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ABSTRACT: 

 

Recent advances in machine learning techniques for image classification have led to the development of robust approaches to both 

object detection and extraction. Traditional CNN architectures, such as LeNet, AlexNet and CaffeNet, usually use as input images of 

fixed sizes taken from objects and attempt to assign labels to those images. Another possible approach is the Fast Region-based CNN 

(or Fast R-CNN), which works by using two models: (i) a Region Proposal Network (RPN) which generates a set of potential 

Regions of Interest (RoI) in the image; and (ii) a traditional CNN which assigns labels to the proposed RoI. As an alternative, this 

study proposes an approach to automatic object extraction from aerial images similar to the Fast R-CNN architecture, the main 

difference being the use of the Simple Linear Iterative Clustering (SLIC) algorithm instead of an RPN to generate the RoI. The 

dataset used is composed of high-resolution aerial images and the following classes were considered: house, sport court, hangar, 

building, swimming pool, tree, and street/road. The proposed method can generate RoI with different sizes by running a multi-scale 

SLIC approach. The overall accuracy obtained for object detection was 89% and the major advantage is that the proposed method is 

capable of semantic segmentation by assigning a label to each selected RoI. Some of the problems encountered are related to object 

proximity, in which different instances appeared merged in the results. 
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1. INTRODUCTION 

Automatic object detection and extraction from high resolution 

aerial images in urban regions is a challenging task due to the 

complexity of the scene (Gonzalo-Martin et al., 2016). Recent 

advances in machine learning techniques for image 

interpretation have led to the development of robust approaches 

to both object detection and extraction. Most methods proposed 

recently rely on Deep Learning approaches by using 

Convolutional Neural Networks (CNN or ConvNets).  

 

Traditional CNN architectures, such as LeNet (LeCun et al., 

1998), AlexNet (Krizhevsky et al., 2012) and CaffeNet (Jia et 

al., 2014), usually capture as input images of fixed sizes taken 

from objects and attempt to assign labels to those images. More 

sophisticated architectures, such as Fully Convolutional 

Networks (FCN) proposed by Long et al. (2015) and its 

extension, U-Net (Ronneberger et al., 2015), are capable of 

dealing with different input sizes and of performing image 

segmentation. Another suitable approach is the Fast Region-

based CNN (or Fast R-CNN), which works by using two 

models: (i) a Region Proposal Network (RPN) which generates 

a set of potential Regions of Interest (RoI) in the image; and (ii) 

a traditional CNN which assigns labels to the proposed RoI.  

 

In general, the main disadvantage of using CNNs is the 

necessity of large datasets, thousands of images per class, to 

ensure class generalization during training, and also the 

increasing network complexity and number of parameters as 

more layers are introduced. According to Ronneberger et al. 

(2015), training FCN can be more difficult than traditional 

architectures since the training images must contain 

segmentation maps, which is more time consuming to produce. 

The other main problem of such methods is the loss of spatial 

resolution for boundary delineation due to the pooling layers 

(Yang et al., 2019). As an alternative, this study proposes a new 

approach to automatic object extraction from high resolution 

aerial images which is based on the Simple Linear Iterative 

Clustering (SLIC) algorithm to generate RoI that are then 

inferenced with a simple CNN architecture derived from 

CaffeNet.  

 

2. IMAGE CLASSIFICATION 

2.1 Image Classification Using Neural Networks 

Traditional machine learning techniques (support vector 

machines - SVM, multi-layer perceptron - MLP, etc.) employ 

shallow features (geometrical, textural and contextual 

information) for low resolution image classification (Lv et al., 

2018). The scene complexity associated with high resolution 

aerial imagery requires more powerful pattern recognition 

models. A straightforward approach is to associate every pixel 

of the image to a neuron at the input layer of the neural 

network, assuming that the connection weights within the 

hidden layers are capable of detecting the relevant aspects that 

make it possible to distinguish the class of each pixel.  

 

The concept of Convolutional Neural Networks (CNNs) was 

originally proposed by Fukushima (1980), and then improved 

by LeCun et al. (1998) and Krizhevsky (2012). This research 

topic had a slow pace of development during the first decades 

due to the lack of processing power required to train the 

models. Nowadays this field has regained attention due to 
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powerful and affordable graphics processing units (GPUs) allied 

to better algorithms for training the networks. There were two 

main breakthroughs on the algorithm side of the model: (i) the 

adoption of a simpler activation function (the rectified linear 

unit – ReLU), which, according to Glorot et al. (2010), can 

speed up the training process, aiming at faster convergence; and 

(ii) the adoption of the dropout strategy (Hilton et al., 2012) to 

minimize the effects of overfitting. According to Jiang et al. 

(2018), the ReLU function is: 

 

                                (1) 

 

The advantage of CNNs over traditional techniques is their 

ability to learn and extract their own features. The main idea is 

to simulate the process within the visual cortex of the brain 

(Fukushima, 1980). However, as the network is deeper (several 

convolution and pooling layers, as well as fully-connected 

layers, for instance), the number of parameters increase, thus 

requiring powerful hardware and large datasets for training 

(Amirkolaee and Arefi, 2019).                             

 

2.2 Object Localization Problem 

Traditional CNN models are only capable of assigning a label to 

the image, i.e. the object localization problem remains. The 

Region-based Convolutional Neural Networks (R-CNN) instead 

attempt to solve the localization problem by using regions. 

According to Girshick et al. (2014), this kind of technique can 

solve both object detection and semantic segmentation by 

generating approximately 2000 category-independent region 

proposals which are then resized (with an affine transformation) 

to 227 by 227 pixels and used as input in the AlexNet. The 

original paper from Girshick et al. (2014) adopted the selective 

search as the region proposal method, however, they state that 

R-CNN is agnostic in this aspect. 

 

The problem with R-CNN is that the method is not optimal as it 

requires the execution of inference with AlexNet 2000 times per 

image, which might be a bottleneck for real-time applications. 

According to Girshick (2015), the Fast R-CNN model attempts 

to increase the performance by using a Region Proposal 

Network (RPN). The RPN is a fully convolutional network used 

to acquire object bounds, generating high-quality region 

proposals. This approach was later refined by the Faster R-CNN 

(Ren et al., 2015) and the Mask R-CNN (He et al., 2017). 

 

3. PROPOSED METHOD 

The proposed method is similar to the Fast R-CNN architecture, 

the main difference being the use of the Simple Linear Iterative 

Clustering (SLIC) algorithm instead of an RPN to generate the 

RoI, as illustrated in Figure 1. This approach is also similar to 

the one presented in Chen et al. (2019) and Chen and Ming 

(2019), where the authors describe a multi-scale per-superpixel 

CNN (MCNN) based on the SLIC algorithm. 

 

3.1 Generating Regions of Interest 

Among the several image segmentation algorithms available in 

the literature, Simple Linear Iterative Clustering (SLIC) is 

regarded as most suitable for image interpretation due to the 

characteristics of its results (Achanta et al., 2012). In addition to 

its simplicity, this algorithm can cluster pixels into segments of 

similar size and shape, and is compared to state-of-the-art 

superpixels generation algorithms.  

 

 
Figure 1 – Proposed approach for object extraction and 

classification from high resolution aerial images.  

 

Assuming an image with N pixels, the first step of the algorithm 

works by selecting a predefined number (k) of regularly-spaced 

seed points over the image which are then disturbed (i.e. moved 

to the lowest gradient pixel inside a 3x3 neighboring window) 

to avoid object edges and noise. The seed points must be spaced 

within about S=[N / k]1/2 pixels of each other, and they are 

defined as:  

 

                   (2)  

 

In this vector Ci the first three elements correspond to CIELAB 

color space components, while the other two are the pixel 

position. The SLIC algorithm uses an adaption of the k-means 

clustering to aggregate neighboring pixels to each seed point. 

This iterative step is repeated until there are no further changes 

to the clusters.  

 

As shown in Achanta et al. (2012), the combined metric (D) 

that takes both spatial ( ) and color distances ( ) is used in 

order to identify the seed point which is going to receive the 

current pixel: 

 

                             (3)  

 

where: 

 

            (4) 

 

and 

 

                      (5) 

 

are, respectively, the color and spatial distances between two 

pixels i and j, and m ϵ [1,40] is a constant that weights the 

importance between the spatial and color distances. Achanta et 

al. (2012) emphasizes that the spatial distances might outweigh 

the color difference for large superpixels, so this metric has 

been shown to be useful.  
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3.2 CNN Architecture       

The adopted CNN model illustrated in Figure 2 is a simplified 

version of CaffeNet, a framework derived from AlexNet (Hu et 

al., 2015). It takes RGB images of 64 x 64 pixels as input and 

assigns the object label (class) to each one. The CNN was 

composed of three nodes followed by a dense layer (fully 

connected) with 256 neurons. Each node consisted of a 

convolution layer followed by a max pooling layer, with 

increasing dropout on each node (25%, 30% and 40% 

respectively) to avoid overfitting. The number of kernels on 

each node was 32, 64 and 96 respectively. All convolution 

kernels were 3x3, and all layers of the network considered 

ReLU as the activation function. 

 

 
Figure 2 – Illustration of the adopted CNN architecture. 

 

4. EXPERIMENTS AND RESULTS 

The dataset used for training the CNN was structured in a 

similar manner to the UC Merced Land Use dataset (Yang and 

Newsan, 2010), but with fewer classes: house, sport court, 

hangar, building, swimming pool, tree, and street/road. 

Approximately 100 to 200 RGB image samples with 64 x 64 

pixels were collected for each class, depending on their 

availability in the original images. In Figure 3 it is possible to 

see 10 examples of objects for each of the 7 classes considered. 

 

 
Figure 3 – Sub images extracted from aerial images showing 

urban objects for CNN training. 

 

The original aerial images come from the Unesp 

Photogrammetry Data Set (Tommaselli et al., 2018) collected 

from flights over the urban region of Presidente Prudente/Brazil 

in 2014. The digital images of 10328 x 7760 pixels (pixel size 

of 5.2 µm) were acquired by a Phase One iXA 180 digital 

camera, whose Charge-Couple Device (CCD), size 53.7 mm by 

40.4 mm, registers RGB data. The Ground Sample Distance 

(GSD) of the images is approximately 12 cm.  

 

4.1 Data Augmentation 

Each image sample was subjected to a data augmentation 

process in order to achieve better generalization. Since the 

objects from different classes are arranged in different rotations 

in the urban area and direction of the flight lines changes, each 

image sample was rotated by 90º, 180º and 270º, so the CNN 

would be more robust to the object orientation. They were also 

subjected to random cropping in order to deal with partially 

occluded objects, as some low buildings might appear behind 

others due to the camera view point and perspective projection 

geometry. Applying the data augmentation process to the 

original image samples resulted in about 800 to 1200 images of 

the size 64 x 64 pixels for each class.  

 

4.2 CNN Training 

The dataset was divided into 80% for training and 20% for 

validation, and the selected CNN model achieved 96.7% 

accuracy. This result is similar to the accuracy achieved with the 

framework proposed in Jiang et al. (2018). An external 

validation was conducted with image samples collected with 

different sensors in other years, and the details are described in 

Section 5.  

 

4.3 Assessment of the Proposed Method 

Three experiments were conducted: (I) to identify the desired 

range of sizes for the RoI; (II) to assess the accuracy of object 

detection by inferencing the RoI with the CNN; and (III) 

analysis of the semantic segmentation.  

 

The SLIC algorithm was used to generate superpixels (image 

segments considered as RoI by the CNN) with approximately 

the same predefined size. This characteristic is important for 

high resolution aerial image interpretation since the Ground 

Sample Distance (GSD) is known. The proposed method can 

generate RoI with different sizes by running a multi-scale SLIC 

approach as shown in Figure 4.  

 

 
Figure 4 - Multi-scale SLIC approach. (a) Original image, SLIC 

superpixels with (b) k=50 (c) k=80 and (d) k=150.    

 

4.4 Experimental Results 

The range of sizes to be considered on the multi-scale SLIC 

approach depends mostly on the studied scene. A range of 5 – 

150 m2 was selected for residential areas, whereas industrial 

regions with large hangars or shopping malls achieved better 
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results within a range of 30 – 500 m2. Using predefined scales 

seems to provide good results as emphasized in Chen and Ming 

(2019). 

 

The overall accuracy for object detection with the proposed 

approach was 89%. Most of the confusion consisted of building 

roofs whose colors are similar to the street pavement. The 

method has also proven robust when detecting ceramic roofs as 

well as trees and swimming pools. The major advantage is that 

the proposed method is capable of semantic segmentation by 

assigning labels to the proposed RoI. In Figure 5 it is possible 

to see the bounding rectangle for some objects in the original 

images, for two residential areas. 

 

 
Figure 5 - Object detection for 2 regions. Legend: buildings 

(red), trees (green), swimming pool (blue). 

 

As can be seen in Figure 5, some RoI intersect each other, thus, 

the same pixel might end up being processed several times by 

the CNN. This is more severe for the building roofs, due mostly 

to the use of axis-aligned bounding boxes (AABB) with the 

image coordinate system instead of oriented bounding boxes 

(OBB) when computing the warped image of the superpixels. 

 

The semantic segmentation results were only assessed by visual 

inspection as no segmentation maps were generated for the 

training dataset. In Figure 6 some results can be seen for a 

residential area of Presidente Prudente. Some of the problems 

encountered are related to object proximity, in which different 

instances appeared merged in the results.  

 

 
Figure 6 - Object extraction for regions (a) and (b) and the 

respective results in (c) and (d). Legend: buildings (red), trees 

(green), swimming pool (blue). 

In Figure 6 it can be seen that the objects appear well 

delineated, as they come from the superpixel edges. This is an 

advantage over fully-convolutional approaches, since the 

feature maps in FCN are sub-sampled in the pooling layers, thus 

loosing spatial resolution.  

 

5. EXTERNAL VALIDATION 

A last analysis was conducted to provide an external validation 

of the selected CNN model. Three image samples for each class 

were collected from Google Earth and from a Quick Bird image, 

as depicted in Figure 7. The Quick Bird image was acquired in 

2007. The original bands were combined considering 

pansharpening using the HSV color space from the RGB bands. 

The multispectral bands have a spatial resolution of 2.4 m, 

whereas the panchromatic have a 0.6 m GSD. 

 

 
Figure 7 – External validation of the CNN training using 

Google Earth and Quick Bird images. The ‘x’ mark in red 

indicates misclassification. 

 

Although the images used to train the CNN have a higher 

spatial resolution (12 cm GSD as stated before), the model was 

capable of correctly inferencing most of the images from the 

external validation set. The misclassification shown in Figure 7 

(indicated by the ‘x’ mark) occurred in the street/road class for 

the Quick Bird images. This was expected for the Quick Bird 

image since the colors have some issues due to the 

pansharpening procedure. Only two of the samples were 

misclassified from the total of 42, that is, the CNN achieved 

95.2% accuracy with the images from other sensors. 

 

6. CONCLUSIONS 

The proposed method was capable of solving object detection 

and segmentation from high resolution aerial images with 

satisfactory accuracy (89%). Even with a modest size (up to 200 

samples per class), the dataset used in this paper was capable of 

training the selected CNN model without significant overfitting. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-61-2019 | © Authors 2019. CC BY 4.0 License.

 
64



 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

  

 

 

The  data  augmentation  process  was  fundamental  to  ensuring a 
better generalization of the image samples.

The  two  main  advantages are:  (1)  the  good  delineation  of 
segmented  objects;  and  (2)  capability  of  object  segmentation 
without using segmentation maps in the CNN training. The first 
advantage (1) requires further assessment and comparison with 
other  models, such  as  Mask  R-CNN,  for  instance. The  second 
advantage (2) is interesting since the segmentation maps for the 
training dataset are time consuming to produce.

Future  research  might focus on the  following aspects:  (1)

development of better  region  proposal  techniques  for  object 
detection using variants of the SLIC algorithm and also variants 
of  the  suggested architecture; (2) application and validation of

this technique for datasets with different characteristics.
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