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ABSTRACT: 

 

GPRs (Ground Penetrating Radar) are widely adopted in underground space survey and mapping, because of their advantages of fast 

data acquisition, convenience, high imaging resolution and NDT (Non Destructive Testing) inspection. However, at present, the 

automation of the GPR data post-processing is low and the identification of underground objects needs expert interpretation. The heavy 

manual interpretation labor limits the GPR applications in large-scale urban scenarios. According to the latest research, it is still an 

unsolved problem to detect targets or defects in GPR data automatically and needs further exploration. In this paper, we propose a deep 

learning method for real-time detection of underground targets from GPR data. Seven typical targets in urban underground space are 

identified and labelled to construct the training dataset. The constructed dataset is consist of 489 labelled samples including rainwater 

wells, cables, metal/nonmetal pipes, sparse/dense steel reinforcement, voids. The training dataset is further augmented to produce more 

samples. DarkNet53 convolutional neural network (CNN) is trained using the constructed training dataset including realistic data and 

augmented data to extract features of the buried objects. And then the end-to-end YOLO detection framework is used to classify and 

locate the seven specific categories buried targets in the GPR data in real time. Experiments show that the automatic real-time detection 

method proposed in this paper can effectively detect the buried objects in the ground penetrating radar image in real time at Shenzhen 

test site (typical urban road scene). 

 

 

1. INTRODUCTION 

With the rapid process of urbanization, the development and 

utilization of urban underground space has aroused great 

attention. Accurate and efficient detection of urban underground 

space targets, as well as identifying their types and distribution 

conditions are the premise and key to ensure the safety of urban 

underground space. The targets underground the city include a 

large number of artificial structures (e.g. subway, pipeline 

corridor) and complex potential diseases (e.g. empty holes). 

Traditional surveying and mapping methods based on 

photography and laser scanning are not penetrating, and cannot 

effectively detect the positions and characteristics of urban space 

targets underground. Ground Penetrating Radar (GPR) has the 

advantages of high efficiency, non-destructive, penetrability and 

high imaging resolution, making it an essential role from 

geophysical exploration (Enze Z, 2017), building quality 

detection, road and bridge detection, tunnel quality detection to 

underground detection and classification (LAI W L and 

DÉROBERT X, 2017). Because of the complex structures of 

underground target and the diversity of potential diseases, the 

analysis of GPR image still relies mainly on human-computer 

interaction to locate and detect underground targets, which 

cannot meet the needs of large-scale urban underground space 

exploration and census. 

 

The main detection methods for underground pipeline targets in 

GPR images are hyperbolic feature extraction based on Hough 

transform (Windsor C and Capineri L, 2014; Li W and Cui X, 
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2016), which is limited by the huge amount of computation 

caused by processing and discretizing a large number of 

parameters. The hyperbolic feature based on template matching 

requires manual design of a large number of parameters to depict 

different target features (Sagnard F and Tarel J, 2016; Terrasse G 

and Nicolas J, 2016). The automation and accuracy of feature-

based gradient direction histogram (HOG) and Haar-like features 

algorithm for underground target detection in GPR images need 

to be further improved to eliminate false alarm and missed 

detection (Torrione P and Morton K, 2014; Maas C and Schmalzl 

J, 2013). 

 

In recent years, breakthroughs have been made in optical image 

target detection based on deep learning (Krizhevsky A and 

Sutskever I, 2012; Girshick R, 2015). In underground target 

detection with hyperbolic echo characteristics in GPR images, 

some scholars proposed a deep learning method based on 

FASTER RCNN (Pham M and Lefèvre S, 2018). However, due 

to the variety and complexity of underground targets, it is 

impossible to detect underground space targets precisely and 

effectively only depending on one feature. In order to solve the 

problems above, this paper proposed a real-time deep learning 

method for underground target detection based on YOLO V3 

target detection and Darknet-53 convolution neural network 

(REDMON J and FARHADI A, 2018), constructed several 

typical underground target databases, and verified the method by 

taking the vehicle-borne GPR image of Shenzhen urban road as 

an experiment. The acceptable result shows the average precision 

and recall rate of target detection, both of the two are over 85%. 
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2. DETECTION OF UNDERGROUND TARGETS IN 

GPR IMAGES BASED ON DEEP LEARNING 

The flow chart of GPR image underground target detection 

method based on depth learning presented in this paper is shown 

in Figure 1. The three key steps of this method are as follows: 

 

1. Constructing the sample data set of underground 

targets. It mainly completed the labeling of underground 

target samples and data compatibility through human-

computer interaction, and constructed underground targets 

standard data sets. 

 

2. Using joint training mechanism to train convolutional 

neural network. Darknet-53 convolutional neural network 

was trained with ImageNet data set, COCO data set and 

PASCAL VOC data set, through which the set of pre-trained 

neuron parameters were obtained. 

 

3. Training and inference. Using transfer learning method, 

firstly, the first 50 layers of network parameters were frozen. 

Then the first 50 layers of parameter sets were unfrozen to 

join the training process and obtains the final model which 

can predict the location of multiple boundary boxes and 

multiple types in real time. Finally, the model after network 

training is loaded, inference is used to obtain the location 

and category information of underground targets in the test 

data set. 

 

 

Figure 1. Target Detection from GRP imagery based on Convolutional Neural Network 

 

2.1 Construction of Underground Target Training Samples 

The purpose of the initial phase is to obtain enough labelled data 

for training the CNN (Convolutional Neural Network). We used 

the SIR-30 vehicle-borne GPR system to collect data from a 

typical city area at a frequency of 400 Hz. And manually labelled 

targets in the data, including rainwater wells, cables, 

metal/nonmetal pipes, sparse/dense steel reinforcement. The 

albumentations library (Alexander B and Alex P, 2018) is used 

to augment the actual GPR data collected. Considering the 

resolution of the GPR image and the characteristic of the 

underground target, the GPR image data augmentation involves 

a combination of random cropping, small angle rotation, blurring, 

mirror flip, etc. 

 

2.2 Underground Target Detection Network 

Darknet-53 takes both network complexity and detection 

accuracy into account. Compared with VGG-16 (Simonyan K, 

2014), it has less computation, lighter model and stronger feature 

extraction ability. It consists of consecutive 3*3 and 1*1 

convolution kernel, which reduces the amount of network 

parameters in case of fully extracting image features. Drawing on 

ResNet idea, residual blocks are added to solve the problem of 

gradient dispersion and/or explosion caused by the deeper layers 

of the network. And the traditional deep neural network training 

is adjusted to stage-by-stage from layer-by-layer. In addition, 

Batch_Normalize (BN) layer (IOFFE S, 2015) and LeakyReLU 

layer (Clevert D and Unterthiner T, 2016) are joined after each 

convolution layer, which can simplify the calculation while 

accelerating convergence and also prevent over-fitting. 

 

2.3 Training and Inference 

The network training method in this paper followed the network 

training method proposed by YOLO V3. The anchor box 

obtained by K-means clustering was used to assist the prediction 

of the boundary box, and the logistic regression classifier was 

trained to predict the object score of each boundary box. Each 

bounding box can contain multiple predicted categories. The 

neural network directly convoluted the GPR image to form a 

feature map, and then predicted the location and probability of 

the underground target grid by grid. The core of the algorithm 

was to transform the underground target detection problem into a 

regression problem, and realized the end-to-end real-time 

detection. 

 

After the GPR image was input, the feature map of N*N was 

formed by CNN convolution. Since YOLO V3 is a multi-layer 

detection, the values of N are 13, 26 and 52, respectively. If the 

centre of the target fall in a grid cell, the grid cell assumes 

responsibility for the inference of that target. In this method, three 

boundary boxes are predicted for each grid element. Same as the 

original frame, each boundary box output 12 prediction results, 

including x, y, w, h, confidence and seven conditional class 

probabilities. (x, y, w, h) is the absolute coordinate calculated 

from the original prediction results. Among them, x, y represent 

the value of the centre of the boundary box relative to the image 

boundary. And w, h are the length and width of the boundary box. 

The formula for calculating confidence is as follows: 

 

𝐶𝑜𝑛𝑓(𝑂𝑏𝑗𝑒𝑐𝑡) = 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1) 

 

If the centre of the ground truth does not fall in the cell, the 

confidence score is zero. Otherwise, the confidence score is equal 

to the Intersection over Union (IOU) between the prediction box 
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and the ground truth. In addition, each grid predicts seven 

conditional class probabilities, expressed as 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡), 

which are conditioned on the inclusion of objects in grid cell. The 

formula for calculating the confidence of a particular category of 

each box is as follows: 

 

𝐶𝑜𝑛𝑓(𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡) = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡) ∗

                                     𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ                               (2) 

 

In this paper, the sum-squared errors between output and actual 

vectors with both N*N*(2*5+7) dimension are used as loss 

function optimization parameters. In order to enhance the 

detection of small targets, λ𝑐𝑜𝑜𝑟𝑑 = (2 − 𝑡𝑟𝑢𝑡ℎ𝑤 ∗ 𝑡𝑟𝑢𝑡ℎℎ) was 

introduced to correct the coordinate errors, while 𝜆𝑜𝑏𝑗  and 

𝜆𝑐𝑙𝑎𝑠𝑠were set to 1, so that the model can converge in training. 

The final loss function is: 

 

𝐿𝑜𝑠𝑠 = ∑ ∑ ∑ 𝑔(𝑚𝑎𝑥𝐼𝑂𝑈) ∗

𝐴

𝑘=0

𝐻

𝑗=0

𝑊

𝑖=0

𝜆𝑛𝑜𝑜𝑏𝑗 ∗ (−𝑏𝑖𝑗𝑘
0 )

2
 

         +𝑓(𝑚𝑎𝑥𝐼𝑂𝑈)(𝜆𝑐𝑜𝑜𝑟𝑑 ∑ (𝑡𝑟𝑢𝑡ℎ𝑘
𝑟 − 𝑏𝑖𝑗𝑘

𝑟 )
2

𝑟∈(𝑥,𝑦,𝑤,ℎ)
 

         +𝜆𝑜𝑏𝑗 ∗      (1 − 𝑏𝑖𝑗𝑘
0 )

2
 

         +  𝜆𝑐𝑙𝑎𝑠𝑠 ∗ (∑ (𝑡𝑟𝑢𝑡ℎ𝑐 − 𝑏𝑖𝑗𝑘
𝑐 )

2𝐶
𝑐=1 ))                                   (3) 

 

𝑔(𝑥) = {
1, x < 𝑇ℎ𝑟𝑒𝑠ℎ
0, x ≥ 𝑇ℎ𝑟𝑒𝑠ℎ

                           (4) 

 

𝑓(𝑥) = {
0, x < 𝑇ℎ𝑟𝑒𝑠ℎ        
1, x ≥ 𝑇ℎ𝑟𝑒𝑠ℎ

                       (5) 

 

The loss function is mainly divided into three parts: coordinate 

loss, confidence loss and classification loss. 𝑚𝑎𝑥𝐼𝑂𝑈  denotes 

the maximum IOU between the prediction box and the ground 

truth of a specific cell; Thresh is a pre-set threshold of 0.6; 𝑏𝑖𝑗𝑘
0  

is the confidence of predicted box; 𝑡𝑟𝑢𝑡ℎ𝑘
𝑟  and 𝑏𝑖𝑗𝑘

𝑟  represent the 

coordinates of the real box and the predicted box respectively; 

while 𝑡𝑟𝑢𝑡ℎ𝑐 and 𝑏𝑖𝑗𝑘
𝑐  represent the classification of the real box 

and the predicted box respectively. Loss value is still calculated 

using SSE (The sum of squares due to error) in the same way as 

YOLO V1. 

 

In YOLO V3 algorithm design, multi-label classification is used 

to enhance the ability of boundary box to contain multi-

categories. Usually, a target only falls in one grid element. 

However, under some circumstances targets can be predicted by 

multiple grid cells, such as the prediction of large targets or the 

target near the boundary of several grid. YOLO algorithm before 

YOLO V3 can only predict a boundary box for each target, so it 

is very likely to miss detection. Unlike YOLO9000 (Redmon J 

and Farhadi A, 2016), YOLO V3 abandons the softmax function, 

which has some limitations in improving the performance of 

network detection for multi-target. Instead, it applies a separate 

logical classifier to predict multi-label. In the training process, 

the binary cross-entropy loss is used to calculate the category loss. 

 

The method in this paper uses Adam (Diederik P and Jimmy B, 

2014) instead of the traditional Stochastic Gradient Descent 

(SGD) optimization algorithm. Similar to other optimization 

algorithms of deep learning, the weights of neural networks are 

updated iteratively after back propagation based on training data. 

To be more precise, it is a method of learning rate self-adaption. 

The Figure 2 shows the line chart of loss values varying with the 

number of epoch. 

 

As can be seen from loss curve, the loss value does not change 

after about 85 epochs, and finally a stable model is obtained. The 

loss is stable at about 5. To sum up, underground target detection 

is to extract the feature map of the input GPR image, and then 

determine whether there are underground targets in it grid-by-

grid. Similar to the forward propagation in the network training 

process, only one prediction is needed to obtain the boundary 

boxes of the possible targets, the target categories and their 

probabilities of each box, and then the prediction results are 

refined according to the pre-set thresholds. According to the 

actual situation, the IOU threshold is set to 0.3 and the confidence 

threshold is set to 0.5. Pulse answer that does not belong to any 

of the mentioned classes are mostly filtered because the 

confidence is below 0.5. 

 

3. EXPERIMENTS AND ANALYSIS 

In order to verify the effectiveness of this method, SIR-30 

vehicle-based GPR system was used to test the GPR data of a go-

return route in Caitian Road, Shenzhen City. The parameters such 

as antenna centre frequency, acquisition length and scene 

category are shown in Table 1. Table 2 shows the number of 

samples interpreted by experts and the number of samples after 

expansion. For the purpose of ensuring the convergence of the 

model and not over-fitting, the number of data after expansion is 

an empirical value in a suitable range. 

 

3.1 Detection Results of Underground Targets 

The test data in this paper are the data of Shenzhen City obtained 

by SIR-30 vehicle-based GPR system at 400 MHZ frequency. 

Figure 3(a)-(e) are the recognition results of rainwater wells, 

sparse/dense steel mesh, bridges, metal/non-metal pipelines, 

cables in GPR waveform image data, in which bridges are 

represented with two parts: dense steel mesh and empty. The 

recognition results show that the deep learning method proposed 

in this paper can accurately detect and locate the type and 

position of underground targets according to GPR images.
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Figure 2. The line chart of Loss value 

 

Instrument 

model 

Antenna center 

frequency 
Test Area 

Scene 

category 

Acquisition 

length 

Scanning 

method 

SIR-30 400MHz 
Caitian Road, 

Shenzhen 
City 4.52km 

Continuous 

scanning 

SIR-30 400MHz 
Caitian Road, 

Shenzhen 
City 4.66km 

Continuous 

scanning 

Table.1 GPR equipment and test area 

 

Classes Quantity 

 Interpretation Augmented 

Rainwater wells 57 570 

Cables 32 581 

Metal pipes 42 571 

Non-metal pipes 17 246 

Sparse steel 

reinforcement net 
87 264 

Dense steel 

reinforcement net 
92 307 

Voids 162 494 

Total 489 3033 

Table.2 Statistical quantitative table of samples of different categories after expansion 

 

 

(a) Recognition results of rainwater wells 
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(b) Recognition results of sparse steel reinforcement 

 

(c) Recognition results of metal pipes and non-metal pipes 

 

(d) Recognition results of bridges 

 

(e) Recognition results of cables 

Figure 3. Recognition results 

 

3.2 Evaluation of Detection Results 

In the classification tasks of underground target detection, three 

indicators, precision and recall, and F1 score usually measure the 

performance of the network model. F1 score is calculated to 

evaluate precision and recall comprehensively. The precision rate 

represents the proportion of the classified objects correctly 

identified to the total targets, which reflects the ability of the 

model to distinguish the background in the image. The recall rate 

represents the proportion of a certain category of objectives 

eventually classified into that category, which indicates retrieval 

ability of the model for the targets in GPR images. The higher 

precision indicates that the detection model can better distinguish 

the target from the background, whereas the higher the recall rate 

depicts the stronger the detection ability of the detection model 

for underground targets. F1 Score is a comprehensive expression 

of both sides. A high score can present a more robust 

classification model. The formulas for the three indicators are as 

follows: 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

𝐹1 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑅𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8) 

 

Among them, TP denotes the number of targets detected correctly, 

FP is the number of targets not detected, and FN represents the 

number of targets detected incorrectly. Table 3 shows the 

evaluation results of target detection in GPR images under a long-

distance road in Caitian experimental area of Shenzhen.  

 

Classes Metrics 

 Recall Precision F1score 

Rainwater wells 0.912 0.954 0.932 

Cables 0.923 0.857 0.889 

Metal pipes 0.852 0.920 0.885 

Non-metal pipes 0.833 0.833 0.833 

Sparse steel 

reinforcement 
0.942 0.867 0.903 

Dense steel 

reinforcement 
0.969 0.839 0.900 

Voids 0.816 0.816 0.816 

Average 0.892 0.869 0.880 

Table 3. Evaluation of the GPR image data target detection result 

 

The experimental results show that all three evaluate indices, the 

average values of recall, precision and F1 Score of the deep 

learning method designed in this paper are over 85%. The 

comprehensive evaluation of the three indicators indicates that 

the method here is very effective for the detection of underground 

targets and defects in GPR images. 

 

4. CONCLUSION 

In order to solve the problem of efficient and accurate detection 

of underground targets in GPR images, this paper proposed and 

designed a method of detecting underground targets in GPR 

images based on deep learning. Through data compatibility, the 

problem of insufficient underground target samples in GPR 

image was solved. Darknet 53 network drawn lessons from 

ResNet idea to add residual blocks, which can avoid gradient 

dispersion or explosion even if the network level was very deep. 

What’s more, a large number of open data sets were used to pre-

train the network, ensuring the ability of the network to extract 

the features of underground targets after training. And the multi-

branch prediction in YOLO V3 framework also guaranteed the 

detection of small underground targets. 

 

The actual scene test results show that this method can detect and 

classify underground targets in real time from vehicle GPR 

images. The detection speed can reach 16 frames/s on two GTX 

1080 GPU platforms, and the average precision and recall rate 

can reach more than 85%. At present, the method in this paper 

only detects the category and location of the targets. Future 

research will combine the structural information of underground 

targets, including buried depth, area and aspect ratio, to construct 

feature space and random forest algorithm will be used to extract 

these features to assist in identifying target categories and 

improving the detection quality. 
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