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ABSTRACT:

Deep learning has been used successfully in computer vision problems, e.g. image classification, target detection and many more. We 
use  deep  learning  in  conjunction  with  ArcGIS  to  implement  a  model  with  advanced  convolutional  neural  networks  (CNN)  for 
lithological mapping in the Mount Isa region (Australia). The area is ideal for spectral remote sensing as there is only sparse vegetation 
and besides freely available Sentinel-2 and ASTER data, several geophysical datasets are available from exploration campaigns. By 
fusing the data and thus covering a wide spectral range as well as capturing geophysical properties of rocks, we aim at improving 
classification accuracies and support geological mapping. We also evaluate the performance of the sensors on their own compared to 
a joint use as the Sentinel-2 satellites are relatively new and as of now there exist only  few  studies  for  geological  applications.  We 

developed  an  end-to-end  deep  learning  model  using  Keras and Tensorflow that consists of several convolutional, pooling and 
deconvolutional layers. Our model was inspired by the family of U-Net architectures, where low-level feature maps (encoders) are 
concatenated with high-level ones (decoders), which enables precise localization. This type of network architecture was especially 
designed  to  effectively  solve  pixel-wise  classification  problems,  which  is  appropriate  for  lithological  classification.  We  spatially 
resampled and fused the multi-sensor remote sensing data with different bands and geophysical data into image cubes as input for our 
model. Pre-processing was done in ArcGIS and the final, fine-tuned model was imported into a toolbox to be used on further scenes 
directly in the GIS environment. The tool classifies each pixel of the multiband imagery into different types of rocks according to a 
defined probability threshold. Results highlight  the power  of  using  Sentinel-2 in conjunction with ASTER data with  accuracies of 

75% in comparison to only 70% and  73%  for   ASTER   or   Sentinel-2   data   alone. These   results   are   similar   but   examining   the  
different  classes  shows  that  there  are significant improvements for classes such as dolerite or carbonate sediments that are not  that 

widely  distributed in the area. Adding  geophysical  datasets  reduced  accuracies  to  60%,  probably  due to  an order  of   magnitude 

difference in spatial resolution.  In comparison,  Random Forest (RF) and Support Vector Machines (SVMs) that were trained on  the 

same data only achieve accuracies of 46 % and  36 % respectively.  Most insecurity is due to labelling errors and labels  with  mixed 

lithologies. However, results show that the U-Net model is a powerful alternative to other classifiers for medium-resolution 

multispectral data.  

 

 

  

 

 

  

 

 

1. INTRODUCTION

Remote sensing has a long history for geological applications and 
spectral data has been used in many studies to support geological 
mapping,  exploration  targeting  and  lithological  classification, 
mainly  by  applying  band-ratio  techniques  as  well  as  different 
machine-learning approaches for classification (e.g. Brandmeier 
et al. 2013; Hewson 2005; Ninomiya 2005; Rowan 2005). Deep 
Learning  has  been  successfully  used  in  different  fields  of 
research, being named one of the 10 break-through technologies 
in 2013 (MIT  2013).  For  computer  vision  tasks,  deep-learning 
has been pushed by companies such as Google, Baidu, Microsoft 
and  Facebook (Zhu  et  al.  2017) and  is  becoming  increasingly 
popular  in  remote  sensing  tasks  such  as  object  detection  and 
classification  (e.g. Kamilaris  and  Prenafeta-Boldú  2018;

Mahdianpari  et  al.  2018;  Zhu  et  al.  2017 and  many  more). 
However,  deep  learning  approaches  and  an  end-to-end 
integration into a GIS environment are still scarce for geological 
applications.

Thus, in the present study we evaluate a deep-learning approach 
for  lithological  classification  and  compare  results  to  classical 
machine-learning  algorithms  using  different  multispectral  and 
geophysical  datasets.  Our  goal  is  to  develop  a  workflow  for 
geological mapping by integrating a trained convolutional neural 
network (CNN) for automated lithological classification into the 
ArcGIS Platform to support field-based data collection and map 
construction.  

 

2. GEOLOGY OF THE STUDY AREA 

Mount Isa (Australia) is well-known to host world-class base-

metal deposits and due to the great economic and scientific 

interest, there exist many detailed studies of area (e.g. Murphy et 

al. 2011; Wilde 2011).  
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Figure 1. Schematic map of the Mt Isa and Mc Arthur River 

regions with major domains and faults. MIF: Mt Isa Fault, 

MGF= Mt Gordon Fault, PF= Pilgrim Fault, FRF= Fountain 

Range Fault, TRF= Termite Range Fault, EFB= Eastern Fold 

Belt, WFG = Western Fold Belt. Red square = study area. (after 

Murphy et al. 2011) 

 

The Mount Isa Inlier is divided into the Western and Eastern Fold 

Belts and the central Kalkadoon-Leichhardt Belt (Fig. 1). In 

terms of stratigraphy and architecture, three different periods are 

distinguished: basement rocks (>1900-1820 Ma), Leichhardt 

Superbasin (1752-1740 Ma), Calvert Superbasin (1740-1670 

Ma) and Isa Superbasin (1670 -1640 Ma).  

Our study area is located in the Western Fold belt and stretches 

into the Kalkadoon-Leichhardt Belt and, thus, covers a wide 

range of rock units in a complex geodynamic setting (red square 

in Fig. 1). For more information about the geodynamic history 

and the stratigraphy, the reader is referred to the respective 

publications as cited above. For our purpose, the lithological 

units were classified according to the dominant rock type. This is 

necessary as we can only capture major physical properties of 

rocks/minerals by using spectral data at medium-resolution 

remote sensing data. Thus, we can hardly distinguish between, 

for example, two carbonatites from different stratigraphic units. 

Figure 2 shows the corresponding lithological map of our study 

area.  

 

Figure 2. Lithological map of the Mount Isa area classified with 

respect to the dominant rock type. Black square: study area. 

Data: (Queensland Department of Mines and Energy 2000) 

 

3. DATA AND METHODOLOGY 

The overall workflow and data used are shown in Figure 3. A 

detailed description of the data and the methods used is provided 

in the following paragraphs. 

 

3.1 Data  

One goal of our study was to evaluate Sentinel-2 data for 

geological mapping. As the Sentinel-2 mission is relatively 

young (Sentinel-2A and B were launched in 2015 and 2017 

respectively), there are not yet many studies investigating its 

potential for geological applications (e.g. Van der Werff and Van 

der Meer 2015, 2016). Thus, we downloaded a Sentinel-2 

atmospherically corrected (L2A) dataset covering the study area. 

The scene was collected on April 3rd, 2018 and was selected to 

have a cloud coverage of 0%. Bands 1,9 and 10 were excluded 

from analysis as they only have a spatial resolution of 60m 

compared to the 10m and 20m spatial resolutions of the other 

bands and are not important for our purpose. Most spectral bands 

of Sentinel-2 are in the visible and near infrared (VNIR) (Fig. 4). 

However, many rock-forming and alteration minerals such as 

pyroxenes, carbonate minerals and micas have absorption 

features located in the shortwave infrared (SWIR) of the 

electromagnetic spectrum. Thus, we also used ASTER data that 

has a long history in geological remote sensing as there are 

several spectral bands located in the SWIR area (Figure 4). 

ASTER data was aquired as atmospherically corrected data 

product. The scene is from October 3rd, 2004 and was also 

selected according to the criteria of 0% cloud cover. In addition 

to the spectral datasets, we also used radiometric data available 

from exploration campaigns in the area (Rogers 2009). In 

contrast to the ASTER and Sentinel-2 datasets with a spatial 

resolution of 15/30 and 10/20m respectively (compare Figure 4), 

the geophysical data is at 80m grid resolution. The grids used are 

U, Th and K radiometrics as well as specific ratios commonly 

used in exploration.  

The labels used for training and validation are shown in Figure 2 

and represent the dominant rock type from the GIS shapefile 

obtained from the Geological survey (Queensland Department of 

Mines and Energy 2000). 

 

3.2 Methods 

3.2.1 Data pre-processing 

 

All data was spatially resampled to 10m resolution, the best 

spatial resolution of the Sentinel-2 bands, and projected to a 

common coordinate system (WGS 1984, UTM Zone 54S). 

 

 
 

Figure 3. Flowchart showing the overall workflow, data and 

software used in this study. 
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Four different image cubes were then exported as labelled tiles 

(256 pixels x 256 pixels) as input for the CNN: 1) the Sentinel-2 

data, 2) the ASTER data, 3) Sentinel-2 + ASTER and 3) Sentinel-

2 + ASTER + geophysical data. This was done to compare the 

accuracies achieved by each combination (Fig. 3).  

The exported tiles were split into training and testing datasets 

(90% and 10%). The training data is automatically split into 

training and validation during the training process (80% and 

20%). To increase the number of training data, geometric data 

augmentation (rotation) was used on 10% of the tiles.  

Furthermore, even though the area is arid, we created a mask to 

eliminate the effect of the sparse vegetation. This was done by 

calculating and interactively thresholding the NDVI (threshold of 

0.3) based on the Sentinel-2 data. 

 

 

 
Figure 4. Sentinel-2, ASTER satellite characteristics. 

Atmospheric transmittance is plotted on the y-axis (after Van 

der Meer 2016). 

 

 

3.2.2 CNN architecture and experiments 

 

Deep learning has been widely used for object detection and 

classification and there exist many highly performant 

architectures such as InceptionV3, VGG16, VGG19, ResNet50 

and many more (e.g. Mahdianpari et al. 2018). As we are using 

multispectral data and aim at classifying rocks that are very 

different from other objects, we cannot use networks that are 

pretrained on large computer vision datasets but need to train a 

new network that is well-suited for smaller datasets. Thus, we use 

a U-Net architecture which was originally invented for bio-

medical image segmentation (Ronneberger et al. 2015). It 

consists of an encoding and a decoding path with the encoding 

path being a typical CNN. During the contraction, the spatial 

information is reduced while feature information is increased. 

The decoding path combines the feature and spatial information 

through a sequence of up-convolutions and concatenations with 

high-resolution features from the encoding path (Figure 5).  

 

 

Figure 5. Final U-Net architecture used for lithologic 

classification. 

To find the optimal hyperparameters for our problem, some fine-

tuning experiments were conducted. We tested different model 

depth, input image sizes and learning rates to achieve the best 

overall accuracy on the validation dataset. The overall validation 

accuracy (average of the last 20 training epochs) was used as 

criteria to choose the best parameters. In addition, we monitored 

the training curves of validation accuracy and loss. Based on 

these experiments, the learning rate for the final network was set 

to 0.001 and the model depth to two convolutional blocks of 64 

convolutions on each path (Figure 5).  The input image size was 

64x64 pixels x number of bands. The Adam optimizer (Kingma 

and Ba 2015) was used for all experiments and loss is calculated 

by the cross-entropy loss function. 

In order to compare these results to traditionally used machine-

learning algorithms, we also ran a Random Forest Classifier and 

a Support Vector Machine on the same dataset. The kernel 

function from the SVM classifier was the RBF kernel and the 

error tolerance used was 0.001. The RF classifier had a tree depth 

of 6 and 100 trees. 

For validation we used our test dataset and calculated different 

metrics to compare our results: overall accuracy, confusion 

matrices, F1 scores and Intersection over union (IoU). 

 

3.2.3 U-Net integration in ArcGIS Desktop 

 

As our goal was to provide a workflow that is scalable and can 

be applied easily to future datasets, the final U-Net was imported 

into a toolbox in ArcGIS Pro 2.3. This was done by using the tool 

“Classify Pixels Using Deep Learning” that requires the trained 

Network as well as a .json file and a raster function (a detailed 

description of this workflow can be found here: 

https://github.com/Esri/raster-deep-learning). Using the same 

input data, future scenes can be classified rapidly, and results can 

be synchronized with the Esri cloud or an ArcGIS server to be 

accessed by mobile mapping devices in the field. This allows for 

a streamlined workflow for fieldwork and supports geological 

map production. 

 

4. RESULTS 

Results for all data combinations are summarized in Table 1. The 

best overall accuracy of 75% was achieved by fusing ASTER and 

Sentinel-2 data. Using each sensor alone, accuracies are slightly 

lower. However, comparing the results for each class (Figure 6), 

we observe that several lithologies are classified well using only 

one sensor, others cannot be captured at all (e.g. Carbonate 

sediment or Gneiss). Thus, by gaining a broader spectral range 

when fusing ASTER and Sentinel-2, we improve the 

classification significantly for several classes (especially for 

Dolerite, Carbonate sediments or Gneiss). This is not reflected in 

the overall accuracy metric as classes are not distributed equally 

in the area.  

 

Dataset Overall 

Accuracy 

Confidence 

Rate 

ASTER 0.7007 0.6165 

Sentinel-2 0.7329 0.7790 

ASTER + Sentinel-2 0.7482 0.8340 

ASTER+Sentinel-2+Geophyisical 0.6064 0.3672 

 

Table 1. Final result for each dataset. Best results are achieved 

by fusing Sentinel-2 and ASTER data. 
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Surprisingly, adding the geophysical data does not help to 

improve classification results but reduces the overall accuracies. 

One reason for this might be the different spatial resolution of the 

original data that is an order of magnitude different from the other 

sensors. As the U-Net extracts features at different levels, spatial 

resolution might be an important issue and should be investigated 

further.  

In comparison to the U-Net results, the SVM and RF classifier 

only achieve accuracies of 36% and 46% respectively when using 

the same input data. 

 

 

 
Figure 6. Intersection over Union for each lithological class. 

Some classes (Carbonate sediment, Dolerite, Gneiss) only 

achieve good results by combining ASTER and Sentinel-2 data. 

 

Figure 7. shows the confusion matrix of the final 

ASTER+Sentinel-2 result and Figure 8. the classification map. 

Especially the Gneiss class is still not captured well. Most 

confusion occurs with Granite which is spectrally very similar 

and might also be similar in terms of morphology and therefore 

extracted features.  

As the classification is based on the dominant rock unit, results 

achieved by using a deep-learning approach capable of feature 

extraction are very good compared to the RF and SVM classifier 

that only classifies based on the spectral information. Even minor 

occurrences of other rocks within one label can lead to a 

substantial reduction of classification accuracy as this affects 

spectral signatures significantly. 

 

 
 

Figure 7. Confusion matrix of the final classification 

For the final classification in ArcGIS Pro we also added another 

class for pixels that have scores of less than 0.5 for each class and 

are therefore considered as not confidential. Note that vegetation 

also falls into this class. These pixels are named “uncertainty 

class” and might be checked in the field using mobile mapping. 

This can be achieved easily by synchronizing the results with the 

cloud or server and accessing them with Collector for ArcGIS for 

mobile mapping and sample collection.  

 

 
Figure 8. Results of the final U-Net. Right: Labels; Left: 

Results. Note the white pixels. This is where results are below 

0.5 for each class and we cannot predict accurately. 

 

 

5. DISCUSSION & SUMMARY 

This study evaluated several aspects that need separate 

discussion: (1) we present a preliminary approach to use deep-

learning for lithological mapping and compare this approach to 

purely spectral classifiers; (2) we evaluate Sentinel-2 data with 

respect to its capacity to capture spectral characteristics in 

comparison to ASTER data and image cubes with both datasets 

as well as radiometric data; (3) we provide a complete integration 

into ArcGIS and, thus, a workflow that can be applied on other 

scenes by non-data scientists, is scalable and allows smooth data 

access on mobile devices. 

With respect to the performance of deep learning we could show 

that U-Net is a great alternative to traditionally used machine-

learning algorithms for multispectral classification tasks. This is 

especially true if training and testing data covers large areas and 

no spectrally pure regions are selected for training. In the latter 

scenario SVM and RF classifiers perform much better than in the 

setting of this study (Brandmeier et al. 2013; Rowan 2003). The 

capability of feature extraction and therefore also a spatial 

component obviously helps to correctly classify the different 

lithologies. This agrees with findings of other studies on 

landcover classification using multispectral data and deep 

learning (Nijhawan et al. 2019; Zhang et al. 2019). The biggest 

issue in our study was that labels were not very reliable and only 

referred to the dominant rock type. This is why the purely spectral 

approach of RF and SVM classifiers only achieved very low 

overall accuracies. The U-Net still performs at a high overall 

accuracy due to the feature extraction. Future studies are 

necessary to investigate this in more detail. 

With respect to Sentinel-2 we found that the data on its own 

classifies some types of rocks even better than ASTER in this 

deep-learning approach, namely mafic volcanics, felsic volcanics 

and quartz sediments. This might be due to the higher spatial 

resolution of 10m compared to the 30m of ASTER and to the 

higher spectral resolution in the VNIR range of the 

electromagnetic spectrum that is important to capture absorption 

caused by iron, for example. However, the combination with 

ASTER is what really allows to improve results on all classes as 
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the joint use of the two sensors covers both important spectral 

ranges, the VNIR and SWIR at an adequate spectral resolution. 

Finally, the integration into ArcGIS allows users not familiar 

with programming and data science to use the pre-trained 

network in a GUI. Thus, the approach is also scalable, and data 

can be accessed with mobile mapping devices during fieldwork.  

 

6. CONCLUSIONS 

In conclusion, deep-learning is very promising for classification 

tasks with multispectral data and can be seamlessly integrated 

into a GIS environment to support mapping and inspection tasks. 

Sentinel-2 data proved to be valuable for geological remote 

sensing, especially when combined with ASTER data. The joint 

use of radiometric data was problematic, possibly due to the 

different spatial resolution and needs further investigation.  
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