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ABSTRACT: 

 

Satellite-based crisis information is frequently requested in the context of flood disasters to gain rapidly situational awareness and to 

prioritize response actions under often limited resources during emergency response. To assure that information products have the 

highest possible spatial, temporal and thematic resolutions, it is critical to be able to simultaneously analyse data from a large variety 

of satellite sensors. In this contribution, we present a solution to rapidly extract water bodies from Landsat TM, ETM+, OLI and 

Sentinel-2 for up-to-date situational awareness during emergency response. A convolutional neural network is used to segment water 

extent in these images, while clouds, cloud shadows and snow / ice are specifically handled by the network to remove potential bias 

from any downstream analysis. Atmospheric correction, post-processing and ancillary data are not required. To distinguish flood 

from permanent water we present a reference water mask that is derived by means of time-series analysis of archive imagery. 

Compared to widely-used mono-temporal reference water masks, it can be adapted to any area and time of interest. This study builds 

up on previous work of the authors and presents new results from recent flood disasters in Germany, Peru, China, India and 

Mozambique, as well as a flood monitoring application centred on the Indian state of Kerala. The processing chain produces very 

high overall accuracy and Kappa coefficient (>0.87) and shows consistent performance throughout a monitoring period of 12 months 

that covers 143 Landsat OLI and Sentinel-2 images. 
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1. INTRODUCTION 

Near-real time information about flood water extent is an 

important input to decision making during flood disasters. 

Emergency responders increasingly request satellite images to 

support flood mapping and monitoring over large-areas 

(Martinis et al., 2017). In this context, Synthetic Aperture Radar 

(SAR) data are widely used due to their capability of 

penetrating through clouds and acquiring images during day 

and night (Schumann and Moller, 2015). However, to guarantee 

the highest possible spatial and temporal resolutions of the 

mapping products, any satellite-based flood monitoring system 

should be able to process data from various platforms and 

sensors (Lin et al., 2016). Therefore, multi-spectral satellite 

images are an important supplement, despite their sensitivity to 

atmospheric effects and the presence of clouds. 

 

Existing methods for water segmentation from multi-spectral 

satellite images can broadly be categorized into rule-based and 

machine learning methods. Rule-based methods present good 

results for single sensors, but largely lack generalization ability 

and transferability between sensors, geographies and scene 

properties (Feng et al., 2016; Zhou et al., 2017). Classical 

machine learning methods can overcome some of these 

limitations by learning characteristics of water pixels from a set 

of labelled samples across a hand-crafted feature space at pixel- 

or object-level (Ko et al., 2015; Mueller et al., 2016). However, 

their generalization ability at global scale and across images 

from different sensors has proven difficult. Recently, studies 

that use Convolutional Neural Networks (CNNs), which learn 

features directly from raw images by combining convolutional 

and pooling layers, reported superior accuracy and 

generalization ability compared to rule-based and classical 

machine learning approaches with hand-crafted features (Chen 

et al., 2018; Isikdogan et al., 2017).  

 

To differentiate between temporarily flooded areas and water 

bodies of normal water extent (permanent water) in a single 

image proved to be unreliable even when performed manually 

by expert analysts. Hence, it is common to compare a co-flood 

image with a pre-flood image or an independent reference water 

mask (Franci et al., 2015; Twele et al., 2016). These methods 

are generally fast to compute but depend on the quality and date 

of the pre-flood dataset, which may strongly bias the flood 

water delineation. This becomes particularly problematic in 

locations with highly dynamic surface waters. A more reliable 

estimation would be to consider a time range, which identifies 

permanent water as being continuously present throughout an 

observation period (Pekel et al., 2016). 

 

In this study, we present a solution to rapidly segment water 

bodies in Landsat TM, ETM+, OLI and Sentinel-2 images for 

up-to-date situational awareness during emergency response. To 

distinguish flood water from permanent water we introduce an 

adaptive reference water mask that is derived through time-

series analysis of archive imagery. This study builds up on 

previous work of the authors (Wieland et al., 2019; Wieland 

and Martinis, in review) and presents new results from recent 

flood disasters as well as a flood monitoring application centred 

on the Indian state of Kerala. 
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2. DATA AND STUDY AREA 

We compile a global multi-sensor reference dataset for training, 

validation and testing of the CNN for water segmentation 

(Figure 1). We apply a stratified random sampling on the basis 

of a global biomes map (Olson et al., 2001) to derive samples 

that are representative for a variety of climatic, atmospheric and 

land-cover conditions. For each of the 14 biomes we pick one 

sample location, acquire Landsat-TM, -ETM+, -OLI and 

Sentinel-2 images and manually delineate thematic masks. We 

add the freely available Spatial Procedures for Automated 

Removal of Cloud and Shadow (SPARCS) dataset, which 

consists of Landsat OLI images with respective thematic masks 

(Hughes and Hayes, 2014). We resample all imagery to 30 m 

spatial resolution, stack the image bands together (Red, Green, 

Blue, Near-Infrared (NIR), Shortwave-Infrared (SWIR)-1 and 

SWIR-2) and convert Digital Numbers (DN) to Top of 

Atmosphere (TOA) reflectance. We split all images and masks 

into non-overlapping tiles with 256 x 256 pixels size, shuffle 

and distribute them into training (60 %), validation (20 %) and 

testing (20 %) parts. The training dataset is augmented with 

random contrast, brightness, and rotation. Thematic masks 

consider classes “Water”, “Land”, “Snow / Ice”, “Cloud” and 

“Cloud shadow”. The final dataset covers 94 locations, 136 

images from four different sensors, and is split into 1,075 tiles 

for training (5,375 tiles with augmentation) and 358 tiles for 

validation and testing respectively. 

 

 

Figure 1. Spatial distribution of reference data, flood mapping 

tests and flood monitoring application. 

 

To further evaluate the performance of water segmentation and 

flood mapping methods, we select five major flood disasters, for 

which we acquire satellite images and derive independent test 

data in the form of manually labelled point samples. Namely 

these are Germany (June, 2013), China (June, 2016), Peru 

(March, 2017), India (August, 2018) and Mozambique (March, 

2019). 

 

For a systematic flood monitoring application all available 

Landsat OLI (23 images) and Sentinel-2 data (140 images) are 

acquired, processed and analysed over an area of interest (80 x 

80 km) in Kerala, India during 12 months in 2018 (Figure 1). 

Kerala is located in southwest India, has a wet and maritime 

tropical climate and is seasonally affected by monsoon rains. 

The state receives an average annual rainfall of nearly 3,000 

mm, of which around 65% fall between June and August 

(southwest monsoon) and the rest between September and 

December (northeast monsoon). The majority of rivers originate 

in the Western Ghats and flow towards the sea. Their water 

discharge is entirely led by monsoon rains. Hence, the main 

contributing factor to disastrous floods is high intensity rainfall. 

Dominating land-use / land-cover classes include small scale 

agricultural fields with a variety of crops and growing patterns, 

patches of forest, wetlands as well as urban and rural 

settlements. Water body types include sea, rivers, ponds, natural 

and artificial lakes and waterways. Particular for the study area 

are the backwaters, which are an interconnected system of 

brackish water lakes and river estuaries that stretches along the 

state’s coastline. 

 

3. METHOD 

3.1 Water segmentation 

For semantic segmentation of water bodies we use an encoder-

decoder CNN with U-Net architecture, which achieved state-of-

the-art results on semantic segmentation benchmark datasets, 

while learning from very little data (Ronneberger et al., 2015). 

The encoder takes as input a multi-band image of size 256 x 

256 pixels and feeds it through five convolutional blocks. 

Starting from 32, the number of feature channels is doubled per 

block. The basic convolutional block consists of two 3 x 3 

convolutions with Rectified Linear Unit (ReLU) activation 

function, batch normalization and 2 x 2 max pooling. In the 

decoder part, the feature map is up-sampled by a 2 x 2 transpose 

convolution followed by a concatenation with the 

correspondingly cropped feature map from the decoder and two 

3 x 3 convolutions with ReLU activation and batch 

normalization. At the final layer a 1 x 1 convolution with 

softmax activation function is used to map each feature vector x 

to the number of classes. The categorical output y is computed 

by maximizing the predicted probability vector p(x) = 

{p1(x),p2(x),…,pi(x),…,pn(x)}.  

 

As loss function we use weighted categorical cross-entropy, 

where the weight vector w ∈ ℝ is defined over the range of class 

labels i ∈ {1,2,…,I} and is computed on the training dataset for 

each class as the ratio of the median class frequency and the 

class frequency. The input image feature space is standardized 

to zero mean and unit variance with mean and standard 

deviation being computed on the training dataset and applied to 

the validation and testing datasets. We optimize the weights 

during training using the adaptive moment estimation algorithm 

with default hyper-parameters α = 10-4, β1 = 0.9 and β2 = 0.999 

(Kingma and Lei, 2015). Additionally, we step-wise reduce α 

by a factor of 0.5 if no improvement is seen for five epochs. We 

track loss, Overall Accuracy (OA), Cohen’s Kappa and Dice 

coefficient for model evaluation. The network is trained in 

batches of 20 until convergence on a NVIDIA M4000 GPU 

using Keras with Tensorflow backend as deep learning 

framework (Figure 2). 

 

 

Figure 2. U-Net training history showing training and validation 

loss and dice coefficient. 

 

U-Net predicts on small local windows, which may lead to 

reduced confidence towards the image borders. To overcome 

this limitation, we expand the image with mirror-padding, split 

it into overlapping tiles, run the predictions over batches of 

tiles, and finally blend the prediction tiles with a tapered cosine 

window function to generate a seamless segmentation output. 
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3.2 Flood mapping 

To map temporarily flooded areas we derive a reference water 

mask that aims at approximating the normal water extent, which 

we define in the following as areas that are permanently flooded 

within a specified time-period. Therefore, we use time-series of 

pre-flood images, for which we run the water segmentation. The 

categorical output y of any input image in the time-series is 

reclassified to produce binary valid pixel and water masks. The 

sum of water masks over the sum of valid pixel masks computes 

the relative water frequency f, with which water is present 

throughout the observation time-period. This means that a 

pixels would be classified as being permanently flooded, if it 

belongs to class “Water” in all valid observations, which would 

result in a relative water frequency f = 1.0. According to the 

accuracy of the U-Net model for class “water” on the test 

dataset (Table 1), we relax this threshold and set it to f ≥ 0.9. 

This means that a pixel is identified as being permanent water if 

it belongs to class “water” in 90 % or more of the valid 

observations during the observation time-period. Finally, the set 

difference of the water mask derived for the flood image and the 

reference water mask maps the temporarily flooded areas. More 

details can be found in Wieland and Martinis (in review). 

 

4. RESULTS 

Over the globally distributed 358 test image tiles for Landsat 

TM, ETM+, OLI and Sentinel-2, it can be seen that the U-Net 

model produces highly accurate results with Overall Accuracy 

(OA) of 0.93 and Kappa of 0.87 (Table 1). In particular, 

“Water”, “Land” and “Cloud” classes show very high precision 

and recall across all test tiles and sensors. The least accurate 

class is “Cloud shadow”, which is mainly affected by 

confusions with the “Land” class. 

 

Class Precision Recall F1-score 

Water 0.95 0.87 0.91 

Land 0.94 0.97 0.96 

Snow / Ice 0.84 0.95 0.89 

Cloud 0.94 0.91 0.92 

Cloud shadow 0.79 0.72 0.75 

Total 0.93 0.93 0.93 

OA 0.93 

Kappa 0.87 

Table 1. Prediction results of the U-Net model for water 

segmentation on 358 test image tiles for Landsat TM, ETM+, 

OLI and Sentinel-2.  

 

Furthermore, we analyse five globally distributed flood disasters 

to evaluate the results of the model on flood water and to 

exemplify the flood mapping method. For each of the floods we 

acquire independent test data from manually labelled point 

samples. The samples are derived by means of a stratified 

random sampling using the categorical output of the model as 

strata with a fixed size of 100 samples per class. Figure 3 shows 

the input images and respectively predicted flood maps, 

whereas Table 2 depicts the results of the accuracy assessment 

for each flood disaster. Despite highly varying environmental 

and atmospheric conditions, land-use / land-cover patterns, 

sensors, locations and seasons, our model performs consistently 

well (OA ≥ 0.92 and Kappa ≥ 0.90) across the test images.  

 

 

Figure 3. Test images of flood disasters with respective results 

of the flood mapping method. 

 

Flood disaster OA Kappa 

Germany, June 2013 0.92 0.90 

China, June 2016 0.94 0.92 

Peru, March 2017 0.98 0.97 

India, August 2018 0.94 0.92 

Mozambique, March 2019 0.95 0.94 

Table 2. Accuracy assessment for different flood disasters. 
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Figure 4 shows the relative water frequency computed over all 

Landsat OLI and Sentinel-2 images in 2018 over the study area 

in Kerala, India. From the map a highly dynamic surface water 

environment becomes evident, with large patches of temporary 

flooded water bodies. Moreover, the maximum water extent 

indicates extended flooding throughout large parts of the study 

area. The 2018 Kerala flood, which had severe impacts on 

population, economy and housing sector in the state, is well 

represented in the water frequency map. 

 

 

Figure 4. Relative water frequency over the study area in Kerala 

derived from 143 Landsat OLI and Sentinel-2 images in 2018. 

 

In addition to the relative water frequency map, which depicts 

the spatial dimension of water changes in the study area, Figure 

5 shows the temporal dimension of water changes in 2018 by 

means of the monthly mean ratio of flood to water pixels. The 

plot depicts well the annual water regime of the study area and 

also the major flooding in August 2018 is clearly visible in the 

timeline. 

 

 

Figure 5. Monthly mean ratio of flood to water pixels over the 

study area in Kerala in 2018. 

 

5. DISCUSSION AND CONCLUSIONS 

In this study, we presented a solution to segment water bodies 

in Landsat TM, ETM+, OLI and Sentinel-2 images for rapid 

situational awareness in emergency situations. We introduced 

an adaptive reference water mask based on time-series analysis 

of archive imagery to distinguish flood water from permanent 

water and presented new results from recent flood disasters as 

well as a flood monitoring application in Kerala, India. 

Performance evaluations showed that our globally trained U-

Net model produces highly accurate results and generalize well 

across different sensors, seasons, locations and disasters. 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

  

 

  

 

  

 

 

 

 

 

Our  work  presents  an  end-to-end  solution  that  is specifically 
targeted  towards  an  operational  usage. No  atmospheric 
correction  and  ancillary  datasets  are  required,  which  reduces 
complexity and allows for rapid processing. We focus on multi- 
sensor generalization ability, simplicity and processing speed to 
produce timely, accurate and relevant information products for 
emergency responders in flood disaster situations.

Augmentation seemed  to  have  an  important  effect on the 
network  to  learn  invariance  to  changes  in  the  target  domain, 
which is strongly affected by atmospheric conditions, land-use / 
land-cover, seasonality, and  other  scene  and  image  properties. 
Concerning the reference water mask, it should be noted that its 
definition  is  not  universal  and  may  vary  depending  on  the 
application,  targeted  end-users,  geographical  region  and  time 
period. Therefore,  an  in-depth  evaluation  of  use-cases  and  a 
more  quantitative  approach  towards  the  definition  of the  term 
reference  water  and associated decisions about  parameter 
settings should be targeted as part of future research.

Further ongoing  and  future  works are  dedicated  to support 
additional high  resolution  sensors (e.g., PlanetScope),  and  to 
train  a  water  segmentation  model  for  very  high  resolution 
satellite  (e.g., WorldView-3)  and  aerial  imagery. Finally,  the 
proposed  processing  chain  will  complement  existing SAR- 
based flood monitoring services (Martinis et al., 2015; Twele et

al., 2016).
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