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ABSTRACT:

The aftermath of the air strikes during World War II is still present today. Numerous bombs dropped by planes did not explode, 
still exist in the ground and pose a considerable explosion hazard. Tracking down these duds can be tackled by detecting bomb 
craters. The existence of a dud can be inferred from the existence of a crater. This work proposes a method for the automatic 
detection of bomb craters in aerial wartime images. First of all, crater candidates are extracted from an image using a blob detector. 
Based on given crater references, for every candidate it is checked whether it, in fact, represents a crater or not. Candidates from 
various aerial images are used to train, validate and test Convolutional Neural Networks (CNNs) in the context of a two-class 
classification problem. A loss function (controlling what the CNNs are learning) is adapted to the given task. The trained CNNs are 
then used for the classification of crater candidates. Our work focuses on the classification of crater candidates and we investigate 
if combining data from related domains is beneficial for the classification. We achieve a F1-score of up to 65.4% when classifying 
crater candidates with a realistic class distribution.

1. INTRODUCTION

Although the last air raids of World War II happened more than
70 years ago, their aftermath still poses a threat to the people in
Europe. Planes dropped numerous bombs, many of which did
not explode (Merler et al., 2005) and, thus, still lie underground
to this day. These duds sometimes explode without any external
stimulation, other times they are dug out during construction
works. In order to neutralise the duds, they have to be tracked
down, which can be tackled by detecting bomb craters in
historical aerial images. The underlying assumption is that
bombs were dropped in groups, i.e. the existence of one or more
craters increases the probability that a dud lies in the vicinity of
those craters. This work proposes a method for the automatic
detection of bomb craters in historical aerial wartime images.

Our approach consists of two steps. In the first step, we extract
crater candidates from given images by means of a standard
blob detector (Bradski, 2000), thus exploiting the blob-like
appearance of craters in aerial images. The goal of this proposal
extraction is to obtain all craters present in the image as crater
candidates. These crater candidates are represented by square
bounding boxes centred around the detected blobs, and their
sizes correspond the detected blobs’ sizes.

In the second step, we present these candidates to a
Convolutional Neural Network (CNN) (LeCun et al., 1989),
which classifies the candidates either as crater or as
background. To this end, we utilize a pre-trained version
of Inception ResNet V2 (Szegedy et al., 2017) as a feature
extractor. While carrying out the actual classification using two
fully connected layers and a softmax layer, we also fine-tune
the pre-trained network. For training, we use the softmax cross
entropy loss and extend it by a parameter, which is used to
compensate for an imbalanced distribution of training samples
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for the two classes. We carry out an experimental evaluation
of our methods using historical aerial images. In this context
we also investigate the transferability between images from
Germany and Italy.

The remainder of this paper is structured as follows. In section 2
related work regarding image classification, object detection
in general and crater detection in particular are outlined and
discussed. Section 3 describes the developed methods for
the detection of bomb craters. We present the used aerial
images in section 4. In section 5 we describe the generation
of training samples for the CNN and experimentally evaluate
the developed methods based on the given data. The paper
concludes with section 6, where we summarise the achieved
results and give recommendations for future work.

2. RELATED WORK

We start this overview on related work with a discussion of
methods for object detection using CNNs. Afterwards we have
a look at work dealing with crater detection with and without
CNNs. Because of the similarity to our task of detecting bomb
craters, work dealing with the detection of planetary craters is
also considered.

Although CNNs were first presented 30 years ago (LeCun et
al., 1989), their use for image classification was revolutionised
with the development of AlexNet (Krizhevsky et al., 2012),
laying the foundation for deep learning. To make use of the
strong potential of CNNs in the context of object detection,
this task can be split up into two sub-tasks, namely localisation
and classification (Sermanet et al., 2014); this separation has
long be known to be beneficial in image analysis, see e.g.
Schickler (1995). While the localisation is used to generate
object proposals, i.e. to find out where in an image an object
might be present, the classification is used to classify the
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proposals as one of multiple classes (e.g. foreground/object or
background). The proposals can for example be generated by
a standard sliding window approach, as was done by Brenner
et al. (2018) in the context of crater detection or by Sermanet
et al. (2014) in the broader context of general object detection
for the ImageNet Large Scale Visual Recognition Challenge
2013. With the advent of Faster R-CNN (Ren et al., 2015),
the generation of proposals was tackled using neural networks,
too. This allowed the CNN to be trained end-to-end for the
object detection while learning where plausible proposals might
reside in an image. Nevertheless, the generation of proposals
by means of windows of different sizes and ratios ultimately
relies on a sliding window approach, too. We consider this to
be a drawback of the approach because of the large amount of
proposals being generated, which in turn might lead to a larger
amount of false positive classifications.

The two-step-approach of localisation and classification is also
applied in the context of crater detection. Merler et al. (2005)
deal with the detection of bomb craters in historical images.
They extract proposals using a sliding window approach,
while classifying those proposals using an accuracy-sensitive
variant of AdaBoost. They reported a lot of false positive
detections on initial experiments, which led them to weighting
the classification errors caused by false positive and false
negatives. One problem in this approach is the large amount of
proposals created by the sliding window approach, especially
because of the sparse distribution of bomb craters in aerial
images.

Regarding the detection of planetary craters, Urbach &
Stepinski (2009) make use of the observation that the
appearance of craters is characterised by a pair of crescent-like
highlight and shadow regions. Their approach for extracting
proposals consists of detecting those highlight and shadow
regions separately. Using a library of reference shapes, they
omit regions having shapes that do not correspond to their
model. The classification is carried out using a decision tree
with hand-crafted features. Their reported results suggest that
hand-crafted features may be a problem because these may not
be suitable for differentiating between crater and background,
resulting in a rather large number of false positives.

A model-based approach for the detection of bomb craters is
presented by Kruse et al. (2019). Here, marked point processes
in combination with RJMCMC methods are used to sample
different object configurations. In particular, they compare
ellipses and circles as models for the craters. The underlying
assumption is that craters exhibit a large image gradient along
their edge and that craters do not overlap. To limit the search
space for their sampling technique, they make use of a simple
blob detector, exploiting the blob-like appearance of craters.
Although their approach avoids the need for training data,
the chosen model is not sufficient for detecting non-elliptical
variations of bomb craters while being depended of many
parameters.

Regarding the detection of planetary craters using CNN, Cohen
et al. (2016) present an approach using a shallow CNN for
the classification of crater candidates, training the network
with few training samples from scratch. They use the same
method for retrieving crater candidates as Urbach & Stepinski
(2009). Their results show that their approach outperforms
other crater detection algorithms by a large margin, highlighting
the potential of CNNs for that task. A similar approach
for the detection of planetary craters was chosen by Emami

et al. (2015). They make use of a multi-scale Canny edge
detector and convex grouping to extract crater candidates, while
classifying those candidates with a shallow CNN. Because of
the small amount of training data, we believe that by making
use of a pre-trained CNN, their classification can be improved.
As was e.g. demonstrated by Sharif Razavian et al. (2014),
using features from a pre-trained CNN is suitable even for a
new recognition task, which is especially helpful when dealing
with few training data.

To the best of our knowledge, Brenner et al. (2018) presented
the only work dealing with the detection of bomb craters using
CNNs. Thus, this work is particularly related to ours. They
make use of a sliding window approach for the extraction
of crater candidates while classifying those candidates with
a CNN, employing the DenseNet architecture presented by
Huang et al. (2017). They trained the CNN with an equal
amount of samples of both classes crater and background using
Nesterov Momentum. When testing their approach on samples
with the same ratio, they achieved a precision of 90.7%, but
in a case of a more realistic class distribution, where the ratio
of crater and background samples is approximately 1:250,
the precision drops to 4.0%. Their approach would probably
benefit from a weighting of errors to reduce the number of false
positives, as was proposed by Merler et al. (2005).

Based on this overview, we propose a new method for the
detection of bomb craters. We use the insights of Urbach
& Stepinski (2009) and Kruse et al. (2019), namely that the
extraction of crater candidates can be limited based on the
appearance of craters. As bomb craters are generally not
characterised by a pair of highlight and shadow regions, like
planetary craters often are, we resort to using a standard blob
detector. Our main contribution is based on the combination
of the approaches presented by Brenner et al. (2018) and
Merler et al. (2005): We use a CNN for the classification of
crater candidates, weighting the classification errors from false
positives in order to compensate the imbalanced distribution of
proposals in a realistic scenario.

3. METHODOLOGY

Our approach to detect bomb craters in historical aerial images
consists of two steps, namely the localisation of blob-like
objects and the classification of those objects as either crater
or background. While the former step is carried out using a
standard blob detector (Bradski, 2000), the latter makes use of
a fine-tuned version of the Inception ResNet V2 (Szegedy et al.,
2017).

3.1 Extraction of proposals

As we have shown in section 2, the approaches for object
detection in general and crater detection in particular make use
of some kind of proposal technique, which is often based on
a sliding window approach. We consider such an approach
not to be optimal for our task because the dense extraction
of proposals using a sliding window does not match the
sparse distribution of bomb craters in historical aerial images.
Therefore, we use the blob detector, which we assume to have
two advantages compared to the sliding window: On the one
hand, it lowers the number of extracted proposals, which should
help to reduce the number of false positives reported in the
related work. On the other hand, it limits the appearance of
crater candidates to blob-like structures. This should help the
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CNN to better differentiate between crater and background and
thus improve the classification performance.

The blob detector presented in Bradski (2000) works as follows.
In the first step, the input image is converted into several
binary images by applying different thresholds to the grey
values. The thresholding starts at a minimum BThMin and is
increased by a stepsize ofBThStep until the maximumBThMax

is reached. Coherent blobs in the binary images are merged
if the distance between them is smaller than BDistMin. In
the second step, these merged blobs are filtered according to
their size (counting all pixels in one cluster), which has to
be in the range of BSizeMin and BSizeMax, as well as their
circularity (BCircMin), convexity (BConvMin) and inertia ratio
(BInertMin). The blob detector delivers the coordinates of the
centre of each valid blob as well as its size.

From these blob coordinates we form proposals, whose
bounding boxes’ centres equal the centre of a blob. In order to
include some context in the proposals, the size of the bounding
box equals the size of the blob times a factor BContext, which
we chose to be BContext = 1.2. We assume that this context
will help to increase the classification performance.

3.2 Classification

The classification of the proposals as either crater or
background is carried out using a CNN. The input of our CNN
is an image with a size of 299x299 pixels. The first part of our
network is a pre-trained version of Inception ResNet V2. We
omit its last layer, formerly used for the classification in the
ImageNet classification challenge (Russakovsky et al., 2015).
To help the pre-trained network adapt its feature extraction
to the classification problem at hand, we append two fully
connected layers with 512 and 256 nodes, respectively. Both
layers use the Rectified Linear Unit (ReLU) (Nair & Hinton,
2010) as an activation function. Additionally, we perform Batch
Normalisation (Ioffe & Szegedy, 2015) after both layers. The
final classification is carried out in the subsequent softmax
layer, which consists of two nodes, one for the classes crater
and background, respectively. The network architecture is
illustrated in Figure 1.

Figure 1. Architecture of our CNN. The input image is fed into a
pre-trained version of Inception ResNet V2. The last two layers
of the pre-trained network, i.e. ’Block8’ and the FC-layer, are
fine-tuned during the training. We append two fully connected
layers to the pre-trained architecture, followed by a softmax

layer.

3.3 Training

Training a CNN consists of minimising a loss function,
which measures the classification error of the network. This

classification error is based on the network’s belief ykn that a
sample xn belongs to the class k, given the current network
parameters w. Using the softmax activation function (Bishop,
2006), the belief can be estimated as follows:

ykn(xn,w) =
eȳ
k
n∑K

κ e
ȳκn

(1)

where ȳkn(xn,w) is the output of the last network layer.
The result of the softmax activation can be interpreted
probabilistically, such that

0 < ykn(xn,w) < 1 (2)∑
k

ykn(xn,w) = 1 (3)

The network’s total classification errorE can now be calculated
using the softmax cross entropy (Bishop, 2006):

E(w) =
∑
n

En(w,xn) = −
∑
n

∑
k

Ckn · ln(ykn) (4)

whereCkn is an indicator variable that equals 1 if the n-th sample
belongs to the k-th class. In our special case of a two class
classification problem we can rewrite equation 4 as

E(w) = −
∑
n

{
C1
n · ln(y1

n) + C2
n · ln(y2

n)
}

(5)

Given that k=1 corresponds to the class crater and k=2 to the
class background, equation 5 can be interpreted as the sum of
errors caused by false negative (first term) and false positive
(second term) classifications.

Based on the approach presented by Merler et al. (2005), we
introduce the parameter γFP into Equation 5 to scale the error
caused by false positive classifications. In order to avoid
overfitting the network’s weights to the training data, we use
the regularisation in the form of weight decay (Bishop, 2006)
so that our final loss function becomes

E(w) = − 1

N

N∑
n=1

{
C1
n · ln(y1

n) + γFP · C2
n · ln(y2

n)
}

+
1

P

P∑
p=1

w2
p · λw

(6)

where N is the number of samples in one training iteration, P is
the number of parameters in the network (∼ 6.2M ) and λw is
a parameter to control the influence of the weight decay on the
training. The goal of the training is to determine the network’s
parameters w, which we achieve by minimising equation 6
using stochastic minibatch gradient descent (Bishop, 2006).
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4. DATA

In order to test our proposed methodology, we make use of 45
8-bit greyscale images, stemming from two different sources:
The Explosive Ordnance Disposal Service of Lower Saxony
provided us with 18 images, as well as annotations for all
4187 craters in those images. The images were scanned with
1200 dpi, have different ground sampling distances between
13 cm and 57 cm and were taken in 1944/1945 over Northern
Germany. The other 27 images as well as the respective
3250 annotations were provided by the 3D Optical Metrology
Unit of the Bruno Kessler Foundation (FBK) in Trento, Italy.
Unfortunately, no further information regarding the ground
sampling distance or digitalisation is known for those images.
For both sources, the references craters have been annotated
manually in the images. The reference craters are given as
square bounding boxes with known position and size. We note
that the references for both sources include minor inaccuracies
with respect to their size and centre, e.g. that the references are
sometimes larger than the corresponding crater. Additionally, a
coarse investigation of the Italian references indicated that not
all craters in the images have been annotated. In Figure 2 and
Figure 3, one example image for each source is shown. To make
full use of the the radiometric resolution, we apply a Contrast
Limited Adaptive Histogram Equalisation (Bradski, 2000) prior
to experimental use of the images.

Figure 2. Example for an aerial image taken over Germany. The
image has a ground sampling distance of 51 cm and was taken

on 23.12.1944.

5. EXPERIMENTS

In this section we evaluate our proposed method using the
aerial images presented in section 4. First, we introduce our
experimental setup regarding the candidate extraction and the
classification, as well as our evaluation strategy. After that we
present and discuss the results of the experiments.

Figure 3. Example for an aerial image taken over Italy.

5.1 Setup

5.1.1 Candidate Extraction As mentioned in section 3.1
we use a simple blob detector for the extraction of candidates.
We set the grey value thresholds to BThMin = 0 and
BThMax = 220; we observed that a small ratio of reference
craters has a bright appearance, which is why we also include
larger grey values. We set the stepsize to BThStep = 4 and
the merging distance to BDistMin = 10 pixels. Based on
an initial investigation of the sizes of the references, we set
the minimal size to BSizeMin = 62 · 2π, corresponding to a
blob radius of 6 pixels, and the maximal size to BSizeMax =
802 · 2π, corresponding to a blob radius of 80 pixels. We
set the minimum circularity to BCircMin = 0, the minimum
inertia ratio to BInertMin = 0 and the minimum convexity to
BConvMin = 0.3.

5.1.2 Generation of training samples Based on the results
of the crater candidate extraction (presented in section 5.2.1)
we generate training samples to train and test our CNN. A blob
is regarded as a positive sample, i.e. one of the class crater,
if the intersection-over-union (IoU) between the blob and a
reference crater is at least 35%. Candidates that do not fulfil
this condition are regarded as negative samples, i.e. samples
of the class background. We chose the IoU criterion because
of the inaccuracies of the reference craters w.r.t. their size and
position. If multiple candidates fulfil the condition towards one
reference, all candidates will be regarded as positive samples.
Using this approach, we generated 3,537 positive and 424,188
negative samples from the German images, which form the first
dataset DSG for the training of the CNN. From the Italian
images, 2,169 positive and 235,764 negative samples were
generated, which in turn form the second dataset DSI . We
also make use of data augmentation (Bishop, 2006): When
accessing samples during training, validation or testing we
additionally apply a random rotation of either 0◦, 90◦, 180◦

or 270◦, virtually increasing the amount of training data by a

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-67-2019 | © Authors 2019. CC BY 4.0 License.

 
70



Figure 4. Positive (top row) and negative (bottom row) samples
randomly drawn from dataset DSG.

Figure 5. Positive (top row) and negative (bottom row) samples
randomly drawn from dataset DSI .

factor of 4. Figure 4 and Figure 5 show six examples from both
datasets for both classes.

5.1.3 Classification For our training procedure, we scale all
samples in both dataset to a size of 299 by 299 pixels, in order
to be able to process them with a pre-trained Inception ResNet
V2. We freeze the weights of all pre-trained layers except the
last two. The weights of the three appended fully connected
layers are initialised using Variance Scaling (He et al., 2015).
Regarding the weight decay in Equation 6 we use a weight
factor λw = 10−2, as preliminary experiments showed that
with smaller weight factors, i.e. λw = 10−3 or λw = 10−4,
worse results were achieved. We train with a batchsize of
N = 350 samples. The weight update is carried out using the
Adadelta algorithm presented by Zeiler (2012), using a learning
rate of 1. In preliminary experiments we also tested the Adam
Optimizer (Kingma & Ba, 2014), resulting in worse F1-Scores
compared to the Adadelta Optimizer. We train the CNN for
2500 iterations. We carry out specific experiments using a
9-fold cross validation, splitting the positive samples into 7/9th
of the data for training, and 1/9th for training and validation,
respectively. As described above, the datasets include more
negative samples than positive samples. We assume that
samples of the negative class have a larger variability. For the
CNN to learn that variability, we use one third of the negative
samples for training, validation and testing, respectively. The
validation step in a cross validation iteration is carried out
using 10 positive and 1200 negative samples, as this ratio of
samples resembles a realistic distribution. We assume that
using only a small fraction of the validation set (instead of
all validation samples at once), the validation will contribute
to a better generalisation, as validating on all samples at once
will probably result in a network adapted to the validation data.
Testing is carried out with all positive test samples and 120
times as many negative samples from the test dataset, as this
ratio of samples resembles a realistic distribution (cf. section
5.1.2). In some experiments the samples for training and testing
are stemming different datasets, so we do not carry out those
experiments using cross validation. In those cases we instead
use 80% of the positive samples of one dataset (e.g. DSG) for
training and the other 20% for validation, while the negative
samples are again split equally. The testing is then carried

out using all of the positive and negative samples of the other
dataset (e.g. DGI ).

We carry out two sets of experiments. In the first set, we show
the impact of the false positive factor γFP on the achieved
test results. In the second set of experiments, we investigate
the transferability between the two datasets DSG and DSI by
comparing the results of training on one and testing on the other
dataset or combining both datasets.

5.1.4 Evaluation For the evaluation of the crater candidate
extraction we use the recall R:

R =
TP

TP + FN
(7)

where TP are true positive detections, i.e. blobs that have an
IoU of at least 35% with a reference crater, and FN are false
negative detections, i.e. reference craters that do not have an
IoU of at least 35% with a blob. We also report the total number
of blobs NB :

NB = TP + FP (8)

where FP are false positive detections, i.e. blobs that do not
have an IoU of at least 35% with a reference crater.

For the evaluation of the classification we also use the recall R
as well as the precision P and the harmonic mean of the two
measures, i.e. the F1-score:

P =
TP

TP + FP
(9)

F1 = 2 · P ·R
P +R

(10)

where TP are true positive classifications, FP are false positive
classifications and FN are false negative classifications. A
sample is classified as a crater if the network’s output y1

n is
above 0.5.

5.2 Results and Discussion

5.2.1 Candidate Extraction As described in section 5.1.1
we use rather weak restrictions for the form filters, i.e. the
circularity, convexity and inertia ratio. Preliminary experiments
showed that using stricter restrictions (e.g. BCircMin =
BInertMin = BConvMin = 0.7), which we assumed to be
suitable given the appearance of craters in the images, in fact
resulted in small number of blobs as well as a low recall of
about 12%. We therefore omitted our initial assumption and
resorted to weak form filters.
We applied the blob detector to the German as well as the
Italian images. With the chosen set of parameters, a total of
NB = 427, 733 candidates were extracted from the 18 German
images. From all 4187 reference craters, a total of 3314 had an
IoU of at least 35% with a blob, which corresponds to a recall
of R = 79.1%.
A total of NB = 237, 948 candidates were extracted from the
27 Italian images. From all 3250 references, a total of 2040 had
an IoU of at least 35% with a blob, which corresponds to a recall
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of R = 62.7%. For comparison, if we were to apply a sliding
window approach comparable to the one presented in Merler et
al. (2005), we would end up with about 2, 448, 000 candidates
for the German and 602, 000 candidates for the Italian images.
Depending on the size of the images, the number of candidates
would increase by a factor of 10. On the other hand, the
sliding window approach would obtain all crater references as
candidates, which is beneficial for this kind of approach.

The results show that, although we used weak restrictions
regarding the form filter, we still end up with rather low
values for the recall, especially regarding the comparison
with the sliding window approach. We assume that the low
recall is caused by the fact that not all craters have a clear
blob-like appearance, as can be seen in figures 2 and 3. Some
craters exhibit a shadowed and a highlighted region inside their
cone, others seem to have no clear edge. Additionally, the
inaccuracies of the reference craters might still contribute to
the low recall, as the blobs may match the craters but not the
reference.

5.2.2 Classification In the first set of classification
experiments we show the impact of the false positive weight on
the classification. To this end, we train one CNN with γFP = 1
and another CNN with γFP = 120, where the latter choice
corresponds to the ratio of the positive and negative samples
generated from the German images. We train and test both
CNNs on the German dataset DSG using cross validation as
described above. We report the averaged F1-Score over all
cross validation iterations in Table 1.

Prec. [%] Rec. [%] F1 [%]
γFP = 1 38.6 77.6 51.6
γFP = 120 77.7 56.5 65.4

Table 1. First set of experiments: Precision, recall and F1-score
for differing false positive weights γFP .

The results from the first set of experiments show that by using
a false positive weight corresponding to the use-case ratio of
positive and negative samples, the F1-score can be improved
by a large margin of 14%. As was to be expected, the recall
drops for γFP = 120. Nevertheless, the improvement in
the precision makes for a suitable trade-off, resulting in an
increased F1-score.

Based on this insight, we set γFP = 120 for the following,
second set of experiments. With this set we want to investigate
if the datasets DSG and DSI can be combined to improve the
classification of crater candidates. To this end, we carry out five
experiments, combining the datasets in different ways. In the
first two experiments we want to assess our network’s ability to
correctly classify data from one dataset only. We therefore train
and test a CNN only on DSG and another one only on DSI . In
the next two experiments, we want to assess the transferability
between the two datasets. We train a CNN only on DSG (this
includes validation) and test it on DSI , and vice versa. Note
that we do not use cross validation in those two experiments.
The last experiment investigates if the combination of the two
datasets is beneficial for the classification. We combine the
samples of DSG and DSI to one larger dataset DSC and carry
out the training as described for the first two experiments, i.e.
the positive samples of both sets are combined, shuffled and
chosen for training, validation or testing; the negative samples
are handled similarly, according to the protocol presented in
section 5.1.3. The results of the second set of experiments are
shown in Table 2.

# Train Test Prec. [%] Rec. [%] F1 [%]
1 DSG DSG 77.7 56.5 65.4
2 DSI DSI 66.0 58.5 62.0
3 DSG DSI 54.2 39.0 45.3
4 DSI DSG 85.0 18.2 29.9
5 DSC DSC 67.2 48.0 56.0

Table 2. Second set of experiments: Results for various dataset
combinations.

The first two experiments of the second set show that our
proposed method achieves better results on DSG than on DSI ,
albeit by a small margin of 3% in the F1-score. This might
indicate that our network architecture is better suited for the
former dataset, or that distinguishing the samples from the latter
dataset is more difficult in general. The large difference of 12%
for the precision of experiment 1 and 2 can be explained by the
observation that not all craters in the Italian images have been
annotated as references. This might lead to blobs in the Italian
images being extracted as negative samples, although the blobs,
and hence the samples, do in fact resemble a crater. Therefore,
some negative test samples might actually show a crater and
would hence be classified as positive, resulting in more false
positive classifications and, thus, in a lower precision.

Comparing the results of experiments 2 and 3, we see that the
precision drops by about 12% when training on DSG instead
of DSI , carrying out the test on DSI . We assume that this
drop on the one hand indicates that the two datasets have some
substantial differences, and that the drop may on the other hand
be again explained by the inaccuracies of the references. The
drop of the recall of about 20% can be explained by the ratio
of positive and negative samples in the Italian dataset DSI .
The number of samples reported in section 5.1.2 correspond
to a ratio of about 1:109, whereas the training was carried
out under the assumption that this ratio is 1:120. We assume
that this caused the CNN to classify more positive samples as
negative, thus resulting in more false negative classifications
and consequently in a smaller recall.

Comparing the results of experiments 1 and 4 shows that the
precision increases by 7% and the recall decreases by 38%
when training on DSI instead of DSG, carrying out the test
on DSG. We assume that the CNN in experiment 4 had the
tendency to generally classify more test samples as negative,
as this explains the increase of the precision (more negative
classifications can explain less false positives) as well as the
decrease of the recall (more negative classifications can explain
more false negatives). This might again be caused by the
inaccuracies in DSI ; we assume that the CNN learned to
classify some samples, which in fact resemble a crater but have
a negative label, as negative. This can lead the CNN to classify
some positive samples as negative, thus increasing the number
of false negatives.

The last experiment 5 shows that training and testing on DSC
achieves considerably worse results compared to the single
datasets in experiments 1 and 2. Although the results seems
to indicate that our CNN cannot transfer its knowledge from
one dataset to the other (experiment 3 and 4) and that the
combination of both datasets is not beneficial (experiment 5),
it is unclear whether this is caused by a low transferability
between the two sets of images (i.e. craters and background
in German images have a substantially different appearance
than those in Italian images) or whether the inaccuracies of the
reference craters are causing the smaller F1-score.
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6. CONCLUSION

In this paper, we present an approach for the automatic
detection of bomb craters in historical aerial images. Our
approach consists of a crater candidate extraction using a simple
blob detector and the classification of those candidates using a
CNN.

The results of the candidate extraction showed that our
approach was not able to achieve the required recall, i.e. too few
reference craters were extracted as candidates. The comparison
with the sliding window approach showed that we are able to
reduce the total number of candidates, although the decrease
was nearly negligible for the Italian images, especially with
respect to the low recall. This indicates that our chosen
set of parameters is not well suited for the given task. We
assume that this can on the one hand be explained by the
inaccuracies of the labels, but on the other hand also by the
observation that not all craters have a circular, convex and
compact appearance. As the examples for the samples showed,
some craters have shadows in their cones, which we did not
incorporate in our parameter choice for the blob detector. In
future work, further experiments w.r.t. to the parameter choice
are needed. We assume that using multiple sets of parameters
might be beneficial, as different appearance variations could be
considered in that way. Alternatively, the candidate extraction
could be included into the CNN, e.g. using the Faster R-CNN
architecture presented by Ren et al. (2015).

The experiments regarding the impact of the false positive
weight showed that using a weight corresponding to the ratio of
positive and negative samples is beneficial for the classification
of samples with a realistic distribution, compared to using a unit
weight. Nevertheless, further experiments are needed to test the
sensitivity of the parameter and whether it was in fact chosen
optimally with γFP corresponding to the ratio of generated
samples. The experiments regarding the transferability also
indicated a drawback of the false positive weight, namely
that it is generally not known when applying a trained CNN
to new data. Because historical aerial images can exhibit
between very few and more than one thousand craters, a CNN
trained with a specific false positive weight may not be suitable
for the classification of crater candidates from one image.
Instead, the CNN would have to be applied to candidates
from a whole set of images. Assuming that the images we
used represent a good generalisation, the ratio of positive and
negative candidates might then match the chosen false positive
weight of 1:120. Applying the classification to candidates from
previously unseen aerial images in order to obtain test results
for the detection remains to be done in future work, but we
expect those results to be on par with the classification results.

The experiments regarding the transferability between the two
sets of images, i.e. the two datasets DSG and DSI , showed
that our CNN is not capable of transferring knowledge from
one dataset to the other. We assume that this is on the one hand
caused by the inaccuracies of the references and on the other
hand by the differences between the samples of the two datasets.
The impact of the apparent differences could be alleviated by
the use of Domain Adaption (Wang & Deng, 2018), as the
CNN could then learn a common representation for samples
from both datasets, which could thus improve the classification
ability of the CNN.
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