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ABSTRACT: 

 

Remote sensing image scene classification has gained remarkable attention, due to its versatile use in different applications like 

geospatial object detection, ground object information extraction, environment monitoring and etc. The scene not only contains the 

information of the ground objects, but also includes the spatial relationship between the ground objects and the environment. With 

rapid growth of the amount of remote sensing image data, the need for automatic annotation methods for image scenes is more urgent. 

This paper proposes a new framework for high resolution remote sensing images scene classification based on convolutional neural 

network. To eliminate the requirement of fixed-size input image, multiple pyramid pooling strategy is equipped between convolutional 

layers and fully connected layers. Then, the fixed-size features generated by multiple pyramid pooling layer was extended to one-

dimension fixed-length vector and fed into fully connected layers. Our method could generate a fixed-length representation regardless 

of image size, at the same time get higher classification accuracy. On UC-Merced and NWPU-RESISC45 datasets, our framework 

achieved satisfying accuracies, which is 93.24% and 88.62% respectively.  

 

 

1. INTRODUCTION 

Remote sensing is a non-contact technology which enables rapid 

and large-scale acquisition of information. With the development 

of satellite sensors, large amounts of high-resolution remote 

sensing (HRRS) images are readily available. Remote sensing 

image scene classification, which mainly focuses on labelling 

remote sensing image with a specific semantic category, has 

gained remarkable attention and has been widely applied in 

versatile scenarios including geospatial object detection, ground 

object information extraction, environment monitoring and etc. 

(Hu et al. 2013, Zhang et al. 2016) As spatial resolution of remote 

sensing images improves continuously, people want to mine a 

higher level of semantic information from HRRS images. And 

ground objects form different semantic scene categories through 

different spatial distribute pattern, (Bratasanu et al. 2011, Lienou 

et al. 2010) via using detailed information provided by HRRS 

images. The scene not only contains the information of the 

ground objects, but also includes the spatial relationship between 

the ground objects and the environment. With rapid growth of the 

amount of remote sensing image data, the need for automatic 

annotation methods for remote sensing images is more urgent.  

In past decades, many methods have been proposed for remote-

sensing scene classification. In general, these methods could be 

divided into three groups, according to features representing level. 

Firstly, methods using low-level features. These methods usually 

utilize hand-crafted features to classify remote sensing images, 

which rely heavily on the experience and domain knowledge of 

experts, such as spectral, colour, texture and shape information 

or their combination. One of the most popularly used features is 

scale invariant feature transform (SIFT) (Lowe et al. 2004, Shao 

et al. 2013). SIFT is a kind of local feature descriptor in image 

processing area, which could describe local variations of 
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structures in images and would not be affected by image size and 

rotation. (Yang et al. 2008) compared SIFT and Gabor texture 

features for classifying remote sensing images and showed that 

SIFT performs better. Other low-level features, like histograms 

of oriented gradients (HOGs) (Dalal, Triggs, 2005) and global 

color descriptors, could depict the spatial arrangements of images 

and break the limitation that local descriptors cannot show global 

distributions of spatial cues. However, due to the lack of 

consideration for the details of actual data, it is difficult with 

these low-level features to attain a balance between 

discriminability and robustness (Chen et al. 2017). And these 

low-level features often fail to characterize the complex remote 

sensing scenes in HRRS images. 

Secondly, mid-level features. These methods mainly focus on 

developing a set of basis functions used for feature encoding. One 

of the most popularly used mid-level models is the bag-of-visual-

words (BoVW) (Yang et al. 2010). The BoVW-based models 

represent an image with the frequency of a collections of ‘visual 

words’, which is constructed by encoding local features extracted 

from local image patches, such as SIFT and HOGs. The original 

BoVW model ignored the spatial order of local features so that it 

severely limited the descriptive capability of image 

representation. Therefore, many BoVW extensions have been 

proposed to depict spatial relationships of local features. For 

instance, (Lazebnik et al. 2006) used spatial pyramid matching to 

avoid this issue. Although these models increased the capability 

of feature relationship representing, they still demand prior 

knowledge for hand-crafted feature extraction, lacking flexibility 

in discovering high-level semantic meaning. 

Recently, methods based on deep learning technology, especially 

the convolutional neural network (CNN), have made great 
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breakthroughs in image classification, video surveillance, object 

detection and many other computer vision fields. The typical 

convolutional neural networks, including Alexnet, VGGNet, 

GoogleNet, have been successfully applied in image 

classification tasks (Szegedy et al. 2014, Krizhevsky et al. 2017, 

Simonyan et al. 2014). These models are mostly composed of 

multiple convolutional layers, pooling layers and fully connected 

layers. These outstanding CNNs for object classification tasks 

can be pre-trained on large natural image datasets such as 

ImageNet (Deng et al. 2009). As discriminative high-level 

feature extractor, these pretrained CNN models can be 

transferable to many other domains. Due to its good feature 

extraction and classification ability, CNN has gradually attracted 

the attention of remote sensing communities. (Zeng et al. 2018) 

integrated global-context and local-object features from remote 

sensing images to address the issue that it is hard for vanilla 

CNNs to focus on both global context and small local objects. (Qi 

et al. 2018) used concentric circle pooling in CNNs to alleviate 

the problem that conventional CNNs are sensitive to rotation of 

remote sensing image. These methods showed us it is transferable 

for CNNs to address remote sensing scene classification.  

However, remote sensing images are much larger, both in 

memory size and image size, than traditional images inputted in 

CNNs, whereas CNNs often requires a fixed-size smaller image, 

like 256*256 pixels. In order to satisfy the requirement of 

conventional CNNs, researchers in remote sensing area usually 

resized or cropped the large remote sensing image to fixed-size 

patches. Unfortunately, the down-sampling of the original remote 

sensing image makes the objects smaller and it is harder to extract 

corresponding features from image. Besides, the crop operation 

would change the characteristics of the data. Inspired by the 

success of fast R-CNN in object detection area (Girshick et al. 

2015), to solve the above issue, our model, supporting the input 

of any size, is designed by adding multiple pyramid pooling layer 

in traditional CNNs. In general, our model consists of two parts: 

(1) fine-tuning the VGG16 model, pre-trained on the large-scale 

natural dataset ImageNet; (2) using multiple pyramid pooling 

layer to get the fixed-sized feature so that the model supports 

inputting of any size images. 

The remainder of this paper is organized as follows. In Section2, 

the proposed architecture would be illustrated in detail. In 

Section3, the different datasets we used and experiment 

conducting details would be introduced. Experiment result and 

related discussion would be explained in Section4. Section5 

presents the conclusion of this paper. 

 

 

2. PROPOSED METHOD 

In this section, we first introduce the overall architecture of our 

proposed method; then the VGG-Base and the multiple pyramid 

pooling layer would be explained in detail. 

 

2.1 Overall Architecture 

As illustrated in Figure 1, our proposed architecture can be 

mainly divided into two parts: VGG-Base (composed of 

convolutional layers, fully connected layers and softmax layer), 

multiple pyramid pooling layer. The processing flow of our 

architecture is as follows. Firstly, an image randomly selected 

from the dataset is fed in the VGG-Base without cropping and 

resizing operation. Compared with methods requiring fixed-size 

input images, usually achieving by resizing images to a certain 

scale or cropping fixed-size patches, our method can extract more 

applicable features from original-scale images without resizing 

or cropping operations.  

 

Figure 1 Overall Architecture 

Taking an image as input, the VGG-Base network, which is the 

backbone of work framework, processes multiple convolutional 

operations to extract high-level features from the image. After 

this process, we got the feature map. Compared with original 

image size, the feature map would be down-sampled by 32 times 

after 5 max-pooling operations. Then we fed feature map into 

multiple pyramid pooling layer, in which the feature map would 

be divided into different size grids, according to the given 

pooling kernels. Features with different size would be produced 

by pooling kernels in multiple pyramid pooling layer, then these 

features with different size would be concatenated and expanded 

to one-dimension fixed-length vector. Then, the fixed-length 

one-dimension vector would be fed into fully connected layers 

and softmax classification layer to calculated probability of 

classification for every class.  

 

2.2 VGG-Base 

The VGG-Base network composed of three parts: (1) 

convolutional layers (2)ReLU activation function (3)pooling 

layers (4) fully connected and softmax classification layers. The 

first three parts were shown in Figure 2 and the last part worked 

behind multiple pyramid layer, which could be seen in Figure 1. 

 
Figure 2 VGG-Base 

Comparing to traditional low-level and mid-level feature 

extraction methods, such as SIFT and BoVW, convolutional 

layers can automatically extract high-level semantic features 

from image without hand-crafted feature selection processes. 

Convolutional layers contain multiple convolutional kernels, 

which are two-dimension matrixes. These convolutional kernels 

would slide cross the whole input image based on sliding rules. 

Through summing up the multiplication result of input image and 

convolutional kernel, the input image could generate feature map.  

In general, an activation function should be added after each 

convolutional layer to increase the nonlinear fitting capability of 

neural network, such as the Sigmoid function, Rectified Linear 
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Unit (ReLU). In our model, we used the ReLU as the activation 

function. The formula for the ReLU function is : 

f(x) = max(0, 𝑥)                                   (1) 

And ReLU function image was shown in Figure 3.  

 

 
 

Figure 3 Image of the ReLU function. 

 

The pooling layer is to down-sample the image features so that 

high-level abstractive semantic information could be extracted 

from the image. Here we used max-pooling layers in our model, 

which will return the max value from each sub-area. And the 

images would be down-sampled by max-pooling layers, causing 

1/2 reduction in each images’ height and width. Figure 4 shows 

the illustration of max-pooling layer. 

The fully connected layers and softmax layers are located behind 

multiple pyramid pooling layers, they worked as a classifier to 

generate final classification probabilities. After multiple pyramid 

pooling layers, a fixed-size feature map would be produced and 

we expand it to a one-dimension vector and then fed it into fully 

connected layers. 

In this paper we utilize the VGG-16 model as our baseline. The 

architecture of VGG-16 contains five convolution parts to 

generate feature map, two fully connected layers and one softmax 

classifier to output classification results. Each of convolution part 

has two or three convolutional layers and one max-pooling layer 

in it. The parameters of convolution parts are shown in Table1. 

Stage Parameters 

 

Stage1 
conv 3*3-64  

conv 3*3-64 

max-pool 2*2 

 

Stage2 
conv 3*3-128 

conv 3*3-128 

max-pool 2*2 

 

 

Stage3 

conv 3*3-256 

conv 3*3-256 

conv 3*3-256 

max-pool 2*2 

 

 

Stage4 

conv 3*3-512 

conv 3*3-512 

conv 3*3-512 

max-pool 2*2 

 

 

Stage5 

conv 3*3-512 

conv 3*3-512 

conv 3*3-512 

max-pool 2*2 

Table 1. The parameters of VGG16 model. 

 
 

Figure 4. Pooling layer, with filters size 2x2 and stride 2 

2.3 Multiple Pyramid Pooling Layer 

The convolutional neural network described above demands a 

fixed image size, due to the requirement that fully connected 

layers demand a fixed-size input. However, convolutional layers 

accept inputs of arbitrary sizes and use sliding filters to generate 

feature maps, which involves not only the strength of the 

responses, but also their spatial relationship. Therefore, the only 

part that limits the input image size is fully connected layers. To 

address issue, a multiple pyramid pooling hierarch is used here. 

Our multiple pyramid pooling module works between 

convolutional layers and fully connected layers. The multiple 

pyramid pooling module fuses feature under different scales. To 

illustrate it in detail, the input feature map, generated by 

convolutional layers, was divided into different size grids by 

adopting varying-size pooling kernels with varying strides. Our 

pyramid pooling module adopts a three-level pyramid pooling 

structure, with bin sizes of 1×1, 2×2, 3×3, after performing 

experiments to test classification accuracy under different 

pyramid pooling level. In each spatial bin, we found the 

maximum number in feature map patches to produce fixed-size 

responses. With multiple pyramid pooling, any size input image 

would be divided according to given spatial bins and generate a 

fixed-size feature map. And then the fixed-size feature map 

would be expanded to one-dimension vector which is the input 

of fully connected layer.  

Interestingly, under the extreme circumstance, the pyramid 

structure could be one single bin and the operation would find 

max number in feature map. This is in fact a ‘global pooling’ 

operation, which is also investigated in several concurrent works. 

(Lin, Chen, 2013) used a global average pooling to reduce the 

number of parameters and also reduce overfitting. (Oquab et al. 

2014) used a global max pooling for weakly supervised object 

recognition. 

3. MATERIALS AND EXPERIMENT 

3.1 Datasets 

In this paper we selected two datasets for experiment, UC-

Merced dataset (Yang, Newsam, 2010) and NWPU-RESISC45 

dataset (Cheng et al. 2017). The UC-Merced dataset was 

provided by United States Geological Survey (USGS). There are 

21 classes of scene and 100 images in each scene category, with 

the spatial resolution of 0.3 meter. And every image is composed 

of 256×256 pixels in red green blue (RGB) color space. The 21 

categories, as shown is Figure 5, include agricultural, airplane, 

baseball diamond, beach, buildings, chaparral, dense residential, 

forest, freeway, golf course, harbour, intersection, medium 

density residential, mobile home park, overpass, parking lot, river, 

runway, sparse residential, storage tank and tennis courts. This 

dataset has several highly overlapping classes, such as sparse 
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residential, medium residential and dense residential, which only 

differ in the density of buildings so that it is a challenging work 

to classify this dataset. 

Another dataset is NWPU-RESISC45, which is one of the largest 

remote sensing image scene datasets. This dataset was provided 

by North-western Polytechnical University (NWPU). The dataset 

contains 31,500 images in total with 45 scene classes and each 

class contains 700 images. And the spatial resolution of images 

varies from 30m to 0.2m. The different spatial resolution and rich 

variations, such as shooting angle, illumination, background, 

contained in each category extremely increased difficulty for 

classification. The scene categories in NWPU-RESISC45 dataset 

are: airplane, airport, beach, bridge, chaparral, runway, sea ice, 

ship, commercial area, tennis court, sparse residential, dense 

residential, desert, forest, mobile home park, mountain, freeway, 

intersection, church, circular farmland, cloud, baseball diamond, 

basketball court, golf course, ground track field, harbor, 

industrial area, island, lake, meadow, medium residential, 

overpass, palace, parking lot, wetland, railway, railway station, 

rectangular farmland, river, roundabout, snow berg, storage tank, 

terrace, thermal power station and stadium. 

 

   
 (1) (2) (3) 

   
(4) (5) (6) 

   
(7) (8) (9) 

   
(10) (11) (12) 

   
(13) (14) (15) 

   
(16) (17) (18) 

   
(19) (20) (21) 

Figure 5. Categories in UC-Merced dataset: (1) agriculture; 

(2) airplane; (3) baseball diamond; (4) beach; (5) buildings; 

(6) chaparral; (7) dense residential; (8) forest; (9) freeway; 

(10) golf course; (11) harbor; (12) intersection; (13) medium 

residential; (14) mobile home park; (15) overpass;             

(16) parking lot; (17) river; (18) runway; (19) sparse 

residential; (20) storage tanks; and (21) tennis court. 

 

3.2 Experiment and Evaluation Protocol  

We used open-source TensorFlow (https://www.tensorflow.org/) 

framework to implement our proposed architecture. For UC-

Merced and NWPU-RESISC45 datasets, 20% of the samples are 

randomly selected for testing. Data augmentation was used to 

generate sufficient data to train an effective model. Our 

augmentation operations mainly included rotating original 

images in four different orientations(0°, 90°, 180°, 270°) 

and randomly adding the White Gaussian Noise. Back 

propagation algorithm was used to train the convolutional layers 

and the fully connected layers. We used stochastic gradient 

descent algorithm based on mini-batch to optimize parameters, 

and the batch size for each iteration in the training is 32. Other 

hyper-parameters used for training were set as follows. The 

learning rate was set to 0.001. The maximum number of iterations 

was 20000. It is worth noticing that our architecture is fine-tuned 

from the pre-trained VGG16 model on ImageNet, while the 

multiple pyramid pooling module was trained from scratch. In all 

experiments, all parameters trained from scratch were initialized 

by Gaussian distribution with zero mean and unit variance. Our 

program was run on a PC with 2 3.2GHz 8-core CPUs, 32GB 

memory and a NVIDA TITAN X GPU for acceleration.  

Overall accuracy and confusion matrix were reported to compare 

results with original VGG16 network. The overall accuracy is 

defined as the number of correctly classified images divided by 

the total number of images. The confusion matrix is an 

informative table used for analysing the classification errors and 

confusions between different categories. We obtained confusion 

matrix through counting correct and incorrect classifications of 

test images in each class and summing up the results. 

 

4. RESULTS AND DISCUSSION 

4.1 Experiments on UC-Merced  

Table 2 shows the performance comparison between the original 

VGG16 and our model on UCM dataset and NWPU dataset. As 

can be seen from Table 2, our classification method, by adding 

multiple pyramid pooling layer, achieved better overall accuracy 

of 93.24% and 88.62%, both on UCM dataset and NWPU-

RESISC45 dataset, respectively 1.39%, 4.06% higher than 

original VGG16 model. In original VGG16 network and our 

model, the convolutional layers have the same structures, 

whereas the multiple pyramid pooling layer was added between 

convolutional layers and fully connected layers in our model. For 

results in Table 2, a 3-level pyramid pooling structure was used. 

The pyramid structure is {1×1, 2×2, 3×3} (totally 14 bins). 

Worthy of mention is that the overall accuracy improvement not 

simply due to more parameters; rather, it is because the multiple 

level pooling operation is robust to the variance in object 
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deformations and spatial layout (Lazebnik et al. 2006). In remote 

sensing image scene, object deformation is easy to occur as 

shooting gesture changing. And spatial layout of objects is one of 

the most important features for remote sensing image 

classification, because most natural and artificial ground objects 

showed clustering feature in aerial images. The multiple spatial 

pyramid pooling could reduce the negative influences of spatial 

layout and object deformation so that the overall accuracy gained 

improvement, at the same time the input image size limitation 

was eliminated. 

Figure 6 shows the per-class classification accuracies of our 

model on UC-Merced dataset. From the data shown in Figure 5, 

we can see that chaparral, forest, parking lot and runway got 

highest classification accuracy, whereas intersection got lowest 

accuracy 69%, 6% of which were classified into storage tanks. 

Through manual interpreting for images in intersection class, at 

the same time comparing them with the images of storage tanks 

category, we see that these two totally unrelated categories in 

literal, share a common feature that most of them had huge 

shadows area around the object. This result is possibly explained 

by the fact that shadow area in image is sharp color transition area 

and the network memorized this color transition feature 

incorrectly. Particularly, for similar and easily confused scenes 

like medium residential and dense residential, only small portion 

of dense residential were misidentified as medium residential, 

which partly showed the classification capability of our model.  

Figure 7 showed us the classification performance of our model 

in each category on the NWPU-RESISC45 dataset. For 

categories which has clear feature to distinguish, such as lake, 

cloud and sea ice, higher classification accuracy was obtained. It 

is worth noticing that 12% medium residential was classified as 

dense residential, similar to the experiment result on UCM 

dataset.  

 

Dataset Method Overall Accuracy(%) 

 

UC-Merced 

VGG16 91.85 

Our model 93.24 

NWPU-

RESISC45 

VGG16 84.56 

Our model 88.62 

Table2. Overall Accuracy Comparison 

 

 
Figure 6. Confusion matrix of our model on UCM dataset 

 
Figure 7. Confusion matrix of our model on NWPU dataset 

 

To analyse the impact of multiple pyramid pooling structure (bin 

size and level), multiple experiments were conducted with 

different bin size and pyramid level on UCM dataset. As shown 

in Table 3, it can be seen that single bin one level pyramid got 

worse result than original VGG16 network, whereas 3×3 bin 

structure got highest accuracy in one-level pyramid structure. As 

the pyramid level increased, the accuracy also increased. But 

three-level pyramid pooling structure worked better than four-

level one.  

Dataset Pyramid Structure Overall Accuracy(%)  

 None 91.85 

 

 

 

UC-

Merced 

1×1 90.07 

3×3 91.89 

5×5 90.58 

1×1, 3×3 92.78 

1×1, 2×2, 3×3 93.24 

1×1, 2×2, 3×3, 5×5 93.01 

Table 3. Pyramid Structure Impact Comparison 

 

Summarizing the above result and discussion, we find our 

architecture could not only support arbitrary size of input image, 

but also got improvement in accuracy. According to the result 

that it got a little more accuracy improvement on NWPU-

RESISC45 dataset which has more categories than UCM, it is 

possible that multiple pyramid pooling module works better for 

dataset with more categories. Through analysing different 

structure of pyramid pooling, we see that multi-level pyramid 

structure gained better accuracy than single-level pyramid, but 

accuracy is not always increasing as pyramid level goes up. 

 

5. CONCLUSION 

This paper proposes a new framework for high resolution remote 

sensing (HRRS) images scene classification based on 

convolutional neural network. To eliminate the requirement of 

fixed-size input image, multiple pyramid pooling strategy is 

equipped. It can be concluded that, this new method not only 
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supports arbitrary size of input image, but also achieves higher 

accuracy over the original convolutional neural network model. 

On both UC-Merced and NWPU-RESISC45 datasets, our 

method achieves good accuracy. 

In future, we intend to use more modern neural networks as our 

baseline to prove the effectiveness of multiple pyramid pooling 

module. In order to get more accurate remote sensing scene 

classification result, other features could be introduced such as 

point of interest (POI), social media data, etc. New technologies 

to combine these features also should be explored.  
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