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ABSTRACT: 

 

Relying on landmarks for robust geolocation of drone and targets is one of the most important ways in GPS-denied environments. 

For small drones，there is no direct orientation capability without high-precision IMU. This paper presents an automated real-time 

matching and geolocation algorithm between video keyframes and landmark database based on the integration of visual SALM   and 

YOLOv3 deep learning network method. The algorithm mainly extracts the landmarks from the drone video keyframe images to 

improve target geolocation accuracy, and designs different processing scheme of the keyframes which contains rich and spare 

landmarks. For feature extraction matching, we improved ORB feature extraction strategy, and obtained a more uniformly 

distributed feature points than original ORB feature extraction. In the three groups of top-down drone video images experiments, the 

100m, 200m, and 300m of  the case were carried out to verify the robustness of the algorithm and being compared with GPS 

surveying data. The results show that the features of keyframe landmarks in the top-down video images within 300m are stable to 

match the landmark database, the geolocation accuracy is controlled within 0.8m, and it has good accuracy. 
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1. INTRODUCTION 

The ability to accurately detection and orientation ground 

targets is very important in intelligence collection, surveillance, 

and reconnaissance (ISR) missions using UAVs (Kwon, 2012a). 

Global Navigation Satellite System (GNSS) such as GPS and 

BeiDou enable the high accuracy positioning of UAVs (Tahar, 

2016a), which serves as a fundamental task for general UAV 

missions. However, due to the fact that GNSS signals are 

broadcasted from satellites, they are easily affected by weather 

conditions, and are even more easily to be jammed or spoofed, 

making GNSS based positioning schemes far from reliable for 

UAV missions in harsh environments and hostile terrains (Lee, 

2015a, Liao, 2015a). On the other hand, for inertial positioning, 

the large drones with high-precision Inertial Measurement Unit 

(IMU) equipment have low visual positioning accuracy, and 

small reconnaissance drones do not have high-precision IMU 

equipment, so it does not have direct geolocation capability. 

Not all drones can be equipped with expensive high-precision 

equipment such as POS, IMU and other devices for acquiring 

their own pose and position data in real-time, and the flight 

environment is often complex and variable. Strong background 

noise and radio signal interference would limit the drone’s GPS 

signals, which brings great difficulties in acquiring itself and 

the target geo-location. The task is especially challenging when 

GPS signals are not available in GPS-denied environments 

where GPS signal is not available, jammed or too weak to be 

used reliably. In order to realize the timely and effective 

geolocation of the target and self of the drone in an unknown 

environment, one must use other cues to geo-locate objects 

through registration of those objects in that environment (Shih-

Ming, 2012a).  

Numerous researches have been proposed to address the image 

registration problem that could deal with failing in GPS-denied 

environments. The ability to correlate two images of the same 

location but acquired from different sources is challenging. In 

this typical image registration problem, the challenges that arise 

when dealing with UAV image and reference image registration 

can be attributed to: (1) different camera position, rotation, 

resolution, scale, translating, different sensors and illumination 

conditions during the image acquisition phase resulting in 

different object appearance as well as occlusion problems that 

confuse feature-based image registration, (2) dissimilarity in 

camera intrinsic parameters introduces photogrammetric 

differences between the images pair, and (3) difference in 

image acquisition history may result in mismatch between the 

image pair due to objects appearing/disappearing  making 

registration more difficult. (Nassr, 2018a). 

 

Although there are many works on image landmark recognition 

and matching for target geolocation, it is a complex system and 

most works on this area are in a more heuristic and less 

practical approach (Filho, 2015a). The image landmark 

matching aims at finding scale invariant feature consistenting 

with the reference image in the aerial images that are captured 

during the drone flight by an onboard camera. After feature 

matching, the drone location is estimated in real time in order to 

accomplish targets geolocation (Deangelo, 2016a).  This paper 

presents a visual localization method that enable geolocation 

the targets in GPS-denied environment (Fig 1). The contribution 

of this paper is a novel method that optimally combining 

landmarks matching with deep learning network model between 

reference image and UAV video image for targets geolocation 

when GPS signals are not available. The method includes three 

parts. The first part uses convolutional neural network to 

recognize and detect the moving targets of the UAV video 

images, the second part matches the landmarks of the UAV 

video keyframe and reference image, and the third part 

computes the geolocation of the ground detected targets. We 

implement the method using YOLOv3 network model and ORB 
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feature matching. In section 2, we describe the algorithms and 

implementation details of the entirely framework flow. In 

section 3, we present the experimental details and results. 

Finally, we conclude the paper with summary remarks in 

section 4. 

 

2. RELATED WORKS 

Even though landmark recognition and matching is not a new 

subject on the literature for ground target positioning (Farag, 

2004a), the approach for UAV image registration is not well 

explored yet, mostly because of its complexity and high real-

time requirements on precision and computer processing (Silva 

Filho, 2016a). However, automatic image registration servers as 

a fundamental part for high accuracy geolocation resolving (Liu, 

2018). To extend the matching ability of handling large scale 

variations, abundant works on landmark recognition and 

matching for target geolocation takes on the results of already 

developed object-recognition algorithms and adapt them to the 

different aerial circumstances. 

 

Feature based algorithms, such as Scale Invariant Feature 

Transform (SIFT) (Lowe, 2004a), Oriented FAST and Rotation 

BRIEF (ORB) (Rublee, 2011a), AKAZE (Alcantarilla, 2011a), 

have changed the object recognition field of study (Li, 2015).  

In (Lee, 2010a) the method first extracts feature points from the 

image data taken by a monocular camera using the SIFT 

algorithm. The system selects landmark feature points that have 

distinct descriptor vectors among the feature points, calculate 

those points location and store them in a database. Based on the 

landmark information, the current position of the UAV is 

estimated. It considers as a landmark just the exact feature point 

instead of an object. This method has been used for indoor 

applications, which is a controlled environment. In outdoors 

flights, this application could not be used properly because the 

amount of similar features would result in a high rate of false 

positive encounters. 

 

Some methods proposed recognizing image descriptors of local 

intensity patterns to register successive images such as the 

Kanade-Lucas-Tomasi feature tracker (KLT) (Vivet, 2011a) 

which is one of the optical flow techniques (Baker, 2004). Here, 

both KLT and optical flow have been used in many image 

registration applications under similar quality (Rebiere, 2008a).  

In (Kwon, 2012a) proposed a new method to compute the UAV 

attitude and locate mobile ground targets using ground 

landmarks obtained from SIFT features. In (Lin, 2007a) have 

proposed an UAV-based image registration system, SIFT 

features are used for consecutive UAV image registration. 

However, for a realistic application, the quality mismatch 

would appear between the UAV image and the reference image, 

this will greatly degrade the performance of image registration. 

 

Besides, many works have focused on aggregation methods of 

local features, which include popular techniques such as VLAD 

(Jegou, 2011a) and Fisher Vector (FV) (Jegou, 2012a). The 

main advantage of such global descriptors is the ability to 

provide high-performance image retrieval with a compact index. 

For similarity measurement, Bag-of-Features (BOF) model is 

widely used in image retrieval context (Nister, 2006a, Philbin, 

2007a, Sivic, 2003a). However, it is generally very hard for flat 

BoF model to distinguish images with large scale differences 

from the negative ones due to lack of overlap.  

In the past few years, several global descriptors based on CNNs 

have been proposed to use pretrained (Babenko, 2014a, Tolias, 

2015a) or learned networks (Gordo, 2016a, Radenovic, 2016a). 

CNNs have also been used to detect, represent and compare 

local image features. In (verdie, 2014a) learned a regressor for 

repeatable keypoint detection. In (Yi, 2016a) proposed a 

generic CNN-based technique to estimate the canonical 

orientation of a local feature and successfully deployed it to 

several different descriptors. In (Yuting, 2017a) proposes a 

deep learning method to jointly learn the feature representations 

and similarity metric over the training samples obtained from 

various imaging conditions. It turned out that CNN feature 

network obtained significantly better results than the local-

feature-based methods and holistic-representation-based 

methods. 

 

3. GEOLOCATION FRAMEWORK 

The core of the proposed framework for real-time drone video 

image registration and target geolocation can be built as shown 

in Figure 1. The framework mainly consists of four modules, 

including a data input module, a landmark matching module, a 

target detection and recognition module, and a real-time target 

geolocation module. Each of the following sections presents 

details of the framework modules. 

Reference 

image
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Keyframe
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 Mark targets
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Figure 1. The major modules of proposed framework 

 

3.1 Data Input 

The framework processes image from two different sources: 

UAV video image and reference image. To improve the 

registration efficiency, we selected keyframe image from the 

real-time video image for registration. 

 

UAV Video:  The framework accepts a video from the UAV 

denoted as S. From S, we extract S(i) (video keyframe) which 

we compare to a reference map (M). It is important to note that 

the initial starting GPS coordinate of the UAV is assumed to be 

known and can be defined as the center pixel of S(1). This 

assumption is made based on notion that a UAV cannot be 

deployed without knowing its location. 

 

Reference Image: The framework uses a reference map M with 

known GPS bounds. Mainly the process is finding out where S(i) 

resides in M and subsequently estimating the position of S(i). 

Using equations (1) and (2), it is possible to calculate a certain 

GPS coordinate. The opposite is also possible to estimate the 

latitude and longitude of a pixel using equations (3) and (4) 

(Nassar, 2018a). 
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Where   , = latitude and longitude of a pixel  

, , , = bounds of M. 

 

3.2 Landmark Matching 

The reference image area used to extract landmarks is much 

larger than the UAV video frame image, and there are feature 

rich areas and feature sparse areas on the image. The feature 

rich areas matching effect is better, but the time consumption is 

serious, it is difficult to meet the real-time matching geolocation 

requirements. The feature sparse areas are difficult to match 

with the reference image landmarks database, resulting in low 

precision of the transformation matrix of the video frame image 

to the reference image, which does not meet the accuracy 

requirement of the moving target geolocation. The algorithm 

designs the processing scheme of the keyframe which contains 

rich and sparse landmarks.  

 

For scenario one: keyframes contain rich landmarks. In order to 

ensure the distribution uniformity of landmarks feature 

extraction and matching as much as possible, and to improve 

the accuracy of landmark feature matching, we use the image 

feature pyramid model to divide the reference image into 

different levels, and then divide the reference image of each 

level into  sub-regions for completing the gridding of 

different levels of images in the image pyramid model. The 

number of subregions corresponding to different levels is equal 

to the square of the level L of the image feature pyramid, the 

top layer of the image pyramid is the Lth layer, and the bottom 

layer is the first layer, and then we extract a fixed number ORB 

feature from each subregion in every level. Next we calculate 

the ORB feature descriptors of the keyframe and based on the 

Euclidean distance match these descriptors with the reference 

image landmark feature descriptors to achieve the absolute 

position measurement between the UAV and the target (Filho, 

2017a).  

 

Figure 2 briefly shows the flow chart of registration from 

keyframe to reference image. We could provide a sequence of 

UAV video keyframe images , and a reference image 

M in practical. Here, we assume  denote the homography 

from Ii  to Ij , denotes the homography from Ii to M 

(Huang, 2013a,  Kwon, 2012a, Lin, 2007a ). 
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Figure 2. Registration from keyframe to reference image 

For scenario two: keyframes contain sparse or even no 

landmarks. At this time, the keyframe and the reference image 

are mismatched, and the matching of the real-time video frame 

with the reference image is abandoned, and the matching of the 

dynamic keyframe in the video image is utilized to achieve the 

relative position estimation of the drone and the target. Assume 

the video image acquired by the drone is represented as I, there 

are , as the adjacent two keyframe images, where , 

 represents the frame rate, and its adjustment can adapt to the 

matching rate of the platform while ensuring real-time 

performance. Usually, the continuous two keyframe images are 

an approximate linear smooth transformation process, there is 

no significant change, so the real-time performance of the ORB 

feature can be used for feature points extraction and matching 

to obtain homography matrix between video keyframes. The 

flow of registering as illustrated in Figure 3. 

 

Figure 3.   video image dynamic keyframes registration 

Let  denote the keyframe image  to  transform the 

homography matrix, then 

 

                                            (5) 

 

Where  , then 

 

,       (6) 

 

Where   = focal length  

 is camera rotation angle. 

 

3.3 Targets Detection and Recognition 

We choose a deep learning detection model based on region 

regression to meet the high real-time requirements for target 

detection. Here we use the YOLOv3 deep learning network 

model for target recognition and detection on drone video 

images (Redmon, 2018a), the MS-COCO, ImageNet and 

CIFAR-10 datasets published on the internet have fewer top-

down images for the drone, and directly use the public dataset 

to train the network, which is difficult to obtain a better target 

recognition effect. It is not easily found datasets of aerial 

images with corresponding flight data in the literature results 

and in order to test the method and analyse the results that this 

particular drone image dataset was produced. Therefore, we 

have established a new dataset of drone top-down images with 

its ground-truth (Yoon, 2009a). To further enhance the 

performance of the proposed method, we adjusted the network 

model parameters according to actual situation and then trained. 

The target detection threshold is set to 0.1. The dataset contains 

10 videos with a total of over 1000 images with an average of 

40 vehicle per image. We annotate the location and class name 

of the object in each image by using the Yolo_mark tool. The 
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dataset has 3 classes (car, bus, truck) and over 40000 bounding 

boxes. Furthermore, the shot scene and shot time of the videos 

are various. Therefore, the dataset has real data distribution  and 

high diversity. Table 1 shows several attributes of the proposed 

UAV image dataset. The dataset contains most real world 

challenges including occlusion, size change, camera motion, 

motion blur, and dynamic change. 

Table1: some attributes of  video training dataset 

Attribute Value 

Video sequences 

Class numbers 

Total Images 

Total bounding boxes 

Image depth 

Image resolution 

Experiment platform 

10 

3 

Over 1000 

Over 40000 

24 bits 

4000 ×3000 

DJI MAVIC 2 drone 

 

3.4 Real-time Target Geolocation 

YOLOv3 deep learning network model predicts bounding boxes 

using dimension clusters as anchor boxes. The network predicts 

4 coordinates for each bounding box, , , , . The cell is 

offset from the top left corner of the image by  and the 

bounding box prior has width and height , , then the 

predictions correspond to , , ,  (Redmon, 2018a). we 

can solve the geolocation of vehicle target by calculating the 

central point of the detected target according to bounding boxes 

coordination.  In this step, coordinate system transformation is 

very important. we convert the image pixel coordinates of the 

vehicle target to the UAV camera coordinates, and then convert 

to the world coordinates to solve target geolocation. Here, we 

think the UAV coordinate system and the camera coordinate 

system are equal and the initial UAV geolocation is known. 

Considering  the georeferencing 

relation from the video image T with the Object Reference 

Space Image G, and  the Geometric 

Transformation that maps the video image T in the query image 

Q, it is possible to build the geo-referencing transform H, from 

the query image Q, in which: 

 

              (7) 

 

4. EXPERIMENTS AND RESULTS 

In this section we present the quantitative and qualitative results 

of applying this method on several real video images. The 

experiments developed intended to validate the proposed 

method to estimate the geolocation of ground detected target. 

The experimental performed focused on recognizing moving 

vehicle target geolocation and on how accurate those  

geographical coordinates were, compared with previously 

known DOM data. The DOM image was produced from 62 

drone images with an image resolution of 5cm. The 

experiments were performed in a Win 10 PC with a 2.5GHz 

Intel Core i7, 4th generation, 8GB RAM and NVIDIA GeForce 

GTX 1050Ti. The programming environment is Visual Studio 

2015 and Qt 5.9.3. 

 

4.1 Landmark Extraction 

We improve the existing ORB feature detection algorithm by 

gridding image pyramid in order to extract uniformly 

distributed landmark points. The main consideration is setting 

the scale factor (actually 1.2) and the number of pyramid layers 

(actually 8) when ORB feature is extracted. The original image 

is reduced by scale factor and scaled by 1/1.2 times, then we 

obtained an image pyramid with 8 layers by downsampling. we 

expressed the process of scaled image as  

. Next, the obtained image is extracted 

ORB features according to the gridded image block, as shown 

by the yellow area in the  layer, and recorded, as the figure 4 

shows. 

 

Figure 4. Image feature pyramid model 

We select a small area from the reference image and extract 

original ORB features and the ORB features based on the image 

feature pyramid model. Figure 5 specifically shows the feature 

extraction results in two ways. It can be seen that the feature 

distribution region extracted by the gridding ORB algorithm is 

more uniform, and the matching experiment is more robust. 

 

Figure 5. Feature detection comparison.  The upper figure is the 

reference image, the lower left image is the feature extraction 

result of the ORB algorithm based on the image feature 

pyramid model, and the lower right image is the feature 

extraction result of the ORB algorithm. 

 

4.2 Landmark Matching 

After computing ORB-descriptors for all landmark points, 

feature matching is performed by computing the Euclidean 

distance of these feature vectors for all pairs of landmark points. 

We expect very similar matching distances for landmark points 

describing comparable scene objects in the images. If only the 

nearest neighbour is considered as a match, most of the possible 
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matches will be missed. To solve this problem, a one-to-many 

matching scheme is applied, by taking the Bag of Words (BoW) 

model as putative matches (Fig. 6). 

 

Figure 6. Landmark dictionary build flow 

Figure 6 shows the flow of the landmark points dictionary 

generation. Using standard methods, the correct match would 

most probably be missed, because the descriptors of the 

putative matches are very close to each other. BoW-based 

matching of real-time video image and reference image 

landmark points are conducted with direct index method. The 

BoW model classifies all extracted landmarks on the image, 

then using the classified features instead of the original 

landmark descriptors could improve the efficiency of landmark 

search and matching. 

 

To reduce the number of mismatching, a threshold according to 

the feature matching distance is applied to discard clear 

mismatches, as this is also proposed in the original ORB-

matching (Rublee, Ethan, 2012). Our experiments show that 0.2 

is a good trade-off between rejecting strong outliers and 

retaining enough correct matches.  

 

4.3 Landmark Matching 

In the experiment, we set up 100m, 200m, 300m drone video 

images of different altitudes to detect vehicle targets, and then 

based on the improved ORB algorithm to match real-time video 

images and reference images to obtain geolocation of detected 

moving vehicle targets. For evaluation, the matches created 

with our method are used to estimate a homography H and 

fundamental matrix F together with RANSAC. The following 

shows the experimental results of the target detection and 

geolocation of moving vehicle under different altitudes. 

(1) flight altitude 100m vehicle detection and geolocation 

 

(2) flight altitude 200m vehicle detection  and geolocation  

 

Figure 7. Moving vehicle targets detection and geolocation for 

different flight altitude. ( In the left figure, the green box is used 

to express different classes of vehicle targets detected by the 

YOLOv3 network model. The pixel coordinates of the vehicle 

detected center point are indicated by red crosses, and the blue 

box shows the geo-location of the target，the red box shows 

the selected target in the right figure on the reference map. ) 

 

The experimental results in Figure 7 show that the flight 

altitude 100m and 200m drone video recognition results for 

three classes of moving vehicle targets are quite good, without 

missed recognition and false recognition. Vehicle targets 

geolocation are stable, the recognized vehicle targets can be 

mapped to the reference image robustly. We calculated the 

geographical coordinates estimate of the detected vehicle target 

is (113.5670E, 34.8211N) when flight altitude is 200m, and 

then we obtained the actually measure value is (113.56695E, 

34.82119N), the error control at 0.0001 degrees within the 

range of valid numbers reserved. 

 

For evaluation moving vehicle target positioning accuracy 

robustly, we randomly selected 9 pairs of detected geographical 

coordinates of the vehicle and calculated the difference between 

the target geographical coordinate estimate value and measure 

value (Fig.8). The experimental data shows that there are 

differences between the estimate value and measurement value 

of the target geographical coordinates of the flight altitude of 

100m and 200m. However, it can be seen from the figure that 

the difference between the estimate value and measurement 

value is not significant, and the differences of the longitude and 

latitude are less than 0.0002 degrees when the flight altitude is 

100m, the geolocation accuracy is relatively stable, and the 

longitude and latitude differences fluctuates sharply when the 

flight altitude is 200m, the geolocation accuracy is unstable, the 

maximum and minimum difference reaches 0.0045 degrees. 

Besides, the average error of these 9 pairs of data can meet the 

requirement of less than 0.001degrees from the average error 

histogram figure. 
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Figure 8. Geolocation difference comparison ( The upper figure 

shows the scatter difference of target geolocation data of 100m 

and 200m flight altitude, the under figure shows the difference 

of the estimate value and measurement value) 

 

The first two sets experiment show that target recognition and 

geolocation are robust, but vehicle targets geolocation are 

unstable with increasing mismatch between keyframes and 

landmark database when the flight altitude exceeds 200m. The 

following figure shows the result of vehicle detection and 

geolocation of 300m flight altitude. It can be found that 

different classes of vehicle targets could be detected, but the 

target geolocation effect on the reference image is poor, which 

seriously deviates from the original position of the target and 

could not meet the geolocation requirements. 

 

Figure 9. flight altitude 300m vehicle detection and geolocation 

 

In summary, the experimental shows that the target real-time 

detection and recognition have strong stability and high 

robustness, and the target geolocation accuracy is controlled 

within 0.8m when flight altitude are below 200m by comparing 

target estimated geolocation with measurement geolocation, and 

the target geolocation accuracy is very unstable and poorly 

robust when the flight altitude exceeds 200m.  

 

5. EXPERIMENTS AND RESULTS 

In this paper, low-attitude drone was applied to acquire high 

resolution reference image and real-time video images, we 

proposed a visual localization method based on YOLOv3 deep 

learning network model and ORB feature extraction matching. 

For moving vehicle target detection, we obtained the weight file 

of the YOLOv3 model by training over 1000 images of the DJI 

MAVIC 2 drone containing more than 40000 targets. For 

feature extraction matching, we improved ORB feature 

extraction strategy, and obtained a more uniformly distributed 

feature points than raw ORB feature extraction. Experiments on 

the benchmark visual localization dataset shows that our 

method performs well in visual geolocation within 300m of 

flight altitude. Besides, we compared geographical coordinates 

of  the detected vehicle target estimate value and its measure 

value, the proposed method did not require any prior 

information, which makes our method more practical. In the 

future, we would like to improve the image matching algorithm 

and attempt to replace the YOLOv3 model for target detection. 
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