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ABSTRACT:

Remote sensing image scene classification has gained remarkable attention, due to its versatile use in different applications like
geospatial object detection, ground object information extraction, environment monitoring and etc. The scene not only contains the
information of the ground objects, but also includes the spatial relationship between the ground objects and the environment. With
rapid growth of the amount of remote sensing image data, the need for automatic annotation methods for image scenes is more urgent.
This paper proposes a new framework for high resolution remote sensing images scene classification based on convolutional neural
network. To eliminate the requirement of fixed-size input image, multiple pyramid pooling strategy is equipped between convolutional
layers and fully connected layers. Then, the fixed-size features generated by multiple pyramid pooling layer was extended to one-
dimension fixed-length vector and fed into fully connected layers. Our method could generate a fixed-length representation regardless
of image size, at the same time get higher classification accuracy. On UC-Merced and NWPU-RESISC45 datasets, our framework

achieved satisfying accuracies, which is 93.24% and 88.62% respectively.

1. INTRODUCTION

Remote sensing is a non-contact technology which enables rapid
and large-scale acquisition of information. With the development
of satellite sensors, large amounts of high-resolution remote
sensing (HRRS) images are readily available. Remote sensing
image scene classification, which mainly focuses on labelling
remote sensing image with a specific semantic category, has
gained remarkable attention and has been widely applied in
versatile scenarios including geospatial object detection, ground
object information extraction, environment monitoring and etc.
(Huetal. 2013, Zhang et al. 2016) As spatial resolution of remote
sensing images improves continuously, people want to mine a
higher level of semantic information from HRRS images. And
ground objects form different semantic scene categories through
different spatial distribute pattern, (Bratasanu et al. 2011, Lienou
et al. 2010) via using detailed information provided by HRRS
images. The scene not only contains the information of the
ground objects, but also includes the spatial relationship between
the ground objects and the environment. With rapid growth of the
amount of remote sensing image data, the need for automatic
annotation methods for remote sensing images is more urgent.

In past decades, many methods have been proposed for remote-
sensing scene classification. In general, these methods could be

divided into three groups, according to features representing level.

Firstly, methods using low-level features. These methods usually
utilize hand-crafted features to classify remote sensing images,
which rely heavily on the experience and domain knowledge of
experts, such as spectral, colour, texture and shape information
or their combination. One of the most popularly used features is
scale invariant feature transform (SIFT) (Lowe et al. 2004, Shao
et al. 2013). SIFT is a kind of local feature descriptor in image
processing area, which could describe local variations of

structures in images and would not be affected by image size and
rotation. (Yang et al. 2008) compared SIFT and Gabor texture
features for classifying remote sensing images and showed that
SIFT performs better. Other low-level features, like histograms
of oriented gradients (HOGs) (Dalal, Triggs, 2005) and global
color descriptors, could depict the spatial arrangements of images
and break the limitation that local descriptors cannot show global
distributions of spatial cues. However, due to the lack of
consideration for the details of actual data, it is difficult with
these low-level features to attain a balance between
discriminability and robustness (Chen et al. 2017). And these
low-level features often fail to characterize the complex remote
sensing scenes in HRRS images.

Secondly, mid-level features. These methods mainly focus on
developing a set of basis functions used for feature encoding. One
of the most popularly used mid-level models is the bag-of-visual-
words (BoVW) (Yang et al. 2010). The BoVW-based models
represent an image with the frequency of a collections of ‘visual
words’, which is constructed by encoding local features extracted
from local image patches, such as SIFT and HOGs. The original
BoVW model ignored the spatial order of local features so that it
severely limited the descriptive capability of image
representation. Therefore, many BoVW extensions have been
proposed to depict spatial relationships of local features. For
instance, (Lazebnik et al. 2006) used spatial pyramid matching to
avoid this issue. Although these models increased the capability
of feature relationship representing, they still demand prior
knowledge for hand-crafted feature extraction, lacking flexibility
in discovering high-level semantic meaning.

Recently, methods based on deep learning technology, especially
the convolutional neural network (CNN), have made great
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breakthroughs in image classification, video surveillance, object
detection and many other computer vision fields. The typical
convolutional neural networks, including Alexnet, VGGNet,
GoogleNet, have been successfully applied in image
classification tasks (Szegedy et al. 2014, Krizhevsky et al. 2017,
Simonyan et al. 2014). These models are mostly composed of
multiple convolutional layers, pooling layers and fully connected
layers. These outstanding CNNs for object classification tasks
can be pre-trained on large natural image datasets such as
ImageNet (Deng et al. 2009). As discriminative high-level
feature extractor, these pretrained CNN models can be
transferable to many other domains. Due to its good feature
extraction and classification ability, CNN has gradually attracted
the attention of remote sensing communities. (Zeng et al. 2018)
integrated global-context and local-object features from remote
sensing images to address the issue that it is hard for vanilla
CNNs to focus on both global context and small local objects. (Qi
et al. 2018) used concentric circle pooling in CNNs to alleviate
the problem that conventional CNNs are sensitive to rotation of
remote sensing image. These methods showed us it is transferable
for CNNs to address remote sensing scene classification.

However, remote sensing images are much larger, both in
memory size and image size, than traditional images inputted in
CNNSs, whereas CNNs often requires a fixed-size smaller image,
like 256*256 pixels. In order to satisfy the requirement of
conventional CNNSs, researchers in remote sensing area usually
resized or cropped the large remote sensing image to fixed-size
patches. Unfortunately, the down-sampling of the original remote
sensing image makes the objects smaller and it is harder to extract
corresponding features from image. Besides, the crop operation
would change the characteristics of the data. Inspired by the
success of fast R-CNN in object detection area (Girshick et al.
2015), to solve the above issue, our model, supporting the input
of any size, is designed by adding multiple pyramid pooling layer
in traditional CNNs. In general, our model consists of two parts:
(2) fine-tuning the VGG16 model, pre-trained on the large-scale
natural dataset ImageNet; (2) using multiple pyramid pooling
layer to get the fixed-sized feature so that the model supports
inputting of any size images.

The remainder of this paper is organized as follows. In Section2,
the proposed architecture would be illustrated in detail. In
Section3, the different datasets we used and experiment
conducting details would be introduced. Experiment result and
related discussion would be explained in Section4. Section5
presents the conclusion of this paper.

2. PROPOSED METHOD

In this section, we first introduce the overall architecture of our
proposed method; then the VGG-Base and the multiple pyramid
pooling layer would be explained in detail.

2.1 Overall Architecture

As illustrated in Figure 1, our proposed architecture can be
mainly divided into two parts: VGG-Base (composed of
convolutional layers, fully connected layers and softmax layer),
multiple pyramid pooling layer. The processing flow of our
architecture is as follows. Firstly, an image randomly selected
from the dataset is fed in the VGG-Base without cropping and
resizing operation. Compared with methods requiring fixed-size
input images, usually achieving by resizing images to a certain
scale or cropping fixed-size patches, our method can extract more

applicable features from original-scale images without resizing
or cropping operations.
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Figure 1 Overall Architecture

Taking an image as input, the VGG-Base network, which is the
backbone of work framework, processes multiple convolutional
operations to extract high-level features from the image. After
this process, we got the feature map. Compared with original
image size, the feature map would be down-sampled by 32 times
after 5 max-pooling operations. Then we fed feature map into
multiple pyramid pooling layer, in which the feature map would
be divided into different size grids, according to the given
pooling kernels. Features with different size would be produced
by pooling kernels in multiple pyramid pooling layer, then these
features with different size would be concatenated and expanded
to one-dimension fixed-length vector. Then, the fixed-length
one-dimension vector would be fed into fully connected layers
and softmax classification layer to calculated probability of
classification for every class.

2.2 VGG-Base

The VGG-Base network composed of three parts: (1)
convolutional layers (2)ReLU activation function (3)pooling
layers (4) fully connected and softmax classification layers. The
first three parts were shown in Figure 2 and the last part worked
behind multiple pyramid layer, which could be seen in Figure 1.
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Figure 2 VGG-Base

Comparing to traditional low-level and mid-level feature
extraction methods, such as SIFT and BoVW, convolutional
layers can automatically extract high-level semantic features
from image without hand-crafted feature selection processes.
Convolutional layers contain multiple convolutional kernels,
which are two-dimension matrixes. These convolutional kernels
would slide cross the whole input image based on sliding rules.
Through summing up the multiplication result of input image and
convolutional kernel, the input image could generate feature map.

In general, an activation function should be added after each
convolutional layer to increase the nonlinear fitting capability of
neural network, such as the Sigmoid function, Rectified Linear
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Unit (ReLU). In our model, we used the ReL U as the activation
function. The formula for the ReLU function is :

f(x) = max(0, x) 1)
And ReLU function image was shown in Figure 3.

—— PRelU 10

Figure 3 Image of the ReL.U function.

The pooling layer is to down-sample the image features so that
high-level abstractive semantic information could be extracted
from the image. Here we used max-pooling layers in our model,
which will return the max value from each sub-area. And the
images would be down-sampled by max-pooling layers, causing
1/2 reduction in each images’ height and width. Figure 4 shows
the illustration of max-pooling layer.

The fully connected layers and softmax layers are located behind
multiple pyramid pooling layers, they worked as a classifier to
generate final classification probabilities. After multiple pyramid
pooling layers, a fixed-size feature map would be produced and
we expand it to a one-dimension vector and then fed it into fully
connected layers.

In this paper we utilize the VGG-16 model as our baseline. The
architecture of VGG-16 contains five convolution parts to
generate feature map, two fully connected layers and one softmax
classifier to output classification results. Each of convolution part
has two or three convolutional layers and one max-pooling layer
in it. The parameters of convolution parts are shown in Tablel.

Stage Parameters

conv 3*3-64
conv 3*3-64
max-pool 2*2
conv 3*3-128
conv 3*3-128
max-pool 2*2

conv 3*3-256
conv 3*3-256
conv 3*3-256
max-pool 2*2

Stagel

Stage2

Stage3

conv 3*3-512
conv 3*3-512
conv 3*3-512
max-pool 2*2

Stage4

conv 3*3-512
conv 3*3-512
conv 3*3-512
max-pool 2*2

Table 1. The parameters of VGG16 model.
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2.3 Multiple Pyramid Pooling Layer

The convolutional neural network described above demands a
fixed image size, due to the requirement that fully connected
layers demand a fixed-size input. However, convolutional layers
accept inputs of arbitrary sizes and use sliding filters to generate
feature maps, which involves not only the strength of the
responses, but also their spatial relationship. Therefore, the only
part that limits the input image size is fully connected layers. To
address issue, a multiple pyramid pooling hierarch is used here.

Our multiple pyramid pooling module works between
convolutional layers and fully connected layers. The multiple
pyramid pooling module fuses feature under different scales. To
illustrate it in detail, the input feature map, generated by
convolutional layers, was divided into different size grids by
adopting varying-size pooling kernels with varying strides. Our
pyramid pooling module adopts a three-level pyramid pooling
structure, with bin sizes of 1x1, 2x2, 3x3, after performing
experiments to test classification accuracy under different
pyramid pooling level. In each spatial bin, we found the
maximum number in feature map patches to produce fixed-size
responses. With multiple pyramid pooling, any size input image
would be divided according to given spatial bins and generate a
fixed-size feature map. And then the fixed-size feature map
would be expanded to one-dimension vector which is the input
of fully connected layer.

Interestingly, under the extreme circumstance, the pyramid
structure could be one single bin and the operation would find
max number in feature map. This is in fact a ‘global pooling’
operation, which is also investigated in several concurrent works.
(Lin, Chen, 2013) used a global average pooling to reduce the
number of parameters and also reduce overfitting. (Oquab et al.
2014) used a global max pooling for weakly supervised object
recognition.

3. MATERIALS AND EXPERIMENT
3.1 Datasets

In this paper we selected two datasets for experiment, UC-
Merced dataset (Yang, Newsam, 2010) and NWPU-RESISC45
dataset (Cheng et al. 2017). The UC-Merced dataset was
provided by United States Geological Survey (USGS). There are
21 classes of scene and 100 images in each scene category, with
the spatial resolution of 0.3 meter. And every image is composed
of 256x256 pixels in red green blue (RGB) color space. The 21
categories, as shown is Figure 5, include agricultural, airplane,
baseball diamond, beach, buildings, chaparral, dense residential,
forest, freeway, golf course, harbour, intersection, medium
density residential, mobile home park, overpass, parking lot, river,
runway, sparse residential, storage tank and tennis courts. This
dataset has several highly overlapping classes, such as sparse
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residential, medium residential and dense residential, which only
differ in the density of buildings so that it is a challenging work
to classify this dataset.

Another dataset is NWPU-RESISC45, which is one of the largest
remote sensing image scene datasets. This dataset was provided
by North-western Polytechnical University (NWPU). The dataset
contains 31,500 images in total with 45 scene classes and each
class contains 700 images. And the spatial resolution of images
varies from 30m to 0.2m. The different spatial resolution and rich
variations, such as shooting angle, illumination, background,
contained in each category extremely increased difficulty for
classification. The scene categories in NWPU-RESISCA45 dataset
are: airplane, airport, beach, bridge, chaparral, runway, sea ice,
ship, commercial area, tennis court, sparse residential, dense
residential, desert, forest, mobile home park, mountain, freeway,
intersection, church, circular farmland, cloud, baseball diamond,
basketball court, golf course, ground track field, harbor,
industrial area, island, lake, meadow, medium residential,
overpass, palace, parking lot, wetland, railway, railway station,
rectangular farmland, river, roundabout, snow berg, storage tank,
terrace, thermal power station and stadium.

(19) (20)
Figure 5. Categories in UC-Merced dataset: (1) agriculture;
(2) airplane; (3) baseball diamond; (4) beach; (5) buildings;
(6) chaparral; (7) dense residential; (8) forest; (9) freeway;
(10) golf course; (11) harbor; (12) intersection; (13) medium
residential; (14) mobile home park; (15) overpass;

(16) parking lot; (17) river; (18) runway; (19) sparse
residential; (20) storage tanks; and (21) tennis court.

3.2 Experiment and Evaluation Protocol

We used open-source TensorFlow (https://www.tensorflow.org/)
framework to implement our proposed architecture. For UC-
Merced and NWPU-RESISCA45 datasets, 20% of the samples are
randomly selected for testing. Data augmentation was used to
generate sufficient data to train an effective model. Our
augmentation operations mainly included rotating original
images in four different orientations(0° , 90° , 180° , 270° )
and randomly adding the White Gaussian Noise. Back
propagation algorithm was used to train the convolutional layers
and the fully connected layers. We used stochastic gradient
descent algorithm based on mini-batch to optimize parameters,
and the batch size for each iteration in the training is 32. Other
hyper-parameters used for training were set as follows. The
learning rate was set to 0.001. The maximum number of iterations
was 20000. It is worth noticing that our architecture is fine-tuned
from the pre-trained VGG16 model on ImageNet, while the
multiple pyramid pooling module was trained from scratch. In all
experiments, all parameters trained from scratch were initialized
by Gaussian distribution with zero mean and unit variance. Our
program was run on a PC with 2 3.2GHz 8-core CPUs, 32GB
memory and a NVIDA TITAN X GPU for acceleration.

Overall accuracy and confusion matrix were reported to compare
results with original VGG16 network. The overall accuracy is
defined as the number of correctly classified images divided by
the total number of images. The confusion matrix is an
informative table used for analysing the classification errors and
confusions between different categories. We obtained confusion
matrix through counting correct and incorrect classifications of
test images in each class and summing up the results.

4. RESULTS AND DISCUSSION
4.1 Experiments on UC-Merced

Table 2 shows the performance comparison between the original
VGG16 and our model on UCM dataset and NWPU dataset. As
can be seen from Table 2, our classification method, by adding
multiple pyramid pooling layer, achieved better overall accuracy
of 93.24% and 88.62%, both on UCM dataset and NWPU-
RESISC45 dataset, respectively 1.39%, 4.06% higher than
original VGG16 model. In original VGG16 network and our
model, the convolutional layers have the same structures,
whereas the multiple pyramid pooling layer was added between
convolutional layers and fully connected layers in our model. For
results in Table 2, a 3-level pyramid pooling structure was used.
The pyramid structure is {1x1, 2x2, 3x3} (totally 14 bins).
Worthy of mention is that the overall accuracy improvement not
simply due to more parameters; rather, it is because the multiple
level pooling operation is robust to the variance in object
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deformations and spatial layout (Lazebnik et al. 2006). In remote
sensing image scene, object deformation is easy to occur as
shooting gesture changing. And spatial layout of objects is one of
the most important features for remote sensing image
classification, because most natural and artificial ground objects
showed clustering feature in aerial images. The multiple spatial
pyramid pooling could reduce the negative influences of spatial
layout and object deformation so that the overall accuracy gained
improvement, at the same time the input image size limitation
was eliminated.

Figure 6 shows the per-class classification accuracies of our
model on UC-Merced dataset. From the data shown in Figure 5,
we can see that chaparral, forest, parking lot and runway got
highest classification accuracy, whereas intersection got lowest
accuracy 69%, 6% of which were classified into storage tanks.
Through manual interpreting for images in intersection class, at
the same time comparing them with the images of storage tanks
category, we see that these two totally unrelated categories in
literal, share a common feature that most of them had huge
shadows area around the object. This result is possibly explained
by the fact that shadow area in image is sharp color transition area
and the network memorized this color transition feature
incorrectly. Particularly, for similar and easily confused scenes
like medium residential and dense residential, only small portion
of dense residential were misidentified as medium residential,
which partly showed the classification capability of our model.

Figure 7 showed us the classification performance of our model
in each category on the NWPU-RESISC45 dataset. For
categories which has clear feature to distinguish, such as lake,
cloud and sea ice, higher classification accuracy was obtained. It
is worth noticing that 12% medium residential was classified as
dense residential, similar to the experiment result on UCM
dataset.

Dataset Method Overall Accuracy(%)
VGG16 91.85
UC-Merced Our model 93.24
NWPU- VGG16 84.56
RESISC45 Our model 88.62

Table2. Overall Accuracy Comparison

Figure 6. Confusion matrix of our model on UCM dataset

H H

Figure 7. Confusion matrix of our model on NWPU datz;set

To analyse the impact of multiple pyramid pooling structure (bin
size and level), multiple experiments were conducted with
different bin size and pyramid level on UCM dataset. As shown
in Table 3, it can be seen that single bin one level pyramid got
worse result than original VGG16 network, whereas 3x3 bin
structure got highest accuracy in one-level pyramid structure. As
the pyramid level increased, the accuracy also increased. But
three-level pyramid pooling structure worked better than four-
level one.

Dataset Pyramid Structure Overall Accuracy(%)
None 91.85
1x1 90.07
3x3 91.89
uc- 5%5 90.58
Merced
1x1, 3%3 92.78
1x1, 2x2, 3x3 93.24
1x1, 2x2, 3%3, 5x5 93.01

Table 3. Pyramid Structure Impact Comparison

Summarizing the above result and discussion, we find our
architecture could not only support arbitrary size of input image,
but also got improvement in accuracy. According to the result
that it got a little more accuracy improvement on NWPU-
RESISC45 dataset which has more categories than UCM, it is
possible that multiple pyramid pooling module works better for
dataset with more categories. Through analysing different
structure of pyramid pooling, we see that multi-level pyramid
structure gained better accuracy than single-level pyramid, but
accuracy is not always increasing as pyramid level goes up.

5. CONCLUSION

This paper proposes a new framework for high resolution remote
sensing (HRRS) images scene classification based on
convolutional neural network. To eliminate the requirement of
fixed-size input image, multiple pyramid pooling strategy is
equipped. It can be concluded that, this new method not only
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supports arbitrary size of input image, but also achieves higher
accuracy over the original convolutional neural network model.
On both UC-Merced and NWPU-RESISC45 datasets, our
method achieves good accuracy.

In future, we intend to use more modern neural networks as our
baseline to prove the effectiveness of multiple pyramid pooling
module. In order to get more accurate remote sensing scene
classification result, other features could be introduced such as
point of interest (POI), social media data, etc. New technologies
to combine these features also should be explored.
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