
 
 

 
      

 

   

 

  

   

 

   

MAPPING GLACIER CHANGES USING CLUSTERING TECHNIQUES ON CLOUD

COMPUTING INFRASTRUCTURE

V. Ayma 1, 2, *, C. Beltrán 1, P. Happ 3, G. Costa 4, R. Feitosa 3, 4

1 Pontifical Catholic University of Peru, 1801 University Ave., Lima, Peru

- (vaaymaq, cbeltran)@pucp.pe
2 Peruvian Navy, 36 Marina Ave., Callao, Peru

3 Pontifical Catholic University of Rio de Janeiro, 225 Marquês de São Vicente St., Rio de Janeiro, Brazil

- (patrick, raul)@ele.puc-rio.br
4 Rio de Janeiro State University, 524 São Francisco Xavier St., Rio de Janeiro, Brazil

- gilson.costa@ime.uerj.br 

 

 

KEY WORDS: Remote Sensing, Big Data, Cloud Computing, Glacier Changes, Clustering Techniques. 

 

 

ABSTRACT: 

 

Climate change and its effects are taking more importance nowadays; and glaciers are one of the most affected ecosystems by that, 

considering that the energy of Earth’s surface and its temperature may be directly related to glacier temporal changes. Then, the 

comprehension of glaciers behaviour, by its retreating or melting critical conditions, can be achieved by the analysis of Remote 

Sensing data, but considering the unprecedented volumes of information currently provided by satellites sensors, we can refer to this 

analysis as a big data problem. Machine learning techniques have the potential to improve the analysis of this type of data; however, 

most current machine learning algorithms are unable to properly process such huge volumes of data. In the attempt to overcome the 

computational limitations related to Remote Sensing Big Data analysis, we implemented the K-Means and Expectation 

Maximization algorithms, as distributed clustering solutions, exploiting the capabilities of cloud computing infrastructure for 

processing very large datasets. The solution was developed over the InterCloud Data Mining Package, which is a suite of distributed 

classification methods, previously employed in hyperspectral image analysis. In this work we extended the functionalities of that 

package, by making it able to process multispectral images using the aforementioned clustering algorithms. To validate our proposal, 

we analysed the Ausangate glacier, located on the Andes Mountains, in Peru, by mapping the changes in such environment through a 

multi-temporal Remote Sensing analysis. Our results and conclusions are focused on the thematic accuracy and the computational 

performance achieved by our proposed solution. Thematic accuracy was assessed by comparing the automatically detected glacier 

areas by the clustering approaches against the manually selected ground truth data. We compared the computational load involved in 

executing the clustering processes sequentially and in a distributed fashion, using a local mode and cluster configuration over a cloud 

computing infrastructure. 
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1. INTRODUCTION 

The scientific community has placed much attention nowadays 

on the understanding of how climate changes affect Earth’s 

behaviour (Houghton, 2001), and the analysis of the cryosphere, 

comprised by sea ice, snow cover, frozen ground and glaciers 

extensions, plays an important role in the characterization of the 

Earth’s climate system (Ke, 2016) (Kaser, 1990). It is expected 

that glaciers extents and thickness decrease as the climate 

warms, as glaciers’ mass fluctuations correlate well with global 

climate changes, which provides strong evidence of the effects 

of global warming on the energy balance of the Earth’s surface 

(Callegari, 2017) (IPCC, 2013). Nevertheless, analysing glacier 

changes is a complex, expensive and time-consuming process, 

mostly affected by the difficulties in consistently collecting 

reliable data, by the large areas involved in the analysis, and by 

the capacity of computational techniques to process big 

amounts of data (Winsvold, 2015) (Racoviteanu, 2010) (Cui, 

2010). 

 

Remote Sensing (RS) can be considered as one of the most 

important and efficient tools for Earth observation (EO). 

According the literature, much effort is placed towards 

comprehensive studying and monitoring of glaciers through 

multi-temporal analysis of remotely sensed multispectral 

images, which can be used for mapping glacier-covered areas 

and help detecting its recessions and fluctuations (Yue, 2018) 

(Paul, 2015) (Muhammad, 2013) (Bolch, 2011) (Kääb, 2012) 

(Willis, 2012) (Raup, 2007) (Barry, 2006) (Kääb, 2014). 

Typically, satellite imagery is used to measure glacier changes 

between images taken at different dates (Vignon, 2003).  

 

With the increasing availability of data provided by new 

constellations of EO satellites, the quantity of RS images 

available has grown exponentially, at higher spatial and 

temporal resolutions. Nevertheless, relatively few approaches 

have been proposed to cope with the challenges imposed by the 

analysis of such large amounts of data, a problem that can be 

characterized as Remote Sensing Big Data analysis (Ghamisi, 

2017) (Li, 2017) (Chi, 2016). 

 

Machine learning techniques have the potential to improve the 

analysis of RS data; however, most current machine learning 

algorithms are unable to properly process very large volumes of 

data (Bekkerman, 2012). This research represents an attempt to 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-29-2019 | © Authors 2019. CC BY 4.0 License.

 
29



 

overcome the limitations of this class of techniques, applied to 

Remote Sensing Big Data analysis.  

 

In this work, the K-Means and the Expectation Maximization 

(EM) clustering algorithms were implemented as distributed 

solutions, which are able to exploit the capabilities of cloud 

computing infrastructure for processing large RS datasets. The 

solution was developed as part of the InterCloud Data Mining 

Package, which is a suite of distributed classification methods, 

previously employed in hyperspectral image analysis (Ayma, 

2017) (Ayma, 2015). In this work we extended the 

functionalities of that package, by making it able to process 

multispectral images using the aforementioned clustering 

algorithms. 

 

We evaluated the application of the clustering techniques for 

analysing the Ausangate glacier, located on the Andes 

Mountains, in Peru, by mapping the changes in that 

environment through multi-temporal RS image analysis. Our 

results and conclusions are focused on the thematic accuracy 

and the computational performance of the proposed solutions. 

Thematic accuracy was assessed by comparing the 

automatically detected glacier areas with ground truth data. 

Additionally, we compared the computational load involved in 

executing the respective processes sequentially and in a 

distributed fashion, using a physical local machine and cloud 

computing infrastructure. 

 

The remainder of this paper is organized as follows; Section 2 

presents a brief overview of the main underlying concepts of the 

InterCloud Data Mining Package, and its extension with the 

aforementioned clustering algorithm. Section 3 describes the 

Ausangate glacier dataset, the experimental design, and the 

results achieved. Finally, conclusions and direction for future 

works are presented in Section 4. 

 

 

2. DESCRIPTION OF THE APPROACH 

Cloud computing refers to the on-demand delivery of 

computing services, servers, compute power, storage, databases, 

networking, software, analytics, applications, and other IT 

resources through a cloud service platform over the Internet,. 

Cloud computing enables users to efficiently exploit a 

distributed infrastructure, with scaling capabilities, according to 

their particular needs (Srinivasan, 2014) (Buyya, 2011) 

(Microsoft Azure, 2019) (Amazon, 2019). 

 

The InterCloud Data Mining Package is an open-source 

distributed tool, able to perform MapReduce-based processes 

over cloud computing infrastructure, supporting distributed 

execution, network communication, and fault tolerance. The 

package was designed to enable the execution of the 

classification algorithms available at the Waikato Environment 

for Knowledge Analysis – WEKA library (WEKA, 2019), over 

large volumes of RS data, through the distribution of data and 

processing tasks among machines connected over a network. In 

this work we included the K-Means and the Expectation 

Maximization (EM) algorithms in the package, embedded into 

the machine learning layer. 

 

K-Means is an iterative algorithm that tries to find the best 

clusters for every sample in a dataset and it requires the 

definition of an initial number of clusters to iterate. To 

determine which sample belongs to a given class, the algorithm 

uses the distances from the centroids of clusters to the sample 

being evaluated, assigning the class as the one corresponding to 

the closest cluster´s centroid (Arthur, 2007). EM is a statistical 

approach and linearly convergent algorithm, capable of dealing 

with incomplete data, and commonly used for unsupervised 

clustering. It estimates the set of parameters in a statistical 

model, usually considering a Gaussian Mixture Model, 

computing its maximum likelihood (Kurban, 2016). 

 

InterCloud Data Mining Package architecture is comprised of 

three layers, each providing different abstraction levels. The 

first, distribution layer, is responsible for the execution of the 

applications, the second, machine learning layer, allows to 

insert classification and clustering algorithms into an 

implementation of the distributed architecture, and the third, the 

project definition, is in charge of end user interaction, 

encompassing all the information required for the execution of 

the classification or clustering applications (Ayma, 2017). 

 

The clustering process works as follows. First, all the 

parameters of the clustering algorithm are defined, including 

two datasets, one for creating the clustering model (training 

dataset), and another over which the clustering process will be 

performed (generalization dataset). In sequence, the parameters 

of the clustering model and the two dataset are partitioned and 

distributed among the nodes of the cluster. Afterwards, the 

clustering model is built in each node, in such a way that the 

clustering model will be the same across all computing nodes. 

Last, once the model is created at each node, the clustering 

process is performed on its respective portion of the 

generalization dataset, and the outcomes are then returned to the 

master node, which finally provides the overall clustering 

outcome on the complete generalization dataset. 

 

 

3. EXPERIMENTAL DESIGN 

To assess the performance of the approach, we used a time 

series of satellite images covering the Ausangate glacier, located 

on the Andes Mountains in Cusco, Peru, geographically located 

at 71°13′52″W longitude and 13°47′19″S latitude. The database 

is composed of three images from the Sentinel-2 satellite, 

considering low cloud coverage and identical temporal 

seasonality, corresponding to the months of July, June, and 

May, from 2016, 2017 and 2018, respectively. The images were 

acquired through the Earth Explorer web service, from the 

United States Geological Survey (USGS, 2019). 

 

We have considered the red, green, blue and NIR spectral bands 

of each image, containing 10980 x 10980 pixels at a fine 

resolution of 10 meters per pixel, and the SWIR spectral band, 

containing 5940 x 5940 pixels at a spatial resolution of 20 

meters per pixel. We selected the image from July, 2016, as 

shown in Figure 1, for constructing our validation data through 

its visual analysis, considering that image as the one with the 

largest snow covered area from the dataset. 

 

From image in Figure 1, we manually refined a semi-automatic 

segmentation of the glacier extension based on the binary mask 

provided by the NDSI (Normalized Difference Snow Index) 

image, with an empirical threshold of 0.4, as recommend in (ke, 

2016). The ground truth dataset was comprised of two 2 classes, 

one for snow and ice covered extensions, and the other 

considering the rest of the image as background, as illustrated in 

Figure 2. 
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Figure 1. Figure placement and numbering 

 

To compute the thematic accuracy of both distributed 

implementations, K-Means and the EM algorithms, we used a 

scaled version at 40% of the dataset (original image and its 

binary mask). For that purpose, we divided the dataset into 

training and generalization samples, we randomly selected 10% 

of the pixels in the ground truth image (for each class) as the 

training data, and the remaining 90% of pixels were considered 

as the generalization data for assessing the thematic accuracy of 

the clustering models created with the previously training data, 

as presented in Figure 3. 

 

 
 

Figure 2. Ausangate Glacier ground truth dataset. In white: 

glacier extension; in black: rest of the scene (background). 

 

 
 

Figure 3. In blue and green, generalization samples; in red, 

training samples; both datasets randomly selected from ground 

truth data, for glacier and non-glacier areas, respectively. 

 

To assess glacier multi-temporal changes, the algorithm that 

achieved the best thematic accuracy was considered for 

processing the other two glacier images, each equally scaled at 

40% of its original size to compute their glacier extensions at 

each period of time; then, we tracked the evolution of the 

glacier extension across the years considering the outcomes 

provided by clustering algorithm with the best performance.  

 

To assess computational performance, we constructed 

subsampled versions of the original image and from its ground 

truth, as shown in Table 1. Each scaled version of the original 

image was processed in sequential and distributed 

configurations, using local and cloud computing environments. 

Sequential processing on local mode configuration refers to the 

implementation of a cluster on the cloud containing 2 nodes, 

and the processing times achieved with this configuration were 

taken as baseline for speed up analysis. These sequential times 

are presented as well in Table 1, for both algorithms. 

 

Image 

Scale (%) 

Dimensions 

(pixels) 

Data Size 

(Mb) 

40 4392 x 4392 1342.30 

50 5490 x 5490 2097.39 

100 10980 x 10980 8387.14 

Table 1. Scaled versions of the original image. 

 

 

4. RESULTS 

As conceived in the experimental design, in Figure 4 and 5 we 

present the outcomes for both algorithms when applied in the 

clustering process on the scaled version at 40% of the image in 

Figure 1. Thus, the thematic accuracy achieved on that image, 

compared against the ground truth from Figure 2, was of 

92.25% and 73.66% for the K-Means and the EM algorithms, 

respectively, as shown in Figure 4 and Figure 5, where, from a 

qualitative point of view, the clustered image corresponding to 

the K-Means algorithm appears more similar to the ground truth 

than the outcome provided by the EM algorithm. In addition, 
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Figure 5 shows that the EM algorithm was not capable to 

correctly cluster glacier extensions and water surfaces into 

separate classes, leading to a decrease in its overall accuracy. 

 

 
 

Figure 4. Ausangate Glacier clustering outcome with K-Means 

algorithm. 

 

 
 

Figure 5. Ausangate Glacier clustering outcome with EM 

algorithm. 

 

As shown in the previous two images, we can consider the K-

Means algorithm as the one with the best performance in 

identifying glacier extensions; thus, we applied this clustering 

method to the other two images in the dataset to compute the 

glacier extension of the Ausangate glacier at each period of 

time. Figure 6 shows the evolution of the changes in extension 

of the Ausangate glacier, where it can be seen that its extension 

has suffered a severe retreat during the period, as compared to 

its extension at 2016, which is an major issue, considering that 

by the seasonality of the images, the glacier was supposed to be 

at its maximum expansion. This figure also presents two 

estimations of Ausangate glacier extensions, in green is the one 

provided by K-Means method, and in blue the other provided 

by a supervised semi-automatic segmentation. It is worth to 

notice that even though both approaches delivered slightly 

differences in their glacier extension estimations, it’s important 

to remark that they do follow the same trend about the changes 

in glacier extension. 

 

 
 

Figure 6. Ausangate Glacier clustering outcome with EM 

algorithm. 

 

For assessing the computational performance of both distributed 

implementations, and in order to analyse the computational load 

involved in executing each algorithm on a cloud computing 

infrastructure, we used the scaled versions of the original image, 

as presented in Table 1, and we registered the execution times 

in local mode for both algorithms. We performed the 

experiments with the extended version of the InterCloud Data 

Mining Package deployed over the Amazon Web Service 

(AWS) cloud computing platform. Table 2 shows the 

processing times obtained after processing the scaled images on 

a cluster with 2 nodes (local mode configuration), each node in 

the cluster correspond to a m3.xlarge type machine, containing 

an Intel Xeon E-5-2670 v2 processor operating at 2.5GHz with 

4 physical cores (8 logical cores), 15 GB of RAM and 2 disks of 

40 GB. 

 

Image 

Scale 

(%) 

Dimensions 

(pixels) 

Data 

Size 

(Mb) 

K-Means 

processing 

times (s) 

EM 

processing 

times (s) 

40 4392 x 4392 1342.30 410.52 2158.96 

50 5490 x 5490 2097.39 1854.87 10314.23 

100 10980 x 10980 8387.14 5365.78 34748.14 

Table 2. Processing times for K-Means and EM distributed 

algorithms on local mode configuration. 

 

Taking the local mode processing times as baseline for 

assessing the speed up achieved by the distributed algorithms, 

we used a cluster configuration with 5, 10 and 20 nodes, each 

node with the same characteristics as the ones used in the local 

mode configurations. Figure 7 and Figure 8 shows the speedup 

achieved with the distributed clustering version of the K-Means 

and the EM algorithms, respectively, and using the three scaled 

datasets from Table 2.  
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Figure 7. Speedups for the K-Means distributed clustering 

process. 

 

 
Figure 8. Speedups for the EM distributed clustering process. 

 

Regarding the K-Means algorithm, for the case of the 1.3 Gb 

dataset size, the speedups were 2.88, 4.75, and 6.86 for 5, 10, 

and 20 nodes respectively; and for the larger dataset, of 8.40 Gb 

size, the speedups were 3.61, 6.61, and 10.96 for the same 

configurations. For the case of the EM algorithm, the speedups 

achieved were not as high as the K-Means algorithm, thus, for 

the case of the larger dataset, the speedups achieved were 2.15, 

3.68, and 5.85 for 5, 10 and 20 nodes respectively. From the 

figures, it is worth to notice that for smaller size datasets, as the 

number of nodes increases, the efficiency of the distributed 

solution tends to decrease; on the counterpart, for bigger size 

datasets, the cluster achieves better speedups as the number of 

nodes was increased. 

 

 

5. CONCLUSIONS 

We proposed an extension of the InterCloud Data Mining 

Package, which was devised for performing distributed 

clustering processes on large Remote Sensing datasets, more 

specifically when working on large multispectral images. Our 

approach provides a robust, flexible and scalable solution 

operating over a cloud computing environment, allowing end-

users to perform Remote Sensing Big Data analysis such 

distributed infrastructures. 

 

From our experimental analysis it can be identified that 

Ausangate glacier has suffered a considerable retreat in its 

extension within the last 3 years, decreasing its surface 

extension from 2016 on more than 70% and 80% in 2017 and 

2018 respectively. In order to assess if these is a constant 

behaviour on Peruvian glaciers, it would be important to 

perform a complete analysis over the entire “Cordillera Blanca”, 

so as to assess if the Peruvian glaciers are indeed melting and 

retreating, then, decision makers could get a better 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

comprehension  on  the  effects  that  climate  changes  and  global 
warming are producing in our ecosystems.

Considering the experiments we conducted for clustering large 
scale  remote  sensing  datasets  using  the  K-Means  and  EM 
algorithms, we can observe that K-Means algorithm had a better 
performance  than  the  EM  algorithm,  in  both,  the  thematic 
accuracy  and  the  computational  performance,  by  achieving 
higher accuracies and higher speedups when deployed over the 
distributed infrastructures. It is also important to notice that, as 
in  previous  works,  when  working  with  bigger  datasets,  higher 
speedups could be achieved.

Finally,  our  work  is  an  initial  attempt  in  order  to  analyse  the 
glacier changes on the Peruvian Andes, we based our study on 
one  of  the  biggest  glaciers  in  the  country,  but  it  will  be 
important to analyse the complete ecosystem. In this sense, the 
outcomes  that  we  achieved  with  our  clustering  approach  are 
motivating, in terms of continuing our research in the field, as 
to  evaluate more  clustering techniques,  or to validate  a 
hierarchical  clustering approach under this  type  of  distributed

infrastructures.
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