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ABSTRACT:

With advances in computing and sensor technologies, onboard systems can deal with a large amount of data and achieve real-time 
process continuously and accurately. In order to further enhance the performance of positioning, high definition map (HD map) is one 
of  the  game  changers  for  future  autonomous  driving.  Instead  of directly  using  Inertial  Navigation  System  and  Global  Navigation 
Satellite System (INS/GNSS) navigation solutions to conduct the Direct Geo-referencing (DG) and acquiring 3D mapping information, 
Simultaneous Localization and Mapping (SLAM) relies heavily on environmental features to derive the position and attitude as well 
as conducting the mapping at the same time. In this research, the new structure is proposed to integrate the INS/GNSS into LiDAR 
Odometry and Mapping (LOAM) algorithm and enhance the mapping performance. The first contribution is using the INS/GNSS to 
provide the short-term relative position information for the mapping process when the LiDAR odometry process is failed. The checking 
process is built to detect the divergence of LiDAR odometry process based on the residual from correspondences of features and 
innovation sequence of INS/GNSS. More importantly, by integrating with INS/GNSS, the whole global map is located in the standard 
global coordinate system (WGS84) which can be shared and employed easily and seamlessly. In this research, the designed land vehicle 
platform  includes  commercial  INS/GNSS  integrated  product  as  a  reference,  relatively  low-cost  and  lower  grade  INS  system  and 
Velodyne LiDAR with 16 laser channels, respectively. The field test is conducted from outdoor to the indoor underground parking lot 
and the final solution using the proposed method has a significant improvement as well as building a more accurate and reliable map 
for future use.
 

1. INTRODUCTION 

To further enhance the performance of positioning, high 
definition map (HD map) is one of the game changers for future 
autonomous driving. Compared with the traditional 2 
dimensional (2D) map, HD map expands one dimension in the 
vertical direction to make sure the vehicle itself locates in the 
correct and safe place (Ma, 2017). For example, HD map should 
allow the autonomous systems to recognize either the vehicle is 
on the highway or under the highway, on the road or in the 
underground parking lot. This map also needs to be generated in 
the global coordinate system to share consistent information with 
other vehicles. In addition, the accuracy requirement is relatively 
higher than the traditional map. In order to help the self-driving 
car successfully and safely arrive at the destination, all of the 
features or the geospatial information should have the sub-meter 
accuracy (Farrell et al., 2016). However, it is not easy to generate 
3D maps corresponding to the sub-meter accuracy, particularly 
in Global Navigation Satellite System (GNSS) signal outage 
environment. 
 
LiDAR is an essential component when it comes to HD map. 
LiDAR has become more and more popular these days. With the 
advanced optical technology and hardware design, it becomes an 
integral part not only in surveying but also any field which is 
related to geospatial information. LiDAR is a cost-effective 
system to collect the geospatial information, allowing the 3D 
spatial information of objects to be calculated and measured. 
However, the information acquired from LiDAR is not enough 
for most applications, which needs to combine with other sensors 
for those mobile laser scanning systems (MLS). MLS can be 
employed in dynamic environments and are capable of being 
adopted in traffic-related applications, such as the collection of 
road network databases, inventory of traffic sign and surface 

conditions (Puente et al., 2012). Further applications of generated 
point cloud data have been used in HD map and multi-scanner 
self-calibration (Puente et al., 2012; Seif and Hu, 2016). 
 
Recently, increasing numbers of researches have concentrated on 
self-driving applications. MLS fuses the hardware and software 
of positioning and orientation systems (POS) and mapping 
sensors to directly determine the position of point of interest (POI) 
remotely. POS includes typically an inertial navigation system 
(INS) and GNSS. GNSS gives the absolute position and velocity 
by using pseudo-range and carrier-phase measurement from the 
satellite signal. INS is a self-contained navigation system which 
is able to continuously track the position and orientation of a 
vehicle from a known initial point without any external signal 
(Titterton et al., 2004). Both navigation systems have their own 
advantages and disadvantages. Therefore, INS/GNSS has 
become one of the most popular integrated positioning systems. 
Researchers introduced the INS/GNSS into MLS to acquire the 
continuous exterior orientation parameters (EOPs). The 
integrated POS overcomes the drawbacks by only using an 
integrated system and continuously provides stable navigation 
information. This kind of systems combining with the other 
mapping sensors can meet the need for rapidly collecting 
geospatial data by using the direct geo-referencing (DG) 
mathematical model. 
 
However, MLS is contaminated by several error sources, such as 
GNSS time error, time synchronization between GNSS, INS, and 
a laser scanner, interpolation of INS/GNSS measurements, 
system components mounting error, laser range and encoder 
angle error, etc. (Baltsavias, 1999; Katzenbeisser, 2003; Schenk, 
2001). In GNSS-denied environment, the navigation 
performance of INS-only drops quickly over time in accordance 
with the grade of the IMU itself. In order words, it is difficult to 
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achieve the sub-meter accuracy of HD map in an indoor 
environment if only using INS/GNSS integrated system.  
Simultaneously localization and mapping (SLAM), on the other 
hand, relies more heavily on environmental features to derive the 
position and attitude of the robot itself. With the increasing 
computational power capabilities of contemporary computers, 
perception sensors have begun to be adopted as a component in 
the positioning methods. LiDAR-SLAM has been widely 
discussed and improved over the last decade. 2D LiDAR- SLAM 
reduces the point cloud information and re-projects the 
environment into 2D plane. Occupancy grid SLAM is one of the 
famous SLAM methods that transforms the 2D point cloud into 
an occupancy grid map. Gmapping and Hector SLAM are all 
based on the occupancy grid map. Gmapping utilizes Rao-
Blackwellized particle filters (RBPFs) to estimate the real-time 
position and conduct the mapping at the same time (Grisetti et al., 
2007). Hector SLAM adopts scan-matching approach according 
to the Gauss-Newton model which increases the flexibility and 
adaptability for different applications (Kohlbrecher et al., 2011). 
To meet the demand of HD map, 3D information is necessary. 
One of the 6-DOF LiDAR-SLAM registration methods is 
iterative closest point (ICP) that registers the closest points 
together without considering the feature information (Holz et al., 
2015). However, ICP is time-consuming and the accuracy 
depends on the density of point cloud. Feature-based, on the 
contrary, is relatively faster and robust. Features such as edge 
reflectivity are used to generate as a grid representation and can 
be matched with the prior map (Castorena and Agarwal, 2017). 
Hata and Wolf proposed the road marking detection based on the 
Otsu thresholding method and Monte Carlo localization method 
(Hata and Wolf, 2015). Feature-based LiDAR-SLAM such as 
LiDAR odometry and mapping (LOAM) extracts the features in 
a consecutive point cloud (Zhang and Singh, 2017). 
   
With the aiding from the prior map information, the accuracy of 
the LiDAR-SLAM can achieve the precise positioning demand 
and meet the requirement of sub-meter accuracy (Levinson et al., 
2007). However, how to generate accurate map information in 
GNSS-denied environment is still a great challenge over the 
decades. The results from pure LiDAR-SLAM only present the 
error of overall loop closure and are always overestimated 
because of the loop closure detection. This paper develops the 
INS-aiding 3D LiDAR-SLAM based on the LiDAR odometry 
and mapping method. By using reliable information from 
INS/GNSS and proposed failure detection, the results can be 
further improved compared with the pure SLAM solution. 
 

2. METHODOLOGY 

This research proposes the fusion algorithm to integrate 
INS/GNSS solution with LiDAR SLAM. Figure 1 shows the 
flowchart of data processing. As can be seen from this figure, 
INS/GNSS can be considered as the external source to improve 
the SLAM. First of all, the IMU and GNSS data is integrated 
using the proposed EKF as well as adding motion constraints to 
further enhance the navigation performance. After the integration, 
the filtered solution including position, velocity, and attitude will 
feed into the LiDAR SLAM algorithm. 
  
There are two major processes in LOAM, LiDAR odometry and 
LiDAR mapping. In the odometry process, two consecutive point 
cloud sets will be registered based on the detected features, such 
as edge and planar points. The main cost function is formulated 
by the distance between correspondences of edge and planar 
points and can be determined by Levenberg-Marquardt (LM) 
method in real-time. In order to make the global consistency and 
loop closuring, the mapping process is to register the point cloud 

into the global map with the same cost function but extracting the 
correspondences from the global map.  
To address these divergence and drift issues in LOAM, the 
proposed integration takes the INS/GNSS into account, utilizing 
the advantages to compensate and enhance the overall 
performance of SLAM. The error of INS can also be restricted 
using the zero velocity update (ZUPT) and non-holonomic 
constraint (NHC) which guaranteed the short-term relative 
position of INS is able to benefit the mapping process even 
without using odometry process. The proposed INS-aiding 
strategy not only take the INS/GNSS solution as the initial value 
but also uses it to detect the outlier solution in SLAM. The 
following sections will provide more details.  
 

 
Figure 1. The flow chart of data processing 

 
2.1 INS/GNSS Integration 

INS/GNSS integration has become the most commonly used 
model for navigation systems. The fundamental method relies on 
integrating two sets of data using EKF. The complementary error 
characteristics make INS/GNSS integrated system more 
robustness. However, problems like drift during GNSS signal 
outages and multipath effect in urban areas are common. To 
address these issues, the proposed integrated algorithm adopts the 
vehicle motion constraints to control the drift problem, 
particularly in GNSS-denied environment.  
 
Kalman filter extends the concept of least-squares to include the 
knowledge of how the states vary in time. In other words, KF 
predicts the behavior of states and estimates the covariance 
matrix. Generally, KF derives the optimal states by minimizing 
the covariance of the estimation error, and the recursive form 
benefits to efficient implementation. These characteristics make 
KF being widely used in optimal time-varying estimation, 
especially for INS/GNSS integrated navigation (Aggarwal et al., 
2010; Farrell, 2008; Gebre-Egziabher and Gleason, 2009). 
 
The developed INS/GNSS scheme uses the implementation in  
(Shin, 2005). The states of the proposed EKF is defined as: 

 𝑥௞ ൌ ሾ𝑟 𝑣 𝜓 𝑏௔ 𝑏௚ሿଵହൈଵ
்  

 𝑥ො௞ ൌ 𝑥௞ ൅ δ𝑥୩ 

where 𝑥 is the state vector, 𝑥ො is the updated states, δ𝑥 is the error 
of state vector, and subscript 𝑘 is the parameter at epoch 𝑘. 𝑟, 𝑣 
and 𝜓 are the main navigation information, representing position, 
velocity and attitude, respectively; 𝑏௔  and 𝑏௚  are biases of the 
accelerometers and gyroscopes respectively. 
 
An INS system model is implemented as the discrete-time form 
and is represented as: 
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 δ𝑥௞ାଵ ൌ Φ௞,௞ାଵδ𝑥௞ ൅ 𝜔௞ 

The measurement model of EKF is implemented in discrete-time 
form as follows: 

 δ𝑧௞ ൌ Η௞δ𝑥௞ ൅ 𝜖௞ 

where Φ௞,௞ାଵ  represents the state transition matrix and 𝜔௞ 
represents the white noise sequence of the system.  Η௞  is the 
design matrix necessary to project the states into measurements, 
and 𝜖௞ is the white noise sequence of the measurement. 
 
In GNSS-denied environment, INS-only suffers from the rapid 
error accumulation. To mitigate this impact, vehicle information 
combined with the physical behavior of the automobile plays an 
important role. NHC is to constraint the lateral and vertical 
velocity of vehicle based on the physical behavior of moving land 
vehicles (Shin, 2005). In addition to NHC, the stationary is also 
one of the useful information for controlling the drifting error. 
ZUPT and zero integrated heading rate (ZIHR) are the constraints 
on velocity and attitude domains. If the system detects the 
stationary, the velocity and the heading change rate will be 
limited to zero, which can reset the velocity error and suppress 
the drifting error in position and attitude domains. 
 
2.2 Direct Geo-reference 

In order to combine the EOPs information with other sensors, DG 
mathematical model describes the relationship of each sensor and 
benefits the integration system to rapidly collect geospatial data. 
In other words, DG allows us to directly acquire the objects’ 
location by integrating different measurements together. With 
regard to the point cloud data processing, DG combines the 
INS/GNSS with the LiDAR system to produce a geo-referenced 
point clouds. 
 
As shown in Figure 2, this paper uses the land vehicle as the 
major platform to collect the data. The geo-referencing formula 
is written as: 

 𝑟௜
௠ ൌ 𝑟௡௔௩

௠ ሺ𝑡ሻ ൅ 𝑅௕
௠ሺ𝑡ሻ ൈ ሺ𝑅௟

௕𝑝௜
௟ ൅ 𝑟௜௟

௕ሻ 5

 
where 𝑟௜

௠ is the coordinate vector of i-th laser point in the m-
frame; 𝑟௡௔௩

௠ ሺ𝑡ሻ is the position vector at time 𝑡 of the INS/GNSS 
in the mapping-frame (m-frame); 𝑅௕

௠ሺ𝑡ሻ is the rotation matrix 
between the navigation system b-frame and the m-frame; 𝑅௟

௕ is 
the differential rotation matrix between the LiDAR-frame (l-
frame) and the body-frame (b-frame), determined by calibration; 
𝑝௜

௟ is the coordinate vector of i-th object point in the l-frame; 𝑟௜௟
௕ 

is the vector between INS centre and LiDAR, determined by 
calibration. 

In l-frame, the object point 𝑝௜
௟ is written as follows:  

 

                        𝑝௜
௟ ൌ ቎

𝑋௜
௟

𝑌௜
௟

𝑍௜
௟

቏ ൌ ቎
𝐷 ∗ cosሺ𝜔ሻ ∗ sinሺ𝛼ሻ
𝐷 ∗ cosሺ𝜔ሻ ∗ cosሺ𝛼ሻ

𝐷 ∗ sinሺ𝜔ሻ
቏                (6) 

 
where 𝑋௜

௟, 𝑌௜
௟, and 𝑍௜

௟ are the point coordinates in the 𝑙-frame; 𝐷 
is the distance between the object and LiDAR center; 𝜔 is the 
vertical angle as indicated by the laser channel, and 𝛼  is the 
horizontal angle between the 𝑦௟-axis and object. 
 

 
Figure 2. Direct geo-referencing model 

 
2.3 INS-AIDED 3D LiDAR SLAM  

In this paper, the INS-aided 3D LiDAR-SLAM can be divided 
into LiDAR odometry and LiDAR mapping. Before LiDAR 
odometry and LiDAR mapping, the feature extraction is used to 
find the corresponding feature in each scan (the total point cloud 
measurements within 360 degrees horizontal rotation). The 
concept of these two processes is based the LOAM (Zhang and 
Singh, 2017).  
 
As shown in Figure 3, LiDAR odometry plays the basic 
positioning estimation model to continuously (10 Hz) calculate 
the relative position and attitude with respect to the previous scan. 
However, it is inevitable to accumulate the error for relative 
positioning technique. In order to mitigate the error accumulation 
and improve the consistency of the map itself, LiDAR mapping 
is proposed acting as the refined model (5 Hz) to correct the 
drifting error. LiDAR mapping registers the features extracted 
from the current scan to global map where the whole features are 
stored in. In order words, instead of only aligning with the 
previous scan, LiDAR mapping takes the whole nearest features 
into account. Furthermore, it is important to define the geometric 
features and how to extract them from the messy and heavy point 
clouds. Moreover, this paper proposes the INS-aided concept in 
SLAM, failure detection, to detect the failure solution LiDAR 
odometry and further improve the solution in the mapping 
process. 
 

 
Figure 3. SLAM-aiding INS/GNSS integration 
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2.3.1 Feature Extraction: In the feature extraction process, 
the edge point and planar surface are extracted with co-planar 
geometric relationship from individual channels. In terms of the 
Velodyne LiDAR used in this paper, there are 16 channels for the 
individual scan. Each channel is equally sized scan regions and 
divided into 6 sub-regions (𝑆) for evenly distributing the features 
within the environment. The definition of curvature ( 𝑐 ) to 
determine the edge and planar points is written as follows: 
 

 𝑐 ൌ ∑ ሺ𝑝௞,௜
௠ െ 𝑝௞,௝

௠ ሻଶ௡
௝∈ௌ,௝ஷ௜  7

 
where 𝑐 is the curvature to evaluate the smoothness of the local 
surface, 𝑛 is the total number of points in the sub-region, 𝑖 is a 
point in the sub-region and 𝑗 is the consecutive point of 𝑖-th point. 
 
The curvature of each point is sorted according to its value. If the 
curvature is higher than the preset threshold, it is determined as 
the edge point and vice versa. In addition, there are two cases 
might lead to unreliable extraction as shown in Figure 4. The first 
case occurs when the point is extracted from the object edge line 
where is roughly parallel with the laser beam. The second case is 
to select the feature on the boundary of an occluded region. In 
this situation, it is clear to identify that the selected point is not 
the edge point and it is connected with other surfaces. It is 
because the laser beams are blocked by another object. Once the 
LiDAR moves to the left-hand side, the occluded part will be 
observable and will not be considered as the edge point again.  
 

 

(a) Roughly parallel  (b) Occluded  

Figure 4. Unreliable extraction from two cases 

 

2.3.2 LiDAR Odometry: In LiDAR odometry, the first step 
is to find the corresponding feature in every scan. Based on the 
geometric relationship between each correspondence, the 
objective function can be built afterward. The relative position 
and attitude are estimated by taking account whole geometric 
relationship in the objective function. Therefore, LiDAR 
odometry can be separated into three parts, finding 
correspondence, formulating the objective function and motion 
estimation. 
 
First, two geometries are utilized, edge line as the 
correspondence for an edge point and planar surface as the 
correspondence for a planar point. The edge line is composed of 
two edge points (𝑗௞ିଵ and 𝑙௞ିଵ) from the previous scan (𝑘 െ 1). 
These two edge points are the closest points to the current edge 
point (𝑖௞) and must be selected in different channels. This is to 
prevent the selected edge line located on the same surface where 
is parallel with the same scanning channels. The corresponding 
planar surface can be selected based on the three closest 
neighbors (𝑗௞ିଵ, 𝑙௞ିଵ and ℎ௞ିଵ) of current planar feature (𝑖௞).  
 
Second, the objective functions are built based on these two 
geometries. For the edge point (𝑖௞), it is assumed to align with 

the determined edge line, which means the distance between the 
edge line and edge point should be zero. The point-to-line 
distance is defined as: 
 

 𝑑𝑖𝑠𝑡௟௜௡௘ ൌ
ฮሺ௣෤ೖ,೔ି௣ೖషభ,ೕሻൈሺ௣෤ೖ,೔ି௣ೖషభ,೗ሻฮ

ฮ௣ೖషభ,ೕି௣ೖషభ,೗ฮ
 8

 
where 𝑑𝑖𝑠𝑡௟௜௡௘ is the point-to-line distance distance, 𝑝 represents 
the coordinates of point, ൈ means cross product. In this equation, 
it can be interpreted that the area of the parallelogram is equal to 
the base multiplies the height.  
Similar concept from the point-to-line distance, the point-to-
plane distance is defined as: 
 

       𝑑𝑖𝑠𝑡௣௟௔௡௘ ൌ
ฮሺ௣෤ೖ,೔ି௣ೖషభ,೗ሻ∙ሺ௣ೖషభ,ೕି௣ೖషభ,೗ሻൈሺ௣ೖషభ,ೕି௣ೖషభ,೓ሻฮ

ฮሺ௣ೖషభ,ೕି௣ೖషభ,೗ሻൈሺ௣ೖషభ,ೕି௣ೖషభ,೓ሻฮ
9

 
where 𝑑𝑖𝑠𝑡௣௟௔௡௘  is the point-to-plan distance distance, ∙ means 
dot product. In this equation, it can be considered as volume of a 
parallelepiped by the multiplication of the base area and the 
height.  
 
The final part of LiDAR odometry is to estimate the relative 
position and attitude. In this SLAM algorithm, the motion of 
sensor is assumed to be constant angular velocities and linear 
velocities. As a result, the rigid transformation is written as: 
 

                            𝑝௞,௜ ൌ 𝑅௞ିଵ
௞ ൈ 𝑝෤௞,௜ ൅ 𝑟௞ିଵ

௞                    10

                            𝑓ሺ𝑝෤௞,௜, 𝑅௞ିଵ
௞ , 𝑟௞ିଵ

௞ ሻ ൌ 𝑑                       11

 
where 𝑝௞,௜ and 𝑝෤௞,௜ are the i-th coordinates of feature points after 

and before transformation, 𝑅௞ିଵ
௞  is the rotation matrix from time 

𝑘 െ 1 to 𝑘 and 𝑟௞ିଵ
௞  is the translation vector. 

 
In order to solve the nonlinear function ሺ𝑓ሻ, the LM algorithm is 
used (Hartley and Zisserman, 2003). The LM is considered as the 
combination between Gauss–Newton algorithm and the method 
of gradient descent especially addressing the nonlinear least 
square problems.  
 
Consequentially, edge and planar features are transformed and 
stored for the next registration. Since the DG is conducted ahead, 
the transformation parameters from the LiDAR odometry can be 
further improved by matching features. 
 
2.3.3 LiDAR Mapping: LiDAR odometry is a process to 
register features in the current scan to the previous features. In 
addition, the transformation during each scan is assumed to be 
the constant and linear movement. However, this assumption is 
not always appropriate especially applied in the speedy land 
vehicle. The LiDAR mapping plays the primary role to correct 
the distorted movement from the LiDAR odometry as well as 
generating the consistent global map for each LiDAR mapping 
registration. 
 
The concept of the LiDAR mapping is to align the features point 
with the global map where is also the incremental map based on 
each LiDAR mapping registration. LiDAR mapping extracts the 
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corresponding points from the global map and matches these 
points with the features from LiDAR odometry. Afterward, these 
features will also be stored in the global map which gradually 
expands the map in order to enhance the future loop closure 
solution. However, it is time-consuming to conduct this global 
registration process. In this structure, the LiDAR mapping is 
processed in the lower frequency, 5Hz, while LiDAR odometry 
is 10 Hz.  
 
2.3.4 Failure Detection: In the proposed integration scheme, 
failure detection is adopted to detect the unreasonable solution 
from the LiDAR odometry. By continuously updating the 
navigation solution and feedback bias for INS, it is assumed that 
INS is capable of monitoring other outlier measurements in a 
short period of time. According to this assumption, the proposed 
fusion algorithm uses the INS/GNSS velocity to detect whether 
the LiDAR odometry process works properly or not. In addition, 
the proposed fusion algorithm also takes distances of the final 
corresponding points (edge and planar points) into account. This 
is to evaluate the performance of LiDAR SLAM itself. Thus, 
there are two conditions to evaluate the performance of LiDAR 
odometry. 
 

൝𝑖𝑓 
∑ ௙ሺ௣ೖ,೔,ோᇱೖషభ

ೖ ,௥ᇱೖషభ
ೖ ሻ೙

೔

௡
൑ 𝜃௖௢௥஽௜௦௧

𝑖𝑓 ∆𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ൑ 𝜃௩௘௟௢௖௜௧௬

, is qualified. 

 
The corresponding distance including point-to-line and point-to-
plane should smaller than the preset threshold (𝜃௖௢௥஽௜௦௧) after the 
LM algorithm. Specifically, the average residual error should be 
less than a certain amount of value. In addition, the offset 
between the SLAM-derived velocity and INS/GNSS velocity has 
to be less than the 𝜃௩௘௟௢௖௜௧௬.  
 
LiDAR odometry is based on the dead reckoning (DR) for the 
SLAM algorithm. Hence, if there is an outlier solution estimated 
from the LiDAR odometry, the error will accumulate until the 
next mapping process. However, LiDAR odometry will provide 
the unreliable initial solution to LiDAR mapping which means 
the mapping process also has great possibilities of suffering from 
the same problem.  
 
In proposed failure detection shown in Figure 3, once the result 
from LiDAR odometry is detected as an unreliable solution, there 
are two strategies to address. Since LiDAR odometry is a 
continuous process to align the features from the current scan 
with the previous scan. If LiDAR odometry performs unstably, 
the first strategy is to replace the LiDAR odometry solution with 
the INS/GNSS solution. By using the more stable INS/GNSS 
solution, it prevents the outlier from influencing the updating 
process which means the edge and planar points are correctly 
transformed and stored for the next aligning. The second strategy 
in odometry process benefits the LiDAR mapping, the 
INS/GNSS provides initial value (𝑅௞ିସ

௞ ,  𝑟௞ିସ
௞ ) for the mapping 

process instead of using unreliable odometry solution. This 
strategy makes sure the mapping process has a relatively trustable 
initial value to conduct the LM algorithm. 
 

3. EXPERIMENT 

This paper uses the high-grade commercial product, SPAN-LCI, 
as the reference POS. For INS-aided implementation, lower 
grade INS (C-MIGITS) with low-cost LiDAR (VLP-16) are used. 
To evaluate the performance fairly, this paper uses the same 
differential GNSS (DGNSS) solutions from the commercial 

product SPAN-LCI receiver. In addition, the initial value of pure 
SLAM is also from the reference. Figure 5 shows the platform 
we used in this paper, Table 1 and Table 2 give the specification 
of two POSs as well as LiDAR sensor. 
 

 
 

 
Figure 5. Configuration of the designed vehicle 

 
Figure 6 illustrates the testing filed, Hai-an underground parking 
lot.  It is a rectangular parking lot with two narrow central aisles. 
During this experiment, the indoor traveled distance in this 
scenario is around 1.5 kilometers and the traveled time is over 7 
minutes. The scanning area in this parking lot is limited because 
the scanning view is blocked by walls or construction. Under this 
condition, SLAM suffers from the drift problem over the traveled 
distance. In addition, this testing field also results in the 
significant drift for INS-only solution since there is the less 
dynamic motion of the vehicle when the vehicle goes through two 
long aisles. 

 
Figure 6. Overview of Hai-an underground parking lot 

 
SPAN-LCI 

Accelerometer Gyroscope 
Bias Instability ൑ 100 µg ൑ 0.05 °/ℎ𝑟
Random Walk 

Noise 
൑ 100 µg
/√𝐻𝑧 

൑ 0.012 °/√ℎ𝑟

 
C-MIGITS® III 

Accelerometer Gyroscope 

Bias Instability 200 µg 1° െ 3 °/ℎ𝑟 
Random Walk 

Noise 60 µg/√𝐻𝑧 0.035 °/√ℎ𝑟 

Table 1. Performance characteristics of C-MIGITS and 
SPAN-LCI 

 VLP-16 
Max.Measurement 

Range 
100 m 

Accuracy േ3cm (typical) 
Field of view (vertical) 30° (൅15° 𝑡𝑜 െ 15°) 

Field of view 
(horizontal) 360° 

Angular resolution 2° / 0.1°𝑡𝑜 0.4° 
Table 2. Performance characteristics of Velodyne LiDAR 
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4. RESULTS AND DISCUSSIONS 

As mentioned in the experiment section, this paper utilizes 
commercial product and software to generate the ground truth. 
This ground truth is compared with the proposed method, 
conventional INS/GNSS and pure SLAM results. As shown in 
Figure 7, reference is the red trajectory from SPAN-LCI, the 
green line is the proposed method, the blue line represents the 
conventional INS/GNSS, the black line shows the result from 
pure SLAM and the DGNSS solution is represented as the orange 
dot.  The GNSS-denied area can be seen from the distribution of 
orange dot. It is clear that blue and black line deviate from the 
reference while the proposed method maintains the accuracy 
during the whole trajectory. The maximum errors in north and 
east directions are over 3 meters and are indicated as black and 
cyan circles. Figure7(b) illustrates the area of the maximum error 
where is close to the end of the indoor period. In other words, the 
proposed method almost keeps the positioning performance 
being under the 3 meters during the whole indoor period.  
 
On the other hand, SLAM result can be interpreted as perfect in 
this experiment if you only take the loop closure error into 
account. From Figure7(b), the last position in SLAM result is 
very close to the reference. It means that the SLAM perfectly 
conduct the loop closure detection and registration. However, if 
we take a deep analysis in the whole trajectory, it is clear to find 
the trajectory also suffers from the drifting problem.  By 
combining the INS/GNSS, this paper employs the INS-aided 
method to control the error in LiDAR odometer process. 
 

 
(a) whole trajectories 

 
(b) zoomed trajectories 

Figure 7. Trajectories of different results 

Table 3 gives the overall performance of the proposed INS-aided 
SLAM. The RMSEs in three directions are around 1 meter. The 
maximum errors in three directions are all under 4 meters. Figure 
8 gives the error cumulative distribution function (CDF). In 
Figure 8, the proposed method can achieve meter-level accuracy 
in 60%, 2-meter accuracy in 80% and 90% for 3-meter accuracy.  
 

 INS-aided LiDAR-SLAM 
 Mean STD RMSE Max. 
North (meter) -0.007 1.046 1.047 3.584 
East (meter) 0.033 0.862 0.863 3.223 
Height (meter) -0.271 1.053 1.087 3.012 

Table 3. Evaluation of different results  
 

 
 Figure 8. The trajectories from different integration results 

  
Figure 9 shows the point cloud information using the proposed 
integration method. The boundary of the underground parking lot 
can be perfectly matched with each scan and generate the high 
accuracy point cloud data. Compared with the pure SLAM, 
although it can also match each point cloud tightly. The result 
from the trajectory in Figure 7 implies the error in positioning 
performance which also results in the mapping performance. 
Moreover, the whole point cloud set is located in the global 
coordinate system (WGS84) by combining INS/GNSS. In other 
words, this point cloud can be used and shared with other system 
and is able to combine with the existing map or data seamlessly 
and efficiently.  
 

 
 Figure 9. The aligned point cloud data 

  
 

5. CONCLUSIONS 

Multi-sensor integration is necessary for future autonomous 
driving. This paper proposes the fusion strategy to enhance the 
performance compared with the conventional methods. This 
paper uses information from INS/GNSS trying to solve the 
problems in an individual system. In the proposed structure, the 
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failure solution in pure SLAM can be detected and replace with 
a reliable solution from INS/GNSS. By using this strategy, the 
drifting error significantly reduces. In addition, the consistency 
of the generated is improved and located in the global coordinate 
frame. It means this kind of map can easily and seamlessly share 
with  other  applications.  The  results  show  that  the  proposed 
method is able to achieve the meter-level accuracy even in long- 
term GNSS-denied environment. However, this work still needs 
to be enhanced. In order to meet the sub-meter accuracy in HD 
map,  it  is  necessary  to  involve  other  sensors  together  for 
mitigating the error drifting or use the tightly coupled integration
to improve the robustness of an integrated system.
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