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ABSTRACT: 

 

Today, radar imaging from space allows continuous and wide-area sea ice monitoring under nearly all weather conditions. To this 

end, we applied modern machine learning techniques to produce ice-describing semantic maps of the polar regions of the Earth. Time 

series of these maps can then be exploited for local and regional change maps of selected areas. What we expect, however, are fully-

automated unsupervised routine classifications of sea ice regions that are needed for the rapid and reliable monitoring of shipping 

routes, drifting and disintegrating icebergs, snowfall and melting on ice, and other dynamic climate change indicators. Therefore, we 

designed and implemented an automated processing chain that analyses and interprets the specific ice-related content of high-

resolution synthetic aperture radar (SAR) images. We trained this system with selected images covering various use cases allowing 

us to interpret these images with modern machine learning approaches. In the following, we describe a system comprising 

representation learning, variational inference, and auto-encoders. Test runs have already demonstrated its usefulness and stability that 

can pave the way towards future artificial intelligence systems extending, for instance, the current capabilities of traditional image 

analysis by including content-related image understanding. 

 

 

 

1. INTRODUCTION 

Currently, the European Copernicus mission with its Sentinel 

satellites and the free access to all their data is opening the way 

towards systematic large-scale scientific Earth observation data 

analysis relying on quality-controlled and calibrated data. In the 

following, we concentrate on the interpretation of satellite 

images delivered by Sentinel-1 (an all-weather twin SAR 

satellite constellation delivering polarized radar backscatter 

images of the Earth´s surface). Due to their frequent overpasses, 

these satellites allow us to monitor regularly and over long time 

spans, for instance, the northern polar regions of our planet. 

Thus, the radar images delivered by Sentinel-1 (ESA S-1, 2019) 

can be used as a backbone for the analysis and interpretation of 

sea ice in the arctic and northern waters.  

 

Existing ice classifications and frequently updated ice charts 

have already reached a well-defined basis for automated data 

analytics. Typical publicly available products being already 

available are sea ice index applications and medium-resolution 

ice charts often derived from microwave instrument data, 

typically providing surveys with a pixel size of about 20×20 

kilometres. When we compare this resolution with what can be 

obtained from Sentinel images with a typical pixel spacing of 10 

to 40 meters, one can immediately understand that an analysis 

of these high-resolution data cannot concentrate only on the 

details of a few selected image patches but has to include 

compact statistical metrics describing large ice-covered areas in 

global way. In particular, when we are interested in time series 

of images, we have to resort to tools that reduce the huge 

volume of pixel data to manageable quantities of compact 

descriptors extracted by automated tools. Then one can try to 

learn more about the dynamic characteristics and the behaviour 

of ice cover that are needed for current and future climate 

research. This scientific approach has to discover synergies 

between semantics (i.e., image understanding based on 

learning), and geometry (e.g., automatic object extraction based 

on pixel neighbourhood statistics). 

 

For an in-depth analysis of actual ice cover parameters, the 

Sentinel data had to be embedded in a big data processing 

environment (framework) that allowed efficient and reliable 

image analysis. This big data environment was also a 

precondition to fully exploit the image information content by 

modern machine learning methods such as deep learning and 

artificial intelligence as these disciplines hinge on extensive 

training with representative data. In our case, we were also 

confronted with diverse user groups, existing and future 

applications, and their specific requirements ranging from 

routine monitoring of shipping routes, and the motion of 

icebergs, up to the detection of climate change indicators by 

determining the actual ice types and their dynamic changes 

versus time. This resulted in extensive lists of requirements and 

user wishes that continuously underwent many changes. Thus, 

any new research should also profit from recent and ongoing 

developments in the field of machine learning, where we 

encounter rapid progress in a number of already established 

subsections. 

 

These considerations led to the conception of a systematic 

approach for the analysis and interpretation of high-resolution 

ice cover images from satellites. In a first step, we compiled 

typical examples of sea ice cover, its life cycle and visibility 

over several months, and then compared existing ice cover data 

products and their characteristics with existing conventional 

image analysis tools, and our expectations from Sentinel data. 

This step included a survey of new technical observing 

opportunities offered by the Sentinel satellites as well as 

consultation meetings with experts in the field of ice cover 

analysis to learn more about their current and future needs. 

Finally, this first step was complemented by a list of open issues 

that hopefully can be solved by new approaches (ExtremeEarth, 

2019). 
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Then our second step consisted of a compilation of already 

existing data analytics approaches and image understanding 

tools from different disciplines that could be transformed into 

ice analysis routines and tools. In particular, this step was 

crucial for getting a comprehensive survey of various potential 

machine learning approaches and their environment (such as the 

selection of most appropriate reference data or useful quality 

criteria being needed for comprehensive testing and validation). 

 

Our third step was then the design, implementation, test, and 

validation of a set of selected core routines that were tailored to 

the user needs. At the end, a successful implementation could be 

demonstrated by proving how well the combination of 

observing modes, instrument data, image processing, and deep 

analysis tools fitted with theoretical weather and ice cover 

modelling that was available as background knowledge from a 

number of external partner institutes. As a matter of fact, this 

had to be verified and demonstrated by examples that represent 

several well-understood development cycles of ice cover 

dynamics. 

 

The inclusion of experiences from satellite image processing 

expertise combined with innovative machine learning 

algorithms and sea ice models did lead to a new toolset that 

supports the advanced analysis of ice cover phenomena. Current 

investigations by other researchers typically aim at detailed 

physical models, for instance, how ice floes disintegrate and 

how their backscatter changes due to weather conditions (e.g., 

due to melting ice, fresh snowfall or wave patterns on water 

surfaces). When we manage to integrate all this information 

with optimal observing parameters of modern remote sensing 

instruments (e.g., polarized sensing or the choice of viewing and 

backscatter angles), we obtain a new perspective for data 

interpretation. 

 

The organisation of this contribution is as follows. Section 2 

presents the characteristics of our data set. Section 3 outlines 

our image analysis methodology used to generate reference 

ground-truth data and visual-statistical analytics. Section 4 

describes the image classification, semantic annotations, and 

change maps results using the methodology presented in 

Section 3. Finally, Section 5 contains conclusions and future 

works. The paper ends with acknowledgments and a list of 

references. 

 

2. DATA SET 

The selected area of interest for our use case in (ExtremeEarth, 

2019) is Belgica Bank in Greenland. By accessing the Sentinels 

ESA hub (Copernicus, 2019) in order to select and download 

the images of interest, we noticed that for this area only 

Sentinel-1 images were available. 

 

The Sentinel-1 data set comes from a C-band Synthetic 

Aperture Radar (SAR) instrument and includes a collection of 

five images acquired between April and December 2018 (April 

17th, June 16th, August 9th, October 10th, and December 1st). 

 

Figure 1 (top) shows the area of interest, while the bottom part 

of Figure 1 presents two out of five image quick-looks (data 

acquired on April 17th, 2018 and June 16th, 2018). 

 

The characteristics of the Sentinel-1 data are described in detail 

in (ESA S-1, 2019). 

From the available Sentinel-1 data products, we selected for 

demonstration, based on our previous experience (Dumitru, et 

al., 2018), level-1 Ground Range Detected data with high 

resolution taken in Interferometric Wide swath mode. The 

products are geo-coded with a resolution of 20×22 meters 

(range × azimuth) and a pixel spacing of 10×10 meters. For 

these products, the images are provided in dual polarization (for 

our polar areas, HH and HV) and with an incidence angle of 

about 45°. The average size of the images is 25,670×16,640 

pixels. 

 

Figure 1. The location of the area of interest (top), the quick-

look of the Sentinel-1 data acquired on April 17th, 2018 

(bottom-left), and the quick-look of the Sentinel-1 data acquired 

on June 16th, 2018 (bottom-right). 

 

3. METHODOLOGY 

3.1 Semantic Annotation and Statistical Analytics Based 

on Active Learning 

The objective of this first part of our methodology is the 

extraction of meaningful information (i.e., knowledge) that 

characterizes the Earth’s surface, and to semantically annotate 

this content. After that, based on the information extracted as 

semantic labels, we generated corresponding maps with 

semantic meaning and statistical results. 

 

In order to attain the above-mentioned objectives, we exploited 

a data mining tool that is based on a Support Vector machine 

(SVM) and which had been developed by us in an ESA-funded 

project (EOLib, 2018). 

 

This process could be divided into two parts: the first part is 

taking the satellite image product files and is extracting the 

relevant metadata and the optimal primitive descriptors that 

characterize the image data. For each satellite image, this 

information is extracted from image patches (e.g., 128×128 

pixels, 64×64 pixels) and ingested into a data base. 

 

The second part is an interactive process based on a cascaded 

active learning method (Blanchart, et al., 2014). With the help 

of image analysts, the extracted information is converted into 

semantic descriptors that are attached to each patch. Once a full 

image has been annotated, different statistical analytics and/or 

change maps can be generated from the data base. 

 

Figure 2 shows the two parts of the processing flow, while 

Figure 3 gives three examples of patches per category, with a 

size of 128×128 pixels, which are extracted from one of the 

Sentinel-1 images. 
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An overview of the proposed method of this section is given in 

the following: 

 

Step 1 Data Pre-processing: Select the Sentinel-1 images to be 

processed and tile them into patches (e.g., 256×256 pixels, 

128×128 pixels, etc.). 

 

Step 2 Feature Extraction and Classification: Extract a 60-

dimentional feature vector from each patch using Gabor filters 

(Manjunath and Ma, 1996), (Mpeg7, 2019) with five scales and 

six orientations (by computing the mean and variance of the 

patch coefficients). As an alternative, we can extract a 144-

dimentional feature vector from each patch using Weber local 

descriptors (Chen et al., 2010) with eight orientations and 18 

excitation levels.  

 

Then we classify the feature vectors into categories using a 

cascaded active learning method (Blanchart, et al., 2014). Each 

patch is assigned to a single category based on the dominant 

content of the patch. 

 

Step 3 Semantic Annotation: We annotate each category by 

giving it an appropriate semantic meaning (by choosing one of 

the categories from (Dumitru, et al., 2016). These data can be 

used as reference ground-truth data set (cf. Section 3.2). 

 

Step 4 Semantic Maps and Statistical Analytics: We generate 

semantic classification maps based on the annotated data from 

the previous step as cartographic representations and create 

analytics to see the distribution or the changes in an image as 

quantitative analyses. 

 

3.2 Representation Learning with Variational Auto-

Encoders  

Representation Learning is a relatively new field that deals with 

finding representations of data that are needed when compiling 

predictors, such as classifiers and regressors (Bengio, 2013). 

One of the thoughts behind this paradigm is to alleviate the 

difficulties that occur when selecting hand-engineered features, 

mainly due to the fact that they do not capture the 

discriminative nature of the data. Because the amount of SAR 

imagery has increased continuously in the last years, one 

important task to be solved is classification. This task not only 

arises when one is performing semantic annotation or land-

cover classification, but also when we try to detect changes in 

SAR images. In the following, we devise a methodology for 

feature extraction and classification. This is then showcased for 

the practical case of change detection. At first we train a 

variational auto-encoder neural network (Kingma, 2014) and 

use the learned representations to design a feature descriptor. 

Afterwards, the features are fed to a robust classifier such as the 

k-Nearest Neighbours (k-NN) algorithm and a Support Vector 

Machine (SVM). The evaluation of the classification results is 

made with the help of precision, recall, accuracy, and F-1 score. 

The section is structured as follows: At first we present the 

theoretical background, then we propose a methodology for 

feature extraction and classification. At last, we present the 

classification results for an annotated image, and the outcome of 

change detection. 

 

3.2.1. Variational Inference and Auto-Encoders 

A common problem in Bayesian statistics is computing the 

likelihood 𝑝(𝑥) of the data. As this can only be exactly 

computed in certain special cases, one tries to approximate it 

with a distribution 𝑝𝜃(𝑥), by maximizing the log-likelihood 

under the parameters 𝜃. The data, e.g., 128×128×2 patches of 

Sentinel-1 SAR imagery, additionally depend on some hidden 

variables 𝑧. As also the true posterior 𝑝𝜃(𝑧|𝑥) is in general 

untractable, a lower bound is maximized instead. Following 

Bayes’ rule, a marginalization over the hidden variables, and 

Jensen’s inequality (Beal, 2003), such a lower bound can be 

written as: 

ln(𝑝𝜃(𝑥))≥  𝔼𝑞𝜑(𝑧|𝑥)
[ln(𝑝𝜃(𝑥|𝑧))] −

𝐾𝐿(𝑞𝜑(𝑧|𝑥)| |𝑝 𝜃(𝑧))=ℒ(𝑥, 𝜑, 𝜃), 
(1) 

where 𝐾𝐿(⋅ | ⋅) is the Kullback-Leibler divergence (Cover and 

Thomas, 2012). The main idea in variational Bayes’ theory is to 

learn the set of parameters (𝜑, 𝜃)𝑜𝑝𝑡 which maximize 

ℒ(𝑥, 𝜑, 𝜃).  
 

If one uses neural networks to estimate the parameters for both 

models (Kingma, 2017), then one talks about a variational auto-

encoder. In the following, we suppose the hidden variables 

𝑝 𝜃(𝑧) come from an isotropic Gaussian 𝒩(0,  𝐼) and the 

encoder is also a Gaussian with a mean vector 𝛍 and a diagonal 

covariance matrix 𝛔𝟐𝐼. 

 

Figure 2. Processing flow used to generate semantically annotated data, classification maps, and analytics. 
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Figure 3. Examples of three classified patches per column: The semantic meaning of each category (from left to right) is:  

     Floating Ice, Icebergs, Glaciers, Mountains, Old Ice, First-Year Ice, Young Ice, and Water Bodies. 

 

Figure 4 (left). Network structure of the encoder. “None” refers to the batch size being used for training which, in this case, was 32.     

(right) Network structure of the decoder. 

 
Figure 5.a. Sentinel-1 quick-look view (left) and a classification map (right) for an image of Belgica Bank, Greenland acquired on 

April 17th, 2018. 

 
Figure 5.b. Sentinel-1 quick-look view (left) and a classification map (right) for an image of Belgica Bank, Greenland acquired on 

June 16th, 2018. 
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An overview of the proposed method is given by: 

 

Step 1 Data Pre-processing: Eleven Sentinel-1 images were 

downloaded, covering all kinds of terrain and water for training 

the network. The images were tiled into 128×128×2-sized 

patches, and from all patches 250,000 of them were used for 

training, and 13,300 for validation. 

 

Step 2: Network Training: A network architecture was 

designed and trained using the ADAM optimizer (Kingma, 

2015), until the lower bound reached its minimum, in our case 

0.359. The architecture for the encoder and decoder networks is 

illustrated in Figure 4 (left) and Figure 4 (right). The encoder 

consists of a convolutional front-end, made up of two layers, 

and several fully connected layers used to estimate the 

parameters 𝛍 and 𝛔. The decoder network is designed 

symmetrically, using deconvolutional layers. 

 

Step 3: Feature Extraction and Classification: The image 

whose features need to be extracted is convolved with the filters 

of the encoder’s convolutional layers. From each image the 

mean and variance are computed, and the results are 

concatenated to a single 72-dimensional feature vector φ, which 

is then fed to the aforementioned classifiers. For demonstration, 

we are using: a) Support Vector Machines (Chand and Lin, 

2001) which are powerful classifiers that have been used in 

remote sensing applications for many years (Mountrakis et al, 

2011). The best hyperparameters C and γ were found to be 

C = 1000 andγ = 0.001 by cross-validation. b) Another 

classifier is the k-Nearest Neighbours algorithm. The choice of a 

metric as well as the constant k is up to the user. In our 

experiments, we found out that weighted k-NN works best with 

a Euclidean metric and 𝑘 = 9. 

 

Step 4: Change Detection: The detection of changes was 

performed for all images of the data set, taking the image 

acquired on April 17th, 2018 as a reference. Because a binary 

change detection would not give so much insight into the nature 

of the changes, we devised the following strategy to quantify a 

change. We took the predicted labels for each patch from the 

images, compared them with the label in the reference image, 

and then computed the difference counts. Based on this, we 

were defining different levels of change. Mathematically, this 

can be summarized by following formula: 

 

 𝐶ℎ𝑎𝑛𝑔𝑒𝐿𝑒𝑣𝑒𝑙 = |𝑦𝑟𝑒𝑓 − 𝑦𝑝𝑟𝑒𝑑|,  (2) 

 

where 𝑦𝑟𝑒𝑓 denotes the label of an image patch found in the 

reference image and 𝑦𝑝𝑟𝑒𝑑 is the predicted label of the 

unannotated patch. The labels are integers and correspond to the 

classes in the annotation, as follows: 

 

1 – Floating Ice 

2 – Icebergs 

3 - Glaciers 

4 – Mountains  

5 – Old Ice 

6 – First-Year Ice 

7 – Young Ice  

8 – Water Bodies 

 

For example, if an image patch of Floating Ice in the reference 

data changes into a Water Bodies patch, the absolute value of 

the difference between the labels, i.e. the change level will be 7.  

 

Note that the change levels are bound to the ordering of the 

categories/classes and could be defined differently. 

 

4. EXPERIMENTAL RESULTS  

4.1 Reference Data Set, Classification Maps, and 

Statistical Analytics 

By using the method described in Section 3.1, we are able to 

generate a reference ground-truth data set for our area of interest 

that was used later in Section 3.2. 

 

For demonstration, we chose two out of five images, acquired 

on April 17th, 2018 and June 16th, 2018. Figure 5.a and Figure 

5.b show the results of the semantic classification and the 

diversity of categories that the method is able to retrieve from 

the images. 

 

Figure 6 (top and bottom) displays the statistical analytics of 

our method that was able to retrieve and semantically annotate 

eight categories using (Dumitru, et al., 2016). By analysing in 

detail the diversity of each semantic category, we could observe 

the changes that occurred within two months in the area of 

interest. Similar changes occurred when we compared the other 

images. Figure 6 (center) presents the differences (increase or 

decrease) of the semantic categories between the inspected 

image pairs. 

 

4.2 Classification Results of the Annotated Data Set and 

Subsequent Change Detection 

Table 1 shows the classification results of the annotated data 

sets using the method from Section 3.2. The presented metrics 

are averaged over all eight semantic categories in the data set. 

The classifiers were trained on 20% of the labelled data and 

tested on the rest. 

 

The k-NN classifier has a robust performance for both images 

(the ones acquired on April 17th and June 16th, 2018), the 

classification metrics was only slightly decreasing when 

classification was performed on the second one. For SVM, the 

classification results show a bigger overall drop. That is why, in 

the following, we decided to use k-NN for the change detection 

task. 

 

In the following, we present the change detection results. This 

was done with the image of April 14th as a reference (see Figure 

5.a right side), while the images dated June 16th, August 9th, 

October 14th, and December 12th, 2018 were compared with it. 

After step 4, we could find eight levels of change. Note that the 

transitions might work in both directions, as we used the 

absolute value of the difference (see Table 2). 

 

Figures 7 to 10 show the change maps for different images.  

 

Classifier Precision Recall F-1 Accuracy 

k-NN 

April 17th 
89% 89% 88% 89% 

SVM 

April 17th 
90% 88% 87% 88% 

k-NN 

June 16th 
87% 88% 87% 88% 

SVM 

June 16th 
84% 82% 83% 82% 

Table 1. The average performances obtained over all categories 

using k-NN and SVM for two acquisitions. 
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We could see that the change maps portray all kinds of possible 

transitions that are caused by the changing seasons. Additional 

expert validation would be helpful in order to understand the 

model correctness and accuracy. 

 

 
Figure 6. Quantitative analysis of the semantic categories that 

were extracted from the area of interest using the Sentinel-1 

image acquired on April 17th, 2018 (top) and the Sentinel-1 

image acquired on June 16th, 2018 (bottom). The semantic 

change was determined also quantitatively (center). 

 

Levels Transition between categories/labels 

level 0 No change 

level 1 

Old Ice  − First-Year Ice,  

First-Year Ice  − Young Ice  

Young Ice  − Water Bodies 

level 2 

Floating Ice  − Glaciers,  

Glaciers  − Old ice,  

Old Ice  − Young Ice  

First-Year Ice  − Water Bodies 

level 3 
Icebergs  − Old Ice,  

Old Ice  − Water Bodies 

level 4 Floating Ice  − Old Ice 

level 5 
Floating Ice  − First-Year Ice,  

Icebergs  − Young Ice  

level 6 
Floating Ice  − Young Ice  

Icebergs  − Water Bodies 

level 7 Floating Ice  − Water bodies 

Table 2. Different levels of change. 

 
Figure 7. Changes between April 17th and June 16th, 2018. 

 
Figure 8. Changes between April 17th and August 8th, 2018 

 
Figure 9. Changes between April 17th and October 14th, 2018. 

 
Figure 10. Changes between April 17th and December 12th, 

2018. 

 

5. CONCLUSIONS AND FUTURE WORKS 

In summary, this paper presents three points: 

 

 a method of active learning for the generation of reference 

data and analytics;  
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 a  method  of  learning  representations  of  Sentinel-1  SAR

data; and

 a way of quantifying changes, by computing the absolute

values of  the  differences between  the  semantic 
categories/labels.

It would also be interesting to explore other ways of enhancing 
the change  detections,  by  learning  the  physical  parameters  of 
the objects with a neural network, and using these parameters as 
features,  or  by  devising  more  levels  of  change,  which  can  be 
done  if  one  uses the  positive/negative differences between  the 
labels instead of the absolute value of them. All these are a good 
start for future work.

During  the  period  of  the  period (ExtremeEarth,  2019)  more 
areas  will  be  investigated by  polar ice  experts for still more 
detailed validation of the proposed methods.

The  future  use  of  automated  SAR  data  interpretation  will 
depend on the easy and timely access to high-quality image data 
and their ease of handling. We expect that the capabilities of the 
current Sentinel-1 instruments give the user community already 
a  good chance  to  get  acquainted  with  advanced  machine 
learning  approaches  applied  to  SAR  images – more  to  come

during the next years!
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