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ABSTRACT: 

 

Reliable and accurate geospatial-databases (Digital Elevation Models, DEMs) are an essential component of Geographic Information 

Systems (GIS). One of their most important uses is change detection - an invaluable tool for environmental interpretation and evidence-

based action. High-performance and inexpensive Unmanned Aerial Vehicles (UAVs) are increasingly used for the acquisition of timely 

geospatial information (imagery) for the production of DEMs for geospatial change detection. DEMs produced from UAV imagery 

have very high resolution and very good internal accuracy. However, their absolute location accuracy is inferior to other mapping 

technologies. Therefore, existing change detection methods, which are based on the point-by-point comparison, will perform poorly 

when processing DEMs created from UAV imagery since they are limited in reliably separating real physical changes from artifacts 

related to DEM inherent inaccuracy or errors. This paper presents a novel methodology that overcomes these deficiencies, by 

implementing a hierarchical analysis and modeling process, in which a sequence of methods is used to automatically identify and 

match unique homological features, such as building corners or topographic maxima, in the various height models. These provide 

geospatial anchors that bring out local geospatial discrepancies between the models. Those are then used to "repair" (align) the models 

to the same geospatial reference system, at which point change-detection is performed. Experimental results showed that when 

calculating point-by-point height differences, 98.99% of the area was falsely classified as changed, whereas implementing our method 

adequately detected all the actual changes in the area with no false positives, correctly classifying 0.16% of the area as changed.  

 

 

1. BACKGROUND 

Change detection is an invaluable tool for environmental 

interpretation and evidence-based action, commonly 

implemented in GIS systems while relying on Digital Elevation 

Models (DEMs) that serve as a reliable representation. Change 

detection mostly requires a spatial adjustment of the DEMs to 

retrieve accurate results. Commonly used spatial adjustment 

processes of geospatial databases are based on points of interest, 

and are usually consists of two main stages: (1) the determination 

of homological features (coupling objects that describe the same 

physical phenomenon in the various databases); (2) the 

determination of the most suitable spatial transformation between 

the databases, such that it minimizes the spatial difference that 

exists after the transformation. In the second stage of the process, 

the calculation of single and uniform (global) conversion 

parameters between the various databases is usually performed - 

an assumption that is not always justified due to the differences 

of the databases. The use of single and uniform spatial 

transformation may impair the quality and accuracy of the data 

obtained after completion of the process, i.e. extraction and 

identification of inaccurate and unreliable changes. Different 

phenomena such as raw data, production processes, differences 

in reference systems, resolution, etc., affect the representation of 

different objects in the area, so that when a particular feature is 

compared in two different databases, a uniform global mismatch 

will sometimes occur. Therefore, there is a need for local, rather 

than global, analysis, in order to find an optimal solution of 

spatial transformation between the various databases, i.e. 

creating a set of regional (or local) transformations that ensures 

continuity and data representation. 

 

The comparison mechanism must base on the topological 

structure of the data (Heipke 2014, Ben-Haim et al., 2014). If the 

existing gaps are untreated and minimized prior to the 

comparison process, they greatly affect data reliability, especially 

for processes such as change detection (Wang and Wade, 2008).  

Most of the studies that attempt to deal with the problem make 

use of global spatial adaptations carried out manually, while 

ignoring local reciprocal interactions (Podobnikar, 2005; 

Choussiafis et al., 2012). Another example can be found in 

Papasaika et al. (2009, 2011), which attempted to address the 

problem by diluting the representation (e.g., slope, roughness, 

and appearance) for the global adjustment. 

 

Ben-Haim et al. (2012) attempted to find a single and uniform 

transformation between two geospatial databases, and found that 

there are local trends in the flat attribution of the various objects, 

which changes according to the location of the area in the 

database, hence the necessity of analyzing regional trends and 

finding a set of local adaptations for more accurate and reliable 

geospatial analyzes. The authors chose to represent local 

suitability by dividing the databases in a hierarchical way into 

quarters. Most of the geospatial databases behave arbitrarily, 

which is less similar to fixed quarters and more to patches with 

different coverage, so there is a need to examine the results of 

Ben-Haim et al. (2012), given the distribution of a different 

irregular and permanent area for each database or infrastructure 

)Zhao et al., 2013(. Further studies have shown that in order to 

obtain more accurate results in the index of the correct fit of the 

topology and geometry presented, while minimizing existing 

spatial differences, it is necessary to first anchor and process 

spatial matching between the data repositories, e.g., from the 

fusion of several databases (Safra and Doytsher, 2006, Sester et 
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al., 2014, Hebel at al. 2013), or based on homological points of 

interest that describe consistent and prominent entities in data 

(such as endpoints in topography (Dalyot, 2010). 

 

This study focuses on the development of a methodology based 

on multi-resolution analysis of DEMs, with the goal of retrieving 

optimal spatial transformation – or a set of such, which will 

enable accurate quantification of the changes that occurred in the 

field, while maximizing the neutralization of contradictions that 

are not part of the changes. The first stage will rely on finding 

and matching homological points between the various databases, 

which are characterized by uniform trends in their flat attribution. 

These will enable the second phase of the extraction of spatially 

compatible regions locally, thereby ensuring the flexibility of 

spatial matching and maintaining continuity, allowing for more 

accurate and reliable detection of changes. In this way, it will be 

possible for each local area in database A to adopt a spatial 

transformation to the homological zone in database B, in order to 

achieve maximum spatial compatibility between the databases, 

which will maintain continuity in the presentation of data. 

 

As a result of the proliferation of modern technologies for the 

production of DEMs, models are being produced that present a 

different level of detail, coverage, resolution and accuracy. As a 

result, DEMs produced in different technologies, at different 

purchasing conditions and at different times, will almost always 

present different and changing data and qualities. These will 

result in a different presentation of the physical phenomena 

observed in the area (hill, structure, shed, wall) in the various 

models, which cause the location and shape of the phenomenon 

to be different, sometimes in a significant manner (Fig. 1). Some 

of the differences in the description are derived from changes in 

the field between the various acquisition times, but a large part is 

derived from the differences in internal definitions of the models, 

such as datum, precision, resolution, level of detail, as well as 

inherent inaccuracies. As a result, automatic detection of 

changes, based on various DEMs, may yield partial insights at 

best - and errors at worst. 

 

  
 

Figure 1. Shaded relief representation of two DEMs of the same 

area, produced by different technologies and at different times: 

gaps in the representation of the relief of physical phenomena in 

location, both in height and in detail. 

 

The need to use innovative mapping technologies, such as UAVs, 

to produce detailed and precise DEMs is sharpened under 

conditions of work in densely built and densely populated areas. 

A UAV is now a relatively simple technological solution, 

enabling relatively short time and relatively simple operation 

complexity to produce a DEM from the images, to obtain an up-

to-date and reliable snapshot (Kršák et al., 2016). However, 

although the internal accuracy of the model produced is high, the 

external accuracy is still relatively low, since most of the UAVs 

use location measurement using a low accuracy GNSS (error of 

several meters at best). Tuttas (2017) addressed the external 

accuracy problem using photogrammetric control points on the 

ground. Although this solution provides an accurate change 

detection, it requires advanced measuring instruments which 

makes the use of UAV a much more expensive. Thus, without 

using photogrammetric control points, if a quantitative 

comparison of the changes that occurred in the field between 

different times from a DEM produced by a UAV to an existing 

DEM is likely to produce erroneous and inaccurate results. The 

inherent differences and inaccuracies of the various DEMs 

(resolution, datum, information acquisition technique, etc.) add 

uncertainty about the quality of the solution. Therefore, the basis 

for this research is the development of advanced automatic 

algorithms and methodologies, aimed at minimizing spatial gaps. 

These methods can also be used to identify and quantify in an 

informed and optimal manner physical changes that occurred in 

the field between different times. The ability to distinguish the 

signal from noise, will enable correct decision making, and the 

ability to analyze reliably for various geospatial analysis 

processes. 

 

One of the innovative methodologies developed for dealing with 

databases comparison is Multi-Resolution Analysis, which uses 

unique geospatial characteristics by down-sampling database 

resolution at different stages and finding the change between 

stages. Date at al. (2001), for example, used Multi-Resolution 

Analysis to enable inclusion in favor of a three-dimensional 

computer graphic display efficiently using Orthophoto and DEM. 

One of the main problems in this use is the multiplicity of details 

and information (since in order to simulate reality optimally, use 

as much information and resolution as possible). A multiplicity 

of information causes slow computational power operations, 

thereby damaging the computerized 3D product. In order to solve 

this problem, it is necessary to reduce the information in a way 

that does not harm information or connectivity. The authors used 

a HAAR transformation for the DEM, and converted h-disk 

wavelet to Orthophoto processing. In this way, they were able to 

find the most appropriate generalization for the three-

dimensional graphic representation of the database in an efficient 

manner. 

 

Using Multi-Resolution Analysis of geospatial databases, spatial 

phenomena can be automatically detected in the database. 

Falkowski et al. (2006) developed a methodology for automatic 

extraction of vegetation from DSM (Digital Surface Model), 

produced using LiDAR (Light Detection And Ranging). The use 

of multi-resolution analysis on DSM enabled the authors to 

search for a spatial phenomenon (by tree radius, tree scale, and 

curvature) at varying resolutions, thus limiting the search to a 

specific shape and/or size. When we try to find homological 

points for the sake of calculating the spatial localization between 

two geospatial databases, we can also use Multi-Resolution 

Analysis, as Falkowski et al. (2006), and extend the search in the 

database for various resolutions to evaluate the quality of the 

interest points’ extraction. The use of image processing tools for 

DEMs is an innovative technique that can be used to analyze 

three-dimensional databases, such as point clouds, which are now 

a common product of laser-based mapping as well as UAV-based 

photogrammetry. 

 

2. METHODOLOGY 

The methodology in this research is based on three main stages: 

(1) interest point detection and matching, (2) spatial adjustment, 

and (3) change detection with noise filtering. For identifying 

homological interest points, computer image processing 

methodologies are used. In the spatial adjustment phase, a local 

comparison is performed by dividing the databases to triangles 

and matching between the databases locally and independently.  
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2.1 Interest Points Detection and Matching 

The first step in the process of identifying changes is matching 

the DEM databases. If it is not possible to adequately compare 

the databases, it will be difficult to differentiate between the 

actual changes and inherent global and local discrepancies and 

noise. An example is given in Fig. 2, where the discrepancy 

between two databases cannot be solved by moving one database 

to the other. In Fig. 2, red can be seen as a negative change in 

height (a drop-in height) and a green change in positive height 

(height increase). It is clear that the size and direction of the 

horizontal discrepancy to be performed prior to calculation, 

depicted as vectors, is not uniform and varies, where the lower 

part depicts larger discrepancies when compared to the upper 

part. 

 

 
 

Figure 2. Example of the calculation of height difference 

performed without spatial adjustment: areas are wrongly 

classified as a change in the area (red and green). 

 

Since the DEM produced by UAV is analogous to a database that 

is uniform in density and having a very high resolution, thus it is 

similar to an image, we decided to use image processing tools for 

point detection. In image processing, a large number of 

algorithms for the automatic identification of objects in images 

exists. One of the advanced object recognition algorithms is the 

Scale-Invariant Feature Transform (SIFT) (Lowe, 1999). The 

SIFT algorithm uses a multi-resolution analysis of images. This 

type of analysis is performed by reducing the resolution of the 

image and comparing the variable resolutions. After down-

sampling the resolution, the objects that remain in the image are 

objects that are irregularly different from their environment. 

After repeating the resolution down-sampling step several times, 

interest points can be located in the image. The algorithm 

performs these actions for each individual image and then looks 

for a match between homological interest points in each image. 

 

Another method for finding homological points using multi-

resolution analysis uses the Gaussian filter (Lowe, 2004). This 

method is performed by using the Gaussian filter on the image, 

and from here the missing image is subtracted from the original 

image. This method makes extensive use of image processing 

problems. For identifying the edges, the use of the Gaussian filter 

is a significant and necessary component (Sharifi et al. 2002). 

The main challenge in locating edges is to extract the edges only 

with no additional noise, and the ability to separate the noise from 

the edges is limited, the only option is to set a Threshold value in 

advance. The threshold value can reduce the incorrect 

identification of edges, although it can reduce the precision and 

hermetic of the process. 

 

After detecting homological points using SIFT, we have found 

that SIFT incorrectly matches some of the points, although we 

used only the high score homological points. Accordingly, 

implemented a filtering algorithm to detect the incorrectly 

matched points by calculating the average, median, and standard 

deviation of the set to remove these errors. An example is 

depicted in Fig. 3.   

 

 
 

Figure 3. Vectors depicting the spatial matching of the 

homological points: before filtering (black), and after filtering 

(red); homological points that are filtered (blue circle). 

 

2.2 Spatial Adjustment  

In this study, we examined a different distribution of data, which 

is not arbitrary as the global transformation, and is directly 

related to the quantity and distribution of the homological points. 

The most basic form of dividing space into cells by points is 

triangulation. This we do based on the homological points using 

the Delaunay triangulation. This way, each DEM is divided into 

local triangular areas (sections), which are based on the 

homological points’ structure, receiving a structure of 

homological triangles that should spatially correspond. 

 

2.3 Change Detection with Noise Filtering 

Once we have divided the databases into small sections using the 

Delaunay triangles, we perform local change detection on every 

triangle. We compute the transformation from the second 

database to the first for each triangle separately. To asses this 

stage, we have used two transformation models: (1) Affine 

transformation, and (2) Inverse Distance Weighting (IDW). 

 

2.3.1 Affine Transformation 

 

For affine transformation it is necessary to find the 6 parameters 

for each triangle: 

 

(1) 

The six transformation parameters (a, b, c, d, e, f) are calculated 

using the least squares adjustment, where (x, y) are the 

coordinates of the vertices forming the triangle from the second 

database, and (x’, y’) are the coordinates of the vertices forming 

triangle from the first database. This is solved for each triangle, 

giving six equations for calculating the six transformation 

parameters (zero-degree of freedom). The partial derivative 

matrix A is considered directly from the equation of the 

characteristic transformation: 
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(2) 

Vector L is the measurement vector with the coordinate values of 

the second triangle:  

 

 

(3) 

The affine transformation parameters (a, b, c, d, e, f) are obtained 

after calculating the solution vector (X): 

 

 
(4) 

2.3.2 IDW 

 

In order to calculate the transformation using IDW, first we 

calculate the differences between the homological coordinates of 

each pair of triangles (based on their homological vertices): 

 

 

(5) 

The differences (dx, dy, dz) between the homological 

points are the parameters for the IDW transformation. 

Depicted in Fig. 4, every triangle vertex has a 

corresponding spatial translation (dxi, dyi, dzi), thus 

every point inside the triangle is influenced by these 

values according to the distance from them, as 

described in Equations 6 and 7. 

 

Figure 4. Each vertex of the triangle represents two homological 

points in the databases, while the red arrow shows the 

difference vector in size and direction, between the databases. 

Now for each point (x, y) within the first triangle, the horizontal 

distances, li, where i=1:3, to all triangle corners are calculated, 

depicted in Equation 6. 

 

 

(6) 

 

Based on the distances, the transformation parameters for each 

point in the triangle from the second database will be carried out 

according to Equation 7. 

 

 

(7) 

 

Now that the transformation is calculated for a specific point 

(whether via IDW or affine transformation), we can transform 

each triangle, composed of all database points that fall inside it, 

in the second database to the corresponding triangle in the first 

database. An example of the data structure is depicted in Fig. 4. 

If required, it is also possible to filter triangles that are considered 

as noise to the system, e.g., triangles that are very small in area 

or have an irregular geometry. For example, we measured the 

angle of each “shift vector” in the triangle (every tringle contains 

3 “shift vectors” from the second database to the first database), 

as shown in Fig. 4. 

 

 
 

Figure 4. Delaunay triangulation based on homological points. 

The “translation vector” representing the local shift between the 

databases for each vertex is represented by a red arrow. 

 

 

3. EXPERIMENTAL RESULTS 

The experiments in this study were carried out in open urban and 

desert areas, where the DEMs were produced using Pix4D on 

images collected by an off-the-shelf consumer level UAV DJI 

Phantom 4 Advanced. To evaluate the reliability and potential of 

implementing SIFT on a DEM data structure, we first compared 

its results to the ones received using an Orthophoto database, 

with the results depicted Fig. 5. For the urban area, 300 images 

were taken, producing a database covering approximately 0.05 sq 
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km. The same area was scanned twice with a time difference of 

57 days. For the data generated we produced an orthophoto and 

a DEM, both with a resolution of 0.25 m. For the Orthophoto, 

only 26 homological points are identified and coupled, whereas 

for the DEM produced for the same area, 212 homological points 

are identified and coupled. Above from the sheer volume of the 

number of homological points, we can see that the distribution of 

points is much wider and dispersed when we compare the results 

of the DEM to those of the orthophoto. These results show that 

while the orthophoto can be largely influenced by the existing 

environmental and production conditions, thus affecting the 

results of point identification, the DEM is much less influenced 

by these. In Fig. we can see that different lighting conditions 

exist: in the first database (right) there is almost no shadow, 

whereas in the second database (left), the extent of the shadow is 

much more evident. These results are very promising, proving 

that implementing image processing tools on a DEM can produce 

qualitative results for point detection, where the large number and 

dispersion of homological points make it possible to implement 

the local adjustment and transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Point identification in the two databases: orthophoto 

(top) and DEM (bottom) representation, 26 and 212 homological 

points, respectively. 

 

After the homological points are identified, we calculate several 

transformations to evaluate our approach. First, we calculate a 

global affine transformation between the two databases that relies 

on all homological points, where one database is transformed into 

the other, and height changes are calculated per DEM point. The 

results of this process are depicted in Fig. 6, where height 

changes above half a meter are represented in green, and height 

changes below half a meter are represented in red. Although 

some actual changes can be identified, as the building walls in 

the bottom of the figure, there are still many parts marked falsely 

as change; for example, the road area on the right that has not 

changed between the two databases. This incorrect change 

detection quantification is the clear result of non-uniform 

transformation between the two databases that cannot be 

quantified by a single global affine transformation. 

 

We then evaluated the change detection based on local analysis, 

according to the proposed Delaunay triangulation, depicted in 

Fig. 7. For each triangle, we separately calculate the 6 local 

transformation parameters from the second database to the first. 

We then perform the transformation for each triangle 

independently to quantify the changes. 

 

 
 

Figure 6. Identification of changes by the subtraction of the 

DEMs after global affine transformation: above half a meter 

change (green), and below half a meter change (red). 

 

 
 

Figure 7. Delaunay triangulation based on 212 homologous 

points superimposed on the DEM. 

 

Fig. 8 depicts the change detection results. Evident changes are 

visible in the construction area, but as opposed to the global 

transformation, there are no false-positive changes (for example, 

in the road area). While the global transformation makes use of 

all the points simultaneously, so that the transformation 

parameters are affected by errors from all of the set distributing 

local trends on all data, the local transformation uses each 

triangle separately, not affected by discrepancies derived from 

distant points (correct or not). 

 

 
 

Figure 8. Identification of changes by the subtraction of DEMs 

after local affine transformation Increase in height above half a 

meter (green) Drop in height above half a meter (red). 

 

To further validate our results, we calculate false positive and 

false negative error statistics according to five height 

comparisons, depicted in Table 1: (1) “direct” comparison that 

relies on the original database coordinates; (2) average shifting, 

moving one database to the other by calculating the average of 

the differences (3D translations) of the homological points; (3) 

global affine transformation of the database using the 

homologous points; (4) localized affine transformation for each 

triangle separately; and, (5) localized IDW transformation for 

each triangle separately. Values show that while the global 
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processes produce inaccurate change detection results, the local 

affine and IDW processes produce much better results, accurately 

identifying spatial changes that occurred. 

 

Comparison Model False 

positive (%) 

False 

negative (%) 

Direct  32 43 

Global average shifting 12 31 

Global affine 12 35 

Local affine 0 9 

Local IDW 1 9 

 

Table 1. Comparison of false positive and false negative errors 

using all five models in an urban area. 

 

For the desert area, 450 images were taken, producing a database 

covering approximately 0.02 sq km. The same area was scanned 

twice with a time difference of 1 hour. For the data generated we 

produced a DEM in a resolution of 0.25 m. After the first scan, 

we physically made several small morphological changes in the 

topography, before conducting the second scan, such that a 

change detection analysis should show that most of the area did 

not change. The topographies before and after are depicted in Fig. 

9. The time difference between the two missions was less than 

one hour. 

 

 
 

 
 

Figure 9. Shaded relief representation of the two DEMs with a 

zoomed are: before (right) 2 holes (green and orange) and flat 

land (blue), and after (left) 2 holes (green and blue) and covered 

hole (orange). 

 

Figure 10 depicts the results of the global affine transformation 

of the two databases. Although the middle area shows good 

alignment of the two databases, both sides show an erroneously 

classified change detection area. Figure 11 depicts the results 

achieved after implementing the approach presented here, clearly 

showing that the two changed holes were correctly identified, 

with almost no false positives. 

 

 
 

Figure 10. Identification of changes by the subtraction of DEMs 

after a global affine transformation: above 5 cm change (green), 

and below 5 cm change (red). 

 

 
 

 
 

Figure 11. Identification of changes by the subtraction of DEMs 

after local affine transformation Increase in height above 5cm 

(green) Drop in height above 5cm (red). 

 

Table 2 depicts the calculated false positive error statistics 

according to the five height comparisons (similar to Table 2). 

Only the local transformations did not identify false positive 

errors, allowing reliable change detection. 

 

Comparison Model False 

Positive (%) 

Direct  99 

Global average shifting 47 

Global affine 49 

Local affine 0 

Local IDW 0 

 

Table 2. Comparison of false positive errors using all five 

models in a desert area. 
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4. DISCUSSION 

Our approach provides a novel methodology for the detection of 

geospatial changes based on location- dependent multi-resolution 

analysis of DEMs produced by off-the-shelf consumer level 

UAV imagery. By implementing the automatic processes, we 

succeeded in accurately detecting topographical changes as small 

as 18 cm in diameter and 10 cm in depth with no false positives. 

More broadly, this research introduces a new approach to change 

detection from DEMs using image processing and feature 

matching techniques from the domain of image analysis. 

Moreover, the fully automatic implementation obviates the need 

for manual preprocessing or the use of ground control points. 

 

Our research allows any simple user with a UAV and appropriate 

processing software to generate change mapping without control 

points or preliminary matching between the different databases. 

The local analysis we performed in the study assists in the 

process of identifying changes and eliminates the effect of errors 

in databases that are caused by environmental conditions and/or 

limitations of production systems and platforms. The 

contribution of the study enables the implementation of a reliable 

local change detection process. Supplementary processes can 

make use of this approach, such as updating and fusion of 

geospatial databases. 
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