi throughout the paper. We have tested our chain in
production on more than thirty cities over the total area of
thousands of square kilometers, for different kinds of urban
area: residential, industrial and dense. In this section, we
complete the validation of our chain. We first describe the
dataset used for training the U-Net network. We then compare
our reconstruction results with the ground-truth and with other
state-of-the-art automatic methods.

4.1 Dataset

To train a neural network model which would be generic to
work well on new unseen cities, the training data must be large
enough and contain a big variety of representative samples.
For this purpose, we have composed a training dataset set
containing images acquired by different satellites over different
types of cities (dense, industrial, residential areas and city
centers). We have chosen the following data to cover varied
cases:

• Images have been acquired by 3 types of satellites:
Pléiades, WorldView and GeoEye. We have uniformized
the image sampling at 50 cm/pixel of spatial resolution.

• 15 cities across 5 continents are present: Sydney
(AU) , Melbourne (AU), Leibnitz (AT), Amostra (BR),
Bobo-Dioulasso (BF), Toronto (CA), Vancouver (CA),
Santiago (CL), Zagreb (HR), Seoul (KR), Ciudad (MX),
Lagos (NG), Luna (RO), New York (US), Tashkent (UZ).

• The total dataset covers around 500 km2.

These date have been manually labeled to outline building
polygons.

4.2 Experimental results

In this section, we validate the results of this chain, in particular
reconstruction of building contours, by comparing the polygons
reconstructed by our method and state-of-the-art approaches.
We have focused our evaluation on taking a closer look at a
reconstruction of building polygons, because it is the critical
point of our automated workflow.

4.2.1 Comparison with the state-of-the-art methods. We
compare the building polygons produced by our framework
with the manually-labeled ground truth, as well as with the
results of two state-of-the-art approaches:

1. Our U-net-based classification results, polygonized by
using the algorithm of Douglas-Peucker (Douglas ,
Peucker, 1973).

2. The method described in (Duan , Lafarge, 2016), see
Section 2 for a summary.

Figure 8 shows the results of these different methods using
the same test image over Nairobi as in Section 3. The
polygonization based on a Douglas-Peucker algorithm gives
an approximation of the contour too rough to be applicable
in an industrial context. In particular, polygon simplification
can deform too much the shape of buildings and the produced

polygons lack geometric regularity (right angles are not well
reconstructed). The method of (Duan , Lafarge, 2016) fails if
the estimated disparity map is not accurate. The consequence
of this are missing buildings or very imprecise contours.
Therefore, this algorithm is not optimal for use cases like
low buildings, but performs better on the city center with tall
buildings as described in (Duan , Lafarge, 2016).

Our method gives very good results: both classification and
polygonization yield coherent outputs to be used in an industrial
context. The building contours are well regularized and respect
the contours of source images in most cases. The designed
chain allows us to drastically reduce the manual correction,
which we apply at the end to provide the results with a very high
precision, as asked by our customer. The mean Intersection
Over Union score (Csurka et al., 2013) between the results
obtained by our automated framework, and the final corrected
results provided to the clients, is 94.25%, where 75.12% of the
buildings reconstructed by our chain have remained intact.

4.2.2 Qualitative analysis. In the previous section, the
developed chain has proven its efficiency to provide building
contours from a stereo pair of satellite images. In this section,
we demonstrate the robustness of our workflow. The critical
point of the chain is the capacity of our deep learning method
to handle the maximum of use cases. Figure 9 shows the results
of our framework, notably reconstructed building contours, on
different types of urban areas:

• Residential area: Small individual houses are very well
detected and small details of the building shapes are
preserved. We can also remark that swimming pools are
not confused with buildings.

• Industrial area: Large buildings are well detected, as
well as small buildings. The U-Net architecture show its
efficiency to handle different sizes of objects thanks to its
different layers.

• Very dense area: This kind of areas is very well managed
by our automated chain. Even if manually it is not easy
to see and separate each individual building, the result is
convincing enough and useful from an industrial point of
view.

The illustrated examples prove that our model generalizes well
to classify different kinds of buildings. Our model has not seen
during its training the cities used for evaluation in all figures
of this paper; it thus performs very well on new “unseen”
cities. Moreover, only a very small part of our data archive was
sufficient for training the network, confirming that the U-Net
does not need huge volumes of training data.

5. CONCLUSIONS

In this paper, we have presented our automated chain for
large-scale 3D reconstruction of city scenes in LOD1 from
stereo pairs of satellite images at very high resolution (50
cm/pixel). The developed chain consists of two main parts:
extraction of the height information (DSM and DTM) and
reconstruction of building polygons. We have described how
we extract height information in a robust way and how the deep
learning method has helped us to handle the critical point of this
chain: extraction of building contours.
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(a) Manually-labeled building contours (b) U-Net classification + Douglas–Peucker polygonization

(c) Method of (Duan , Lafarge, 2016) (d) Our method

Figure 8. Evaluation of the building polygon extraction algorithm. Comparison with the state-of-the-art.

2The proposed chain has been tested on several thousands of km 
in an industrial context and has proven its efficiency. As shown 
in the experimental section, it succeeds in providing accurate 
reconstruction results for different types of urban areas. The use 
of the deep learning method has allowed us to solve the problem 
of semantic labeling in new “unseen” cities, that the classical 
approaches could not solve with an acceptable precision for all 
use cases.

The developed framework also works very well for 3D 
reconstruction of natural environments, in particular building 
3D maps of trees; however, this topic is out of scope of this 
paper. In future, we plan to extend our automated chain to 
enable 3D urban reconstruction in LOD2, where additionally 
to the information provided in LOD1, for every building a
geometrically simplified roof shape is reconstructed.
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