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ABSTRACT:

We introduce a new encoder-decoder GAN model, FutureGAN, that predicts future frames of a video sequence conditioned on a 
sequence of past frames. During training, the networks solely receive the raw pixel values as an input, without relying on additional 
constraints or dataset specific conditions. To capture both the spatial and temporal components of a video sequence, spatio-temporal 
3d convolutions are used in all encoder and decoder modules. Further, we utilize concepts of the existing progressively growing GAN
(PGGAN) that achieves high-quality results on generating high-resolution single images. The FutureGAN model extends this concept 
to the complex task of video prediction. We conducted experiments on three different datasets, MovingMNIST, KTH Action, and
Cityscapes. Our results show that the model learned representations to transform the information of an input sequence into a plausible 
future sequence effectively for all three datasets. The main advantage of the FutureGAN framework is that it is applicable to various 
different datasets without additional changes, whilst achieving stable results that are competitive to the state-of-the-art in video 
prediction. The code to reproduce the results of this paper is publicly available at https://github.com/TUM-LMF/FutureGAN.

1. INTRODUCTION

An important part of the human decision-making process is to 
anticipate a possible future based on experience. Simulating 
this process in machines by teaching them to anticipate future 
events based on internal representations of the environment is of 
relevance for many tasks. Generating predictions of the future 
frames in a video is one approach to tackle this problem. In 
robotics, as well as in autonomous driving, access to information 
from predicted frames can lead to better decisions, or at least 
to faster executions. As shown by Mathieu et al. (Mathieu et 
al., 2016), other tasks, such as object recognition, detection, and 
tracking, can benefit from the representations that are implicitly 
learned by such a model.

There are several different approaches that address the pixel-level 
prediction of video frames. Early, often purely deterministic, 
approaches tended to insufficiently model the uncertainty of 
the output, which led to blurry predictions. Using generative 
adversarial networks (GANs) (Goodfellow et al., 2014) is one 
way to appropriately model the uncertainty of the multi-modal 
output. We build on this idea of training a generative model 
in an adversarial setting. GANs learn to model the underlying 
data distribution implicitly by utilizing a critic, the discrimin- 
ator network, during training time. While being trained, the 
critic constantly provides feedback to the generator, whether the 
generated samples appear real or not. This forces the generator 
to output samples of a similar data distribution as those of the 
real samples. Although GAN based video prediction methods 
usually manage to better preserve the sharpness in the predicted 
frames, there are two major drawbacks. First, GANs are hard to 
train because the training process is highly unstable. Secondly, 
GANs often suffer from mode collapse effects (Salimans et al., 
2016), where the generator learns to fool the discriminator by 
producing samples of a limited set of modes. This means, the 
resulting generative model will not be able to fully capture the
underlying data distribution.

In our FutureGAN model, we utilize the training strategy of pro-

  Figure 1. Example predictions for the MovingMNIST, KTH 
Action, and Cityscapes dataset. Top row: Last observed input

frame. Bottom row: Next frames predicted by our FutureGAN.

gressively growing GANs (PGGANs) (Karras et al., 2018) that 
effectively managed to overcome these problems. The PGGAN 
of Karras et al. (Karras et al., 2018) was originally designed for 
generating high-resolution images from a set of random latent 
variables. On this task, it achieved high-quality results. The 
basic principle is to gradually increase the image resolution as 
the training proceeds by progressively adding layers in both 
networks. For further stabilization of the training, the authors 
introduced normalization techniques to constrain the signal mag- 
nitudes and the competition in both the discriminator and the 
generator. We extend this architecture for the complex task of 
video prediction to benefit from the positive effects on the GAN 
training.

The primary contribution of this paper is to provide a simple, yet 
effective GAN-based model for multi-frame video prediction. 
Our model is directly applicable to different datasets without 
further knowledge about the data other than the pixel values. 
In contrast to many other approaches, we directly predict pixel 
values instead of producing a warped version of the input frame 
using, for example, optical flow or pose estimations. To evaluate 
the FutureGAN framework, we conducted experiments on three 
datasets of increasing complexity, i.e. the MovingMNIST dataset
(Srivastava et al., 2015), the KTH Action dataset (Schüldt et al., 
2004), and the Cityscapes dataset (Cordts et al., 2016). Figure 
1 provides example predictions. We show that our model is
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able to generate plausible futures for all three datasets, while 
avoiding the problems that typically arise when training GANs. 
The predicted frames indicate that the model effectively learned
representations of spatial and temporal transformations.

                                                2.   RELATED WORK

Since 2014, predicting the future frames of a video, from either 
a single input frame or a sequence of input frames, has become 
a widely researched topic. Ranzato et al. (Ranzato et al., 2014)
were the first to provide a baseline model for video prediction 
with deep neural networks. Since then, various other approaches 
were introduced. Most of these combine the raw pixel values of 
the input frame(s) with learned temporal components (Srivastava 
et al., 2015, Lotter et al., 2017, Wang et al., 2017, Oliu et al., 
2018, Liu et al., 2017, Vukoti et al., 2016, Kalchbrenner et al., 
2017, Goroshin et al., 2015), dynamically learned filters (De Bra- 
bandere et al., 2016), latent variables (Goroshin et al., 2015), or 
by explicitly incorporating time dependency (Vukoti et al., 2016). 
Oliu et al. (Oliu et al., 2018), for example, generate future video 
frames with a folded recurrent neural network (fRNN). This 
network uses bijective gated recurrent units (bGRUs) that learn 
shared video representations between the encoder and decoder. 
Others learn separate representations for the static and dynamic 
components of a video by adding action or geometry-based con- 
ditions, such as pose, optical flow, or depth information (Finn et 
al., 2016, Xue et al., 2016, Mahjourian et al., 2017, Patraucean 
et al., 2016, Byeon et al., 2018, Hao et al., 2018, Oh et al., 2015).

The most promising results, especially for long-term predic- 
tions, have been achieved just recently by approaches that ex- 
plicitly include stochasticity in their models (Xue et al., 2016, 
Denton, Birodkar, 2017, Denton, Fergus, 2018, Walker et al., 
2016, Babaeizadeh et al., 2018, Lee et al., 2018). Those meth- 
ods directly address the uncertainty in predicting future frames. 
Generating a set of possible predictions, rather than a single 
prediction that averages over all modes, prevents from the effect 
of blurred predictions for an increasing number of time steps.

Another attempt to address the uncertainty in predicting future 
frames, thus reducing the blurring effect, is to train the gener- 
ative models in an adversarial setting. Our approach follows 
this research branch. As Mathieu et al. (Mathieu et al., 2016)
showed first, networks trained with an adversarial loss term 
tend to produce sharper results compared with networks only 
trained on pixel error-based loss metrics, such as the L2 loss. 
The idea of using GANs for making video predictions further 
evolved when traditional image generation GANs were extended 
for video generation (Vondrick et al., 2016, Saito et al., 2017). 
Vondrick et al. (Vondrick et al., 2016) use a two-stream network, 
where foreground and background streams are separated. This 
network generates a sequence of 32 frames using layer-wise 
spatial and temporal up-sampling with 3d convolutions (Tran et 
al., 2015). When exchanging the generator’s input from random 
latent variables to the pixel values of an input image, the network 
then learns to predict future frames. Kratzwald et al. (Kratzwald 
et al., 2017) build on the approach of Vondrick et al. (Vondrick 
et al., 2016). They jointly predict the dynamic and static patterns 
with an extended Wasserstein GAN (WGAN) (Arjovsky et al., 
2018). For video generation and prediction, they combine the 
application-specific L2 loss and the adversarial loss term.

In contrast to our approach, many GAN-based video prediction 
methods add additional information, such as motion, content, 
geometry or action-based conditions, or learn those components

separately (Denton, Birodkar, 2017, Bhattacharjee, Das, 2017, 
Tulyakov et al., 2018, Chen et al., 2017, Xiong et al., 2018, Li- 
ang et al., 2017, Lu et al., 2017, Villegas et al., 2017a, Villegas
et al., 2017b, Vondrick et al., 2017, Zeng et al., 2017). Ville- 
gas et al. (Villegas et al., 2017a), for instance, use an encoder- 
decoder convolutional neural network (CNN) with convolutional 
long short-term memory (ConvLSTM) units to make pixel-level 
predictions. Their network learns to model the motion and 
content component of the input sequence independently, using 
separate encoders. GAN approaches often use deterministic
autoencoder (AE)-based networks with LSTM units where the 
networks are trained in an adversarial setting. In many cases, the 
adversarial term is then added to the loss function (Lotter et al., 
2016).

Mostly related to our approach are (Mathieu et al., 2016, Kratzwald 
et al., 2017, Vondrick et al., 2016, Bhattacharjee, Das, 2017), but 
the applied losses and the training strategies differ. We follow 
the idea of using a multi-scale GAN setting for video predic- 
tion. The idea of a multi-scale or multi-stage GAN for this 
task has previously been addressed, by either having separate 
networks, or layer-wise up-sampling operations (Mathieu et al., 
2016, Bhattacharjee, Das, 2017, Vondrick et al., 2016, Vondrick
et al., 2017, Kratzwald et al., 2017). It is, however, new in this 
context to add the layers progressively for increasing the image
resolution during training.

3. FUTUREGAN MODEL

The FutureGAN framework is based on the idea of training a 
generative model in an adversarial setting and therefore consists 
of two separate networks. Our generator network is trained to 
predict a sequence of future video frames given a sequence of 
past frames. The second network, the discriminator, is trained 
to distinguish between the generated sequence and a real se- 
quence from the training dataset. The discriminator alternately 
receives real and fake sequences as an input and calculates a 
score whether the sequence appears real or not. An output score 
close to 0 indicates the discriminator rates a given sequence as 
probably fake. The higher the output score of the discriminator 
for a given sequence, the more realistic it appears to the network. 
The generator network updates its weight parameters accord- 
ing to the feedback it receives from the discriminator, trying to 
generate sequences that will fool the discriminator. Because the 
training of GANs tended to be highly unstable, we build on the 
recently proposed PGGAN approach by Karras et al. (Karras
et al., 2018) that effectively managed to overcome these prob- 
lems. We describe the architecture and training strategy of our
proposed FutureGAN model in the following.

3.1    Generator Network

Our generator network G processes the frames of an input se- 
quence and transforms them into future frames of this sequence. 
The output of the generator can be described as the sequence of

future frames x̃ = G(z) = (x̃t+1, . . . , x̃t+tout), and the input
as the sequence of past frames z = (xt−tin+1, . . . ,xt). The
parameter tin corresponds to the temporal depth of the input
sequence, tout corresponds to the temporal depth of the output
sequence. To enable predictions of video frames based on an
input sequence, the FutureGAN generator consists of an encoder
and a decoder part. We extend the PGGAN generator of Karras
et al. (Karras et al., 2018) to include an encoder that learns a
latent representation of the input. This latent representation is
used by a decoder to generate the predictions.
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Figure 2. FutureGAN generator during training. We initialize our model to take a set of 4× 4 px resolution frames and output
frames of the same resolution. During training, layers are added progressively to double the resolution after a specified number of

iterations. The resolution of the input frames always matches the resolution of the current state of the network. This figure illustrates the
growth progress of the generator exemplary for the MovingMNIST dataset with a final resolution of 64× 64 px. Intermediate 8× 8 px

and 32× 32 px resolution steps are left out for visual clarity.

For the decoder part of our generator, we modify the basic archi-
tecture of the PGGAN generator. Figure 2 illustrates the detailed
structure and main components of the FutureGAN generator.
Instead of 2d convolutions, we use 3d convolutions in all convo-
lutional layers. This enables the generator to properly encode
and decode both the spatial and temporal components of the
input sequence. Additionally, we realize the spatial upsampling
between layers operating on different frame resolutions within
a single convolutional layer. To perform spatial upsampling
only, we use transposed 3d convolutions with asymmetric kernel
sizes and strides. Originally, Karras et al. (Karras et al., 2018)
use a nearest neighbor upsampling layer and a convolutional
layer separately. The encoder part of our generator mirrors the
structure of the decoder part, except that the spatial upsampling
layers are replaced by spatial downsampling layers. We use
3d convolutions with asymmetric kernel sizes and strides to
perform spatial downsampling only. The bottleneck layers of
our generator perform temporal downsampling and upsampling
operations to match the temporal depth to the number of input
frames and desired output frames, respectively. Following the
basic design of the PGGAN generator, we add two convolutional
layers in the encoder and in the decoder part to increase the
network resolution. To introduce non-linearity in the networks,
leaky rectified linear units (LReLU) follow each convolution

in the hidden layers. After each LReLU activation function, a
pixel-wise feature vector normalization layer is inserted.

3.2     Discriminator Network

The discriminator of our FutureGAN model is designed to distin- 
guish between real and fake sequences. As an input, the discrim-
inator network D alternately receives x = (xt−tin+1, . . . , xt+tout)
frames from the training set, representing the ground truth se-
quence, and x̃ = (z, G(z)) = (xt−tin+1, . . . , x̃t+tout). The
latter sequence consists of the input and output frames of the
generator. The output of the discriminator network is a score
s = D(x) or s̃ = D(x̃), respectively. This score ranks the
given input as either being real or fake. We set the labels for the
real sequence to lreal = 1 and the labels for fake sequences to
lreal = 0.

Apart from the bottleneck layers, the FutureGAN discriminator
closely resembles the encoder part of our generator network.
One important difference is that there are no pixel-wise feature
vector normalization layers in the discriminator. Additionally, a
mini-batch standard deviation layer is added to one of the last
layers. Karras et al. (Karras et al., 2018) inserted this layer to
increase the variation in the generator’s outputs, thus to prevent
mode collapse. This layer computes the standard deviation
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for each feature in each spatial location over the mini-batch. 
Averaging these values over all features and spatial locations 
produces a scalar value. This value is replicated for every spatial 
location in the mini-batch, which generates an additional feature 
map. We modify the original layer to calculate this constant 
feature map for temporal depth as well as spatial locations, in 
order to increase variation, especially in the temporal domain. 
To reduce the output of the discriminator to a single scalar, the 
last layer consists of a fully connected layer, followed by a linear
activation function.

3.3 Training Procedure

WGAN-GP loss with epsilon penalty Our loss function con-
sists of the Wasserstein GAN with gradient penalty (WGAN-GP)
loss (Gulrajani et al., 2017) and an additional term to prevent the
loss from drifting, the epsilon-penalty term. Using the WGAN-
GP loss effectively increases the quality of the generated frames.

The WGAN-GP loss with epsilon penalty for optimizing the
discriminator is defined as

LD(x, x̃, x̂) = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
WGAN loss

+ λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2]︸ ︷︷ ︸
gradient-penalty

+ ε E
x∼Pr

D(x)2︸ ︷︷ ︸
epsilon-penalty

,
(1)

where Pr is the data distribution, Pg is the model distribution
implicitly defined by x̃ = G(z), x̃ ∼ p(x̃), ε is the epsilon-
penalty coefficient, and λ is the gradient-penalty coefficient. Px̂

is implicitly defined, sampling uniformly along straight lines
between pairs of points sampled from the data distribution Pr

and the generator distribution Pg .

The WGAN(-GP) loss for optimizing the generator is defined as

LG(x̃) = − E
x̃∼Pg

[D(x̃)]. (2)

4.   EXPERIMENTS AND EVALUATION

We conducted experiments on three datasets of increasing com- 
plexity, i.e. the MovingMNIST dataset (Srivastava et al., 2015), 
the KTH Action dataset (Schüldt et al., 2004), and the City- 
scapes dataset (Cordts et al., 2016). The experiments on the 
MovingMNIST and the KTH Action dataset were carried out on 
an NVIDIA Tesla P100 GPU with 16 GB of RAM. For the ex- 
periments on the Cityscapes dataset, we used an NVIDIA Titan 
X Pascal GPU with 12 GB RAM. The FutureGAN model is im- 
plemented in PyTorch. For the optimization, we used the ADAM 
optimizer (Kingma, Ba, 2015) with β1 = 0.0 and β2 = 0.99. 
Our initial learning rate was heuristically set to l = 0.001. Every 
resolution step, we adjusted the batchsize dynamically during 
training, according to available GPU RAM. Therefore, we decay 
our learning rate by a factor of 0.87 in each resolution step. The 
penalty coefficients of the WGAN-GP loss with epsilon-penalty 
were set to λ = 10 and ε = 0.001, as proposed in (Karras et al., 
2018).

On the MovingMNIST dataset, we trained our network until a 
resolution of 64 × 64 px. The resolution of the MovingMNIST
data already matched the final network resolution. For the KTH 
Action dataset, and the Cityscapes dataset, we used a final res-
olution of 128 × 128 px. The original size of the KTH Action 
videos is 160 × 120 px, the Cityscapes frames have an original 
size of 2048 × 1024 px. These resolutions did not match the size
of our final network resolution. Therefore, we resized all frames 
of both datasets bicubically to a resolution of 128 × 128 px,
beforehand. During training, the frames were downsampled 
to match the current resolution of the networks using nearest 
neighbor interpolation. This results in a total number of training 
epochs of 120 for MovingMNIST, and 140 for KTH Action and 
Cityscapes.

To evaluate the networks quantitatively, we provide values for the
mean squared error (MSE) and structural similarity index (SSIM)

We initialize our networks to start the training process with
a frame resolution of 4× 4 px. This resolution is gradually
increased by a factor of two after the networks have trained
for a specified number epochs. The number of feature maps in
each layer initially is 512. Starting from a frame resolution of
64× 64 px, the number of feature maps is halved for all newly
added layers. Figure 2 illustrates the progressive growing for the
FutureGAN generator. Our FutureGAN training closely follows
the training procedure described in (Karras et al., 2018). The
next paragraphs briefly introduce the main concepts, for further
details we refer to the original paper.

Adding layers for increased resolutions Adding new layers
to the networks is completed in two steps to ensure a smooth
transition between two resolutions. The first step is the transition
phase, where the layers operating on the frames of the next res-
olution are treated as a residual block whose weights α increase
linearly from 0 to 1. While the model is in the transition phase,
interpolated inputs are fed into both of the networks, making
the input frames match the resolution of the current state of the
networks. The second step is the stabilization phase, where the
networks are trained for a specified number of iterations before
the resolution is doubled again. Growing the networks progress-
ively both speeds up and stabilizes the training, as the networks
only need to learn small transformations between the existing
and the newly added layers.

Weight scaling To further stabilize the training, a weight-
scaling layer is added on top of all the layers. This layer es-
timates the element-wise standard deviation of the weights and
normalizes them to ŵi = wi/c, where wi are the layer weights
and c is the normalization constant from He’s initializer (He et
al., 2015). Using this layer in a network equalizes the dynamic
range, and thus the learning speed, for all weights.

Feature normalization in the generator Another element for
stabilizing the training process is the pixel-wise feature vector
normalization in the generator. This element follows the ac-
tivations of each convolutional layer. Based on a variant of
the local response normalization (Krizhevsky et al., 2012), the
feature vector is normalized to unit length in each pixel. To
make this layer applicable to the FutureGAN generator, we
modified it to operate on both the spatial and temporal ele-
ments of the feature maps. The procedure can be described
as bx,y,z = ax,y,z/

√
1
nf
ax,y,z

>ax,y,z + ε, where ε = 10−8,
nf is the number of feature maps, ax,y,z is the original, and
bx,y,z the normalized feature vector of the pixel (x, y, z). Using
this technique prevents the escalation of signal magnitudes in
the generator and discriminator that result from an unhealthy
competition between the two networks.
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Figure 3. Quantitative results per predicted frame.

Table 1. Average results over 6 frames (best results are bold)

KTH ActionMovingMNIST
MSE SSIMMSE SSIM

0.0116 0.8532CopyLast 0.2580 0.6791
FutureGAN 0.1603 0.7780 0.0120 0.6180

0.0181 0.7053fRNN 0.1854 0.7408
MCNet – – 0.0048 0.8692

between the ground truth and the predicted frame sequence. We 
compare our FutureGAN models with a naive baseline of simply 
copying the last frame of the input sequence, as well as to state- 
of-the-art approaches. Additionally, we provide object detection
results for Cityscapes using YOLOv3 (Redmon, Farhadi, 2018).

4.1  MovingMNIST

To verify the effectiveness of our model architecture in gen- 
eral, we utilized the MovingMNIST dataset as a toy example. 
Following the procedure described in (Srivastava et al., 2015), 
we generated a set of 4500 videos for training, each of length 
36 frames. Every MovingMNIST frame displays two white 
bouncing digits of distinct classes on a black background. Our 
generator network was trained to predict six future frames while 
being conditioned on six input frames, thus a total of 13499 se- 
quences was used for training. For testing, we generated another 
set of 2250 videos of length 36 frames, resulting in a test set 
containing 6750 sequences.

In Figure 4, we show a qualitative comparison of our FutureGAN 
model to the fRNN model of Oliu et al. (Oliu et al., 2018). The 
average quantitative results are listed in table 1. We provide the 
per frame values of the quantitative measures in figure 3. Note 
that we used the pre-trained models provided by the original 
authors to generate the results. This means, the fRNN was
trained to predict 10 frames based on 10 input frames.

4.2   KTH Action

In the second set of experiments, we used the KTH Action data- 
set. This dataset consists of 600 videos that display 25 different
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Figure 4. Prediction results for the MovingMNIST test sequences.
a: Input, b: Ground Truth, c: FutureGAN (ours), d: fRNN

persons, each performing six actions in four different scenarios.
The grayscale videos were recorded with a frame rate of 25 fps
and have varying length. We split the dataset into person 1 to
16 for training, and 17 to 25 for testing. The FutureGAN model
was trained to predict six future frames conditioned on six past
frames. In total, our training set consists of 15156 sequences for
predicting. Our test set had 8722 sequences.

In Figure 5, we show a qualitative comparison of our FutureGAN
model to the fRNN and the MCNet of Villegas et al. (Villegas
et al., 2017a). The average quantitative results are listed in
table 1. We provide the per frame values of the quantitative
measures in figure 3. For testing the MCNet, we used the pre-
trained models provided by the original authors to generate the
results. The fRNN was originally trained for frame resolutions of
80× 64 px. We re-trained the fRNN model on sequences with a
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Figure 5. Prediction results for the KTH Action test split. a: Input, b: Ground Truth, c: FutureGAN (ours), d: fRNN, e: MCNet
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Figure 6. Prediction results for the Cityscapes test sequences. a: Input, b: Ground Truth, c: FutureGAN (ours), d: YOLOv3 detections
on the Ground Truth, e: YOLOv3 detections on the FutureGAN results. The Average Precision (AP) for the class "car" of the YOLOv3
detections on the first 1000 videos of the Cityscapes test split is 42.21% (Predicted frame 1: 46.45%, 2: 45.92%, 3: 43.50%, 4: 39.86%,

5:35.63%). To calculate the AP we took the detections on the ground truth frames as the ground truth bounding boxes.

128 × 128 px frame resolution, following the procedure of (Oliu 
et al., 2018). This means, both the fRNN and the MCNet model
were trained to predict 10 frames based on 10 input frames.

4.3   Cityscapes

To further investigate whether our model is able to scale to 
more complex real-world scenes, we trained it on the Cityscapes

dataset. This dataset contains 2975 training videos and 1525
test videos, each of 30 frames in length. The 16 bit color videos
were recorded with a frame rate of 17 fps in 50 different cities of
Germany. We took the training and testing set as split by Cordts
et al. (Cordts et al., 2016). Each split contains the videos from a
different set of cities. The FutureGAN was trained to predict five
future frames based on five input frames. In total, our training
set consisted of 8924 frame sequences. The test set had 4574
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Figure 7. Prediction results of the long-term predictions for all three datasets. a: Input, b: Ground Truth, c: FutureGAN (ours), d: MCNet

sequences.

In figure 3, we provide the quantitative values of our FutureGAN 
model trained on Cityscapes. We display the qualitative results 
including the YOLOv3 object detections in figure 6. It can be 
seen, that although FutureGAN was not optimized for this task,
many objects can still reliably be detected in the predictions.

4.4 Long-term Predictions

To test the generalization abilities of our network, we generated 
long-term predictions for all three datasets. This was achieved 
by feeding the predictions recursively back in as inputs.

Figure 7 shows the qualitative results of this experiment. For 
MovingMNIST, we generated predictions for 30 frames ahead, 
letting the network observe only one real sequence of 6 input 
frames. On the KTH Action dataset, predictions up to 120 
frames ahead were made, while only one real sequence of 6 
input frames was observed. After prediction step 20 the MCNet 
begins to blur out object contours completely, while FutureGAN 
still predicts plausible object appearances and motion patterns. 
For Cityscapes, we generated predictions 25 frames ahead, when
the network only observed one real sequence of 5 input frames.

5. CONCLUSION AND DISCUSSION

In this paper, we have proposed FutureGAN, a new model that 
predicts future video frames conditioned on an input sequence. 
By extending the existing PGGAN architecture to video predic- 
tion, we are able to predict future frames that appear realistic, 
while the problems that typically arise when training GANs 
are avoided. Our proposed model is trained to predict multiple 
future frames at once, using a similar setting for different data- 
sets. This makes FutureGAN directly applicable to a variety of 
datasets without utilizing dataset specific domain knowledge. 
Contrary to other approaches, our networks solely use the raw 
pixel values as an input, without relying on additional priors, or 
conditional information.

To evaluate our model, we trained and tested it on three datasets 
of increasing complexity. For MovingMNIST and KTH Action,

we used an identical training setting, except for the dataset size 
and final frame resolution. The predicted frames show that 
the network effectively learned representations of spatial and 
temporal transformations for the two datasets. Our network 
identifies moving pixels in the input frames and transforms them 
based on its learned internal representations. For both datasets, 
the results are competitive to the state-of-the-art. The qualitative 
results of the Cityscapes dataset suggest that our model scales 
to complex natural traffic scenes as well. We observed that 
FutureGAN applies separate motion patterns to the background 
and foreground pixels. Furthermore, it seems as if the network 
was able to learn scene-specific representations of ego-motion. 
In most cases, it applies the correct motion patterns for either 
a static or dynamic background based on the input sequence. 
Even though the networks were trained on fewer frames, they 
generalize reasonably well to predict deeper into future for the 
KTH Action and Cityscapes dataset. The predictions still appear 
plausible, although the frames tend to get blurrier for increasing 
numbers of time steps.

Our experiments verify that the progressive growth strategy of 
Karras et al. (Karras et al., 2018) scales effectively to the more
complex video prediction task.
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