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ABSTRACT:

Obtaining Sentinel-2 imagery of higher spatial resolution than the native bands while ensuring that output imagery preserves the 
original radiometry has become a key issue since the deployment of Sentinel-2 satellites. Several studies have been carried out 
on the upsampling of 20m and 60m Sentinel-2 bands to 10 meters resolution taking advantage of 10m bands. However, how to 
super-resolve 10m bands to higher resolutions is still an open problem. Recently, deep learning-based techniques has become a de 
facto standard for single-image super-resolution. The problem is that neural network learning for super-resolution requires image 
pairs at both the original resolution (10m in Sentinel-2) and the target resolution (e.g., 5m or 2.5m). Since there is no way to obtain 
higher resolution images for Sentinel-2, we propose to consider images from others sensors having the greatest similarity in terms of 
spectral bands, which will be appropriately pre-processed. These images, together with Sentinel-2 images, will form our training set. 
We carry out several experiments using state-of-the-art Convolutional Neural Networks for single-image super-resolution showing 
that this methodology is a first step toward greater spatial resolution of Sentinel-2 images.

1. INTRODUCTION

The European Space Agency and its Copernicus mission are
promoting research on earth observation via Sentinel missions.
Sentinel-2 satellites capture multi-spectral images with 13 spec-
tral bands every five days at the equator, allowing for mon-
itoring the evolution of the earth surface. Their main usage
is providing information for agriculture, forestry, food secur-
ity and risk management among others (Drusch et al., 2012).
The 13 spectral bands of Sentinel-2 capture images in the vis-
ible/near infrared (VNIR) and short wave infrared spectral range
(SWIR) at different resolutions. However, only RGB and NIR
bands are provided at the highest resolution of 10m, whereas
the rest are given at either 20 or 60m.

Therefore, single image super-resolution (SISR) emerges as a
possible way for improving these resolutions (Yang et al., 2018).
Greater spatial resolution allows for a finer analysis and hence,
more knowledge about the true condition of the earth. Previous
works have been mainly focused on obtaining all 13 bands in
10m resolution using both the information of lower resolution
bands and the existing 10m resolution bands (Lanaras et al.,
2018, Gargiulo et al., 2018). However, these methods cannot
be used for further increasing the resolution of RGB and NIR
bands (e.g., 5m or 2.5m) as they require having bands at the
target resolution.

Since 2012, deep learning has become the best tool for deal-
ing with almost every problem related to computer vision and
image processing (Goodfellow et al., 2016, Krizhevsky et al.,
2012). Convolutional Neural Networks (CNNs) (Lecun et al.,
1998) are usually considered to deal with images. Their most
well-known applications are image classification (He et al., 2016),
semantic segmentation (Ronneberger et al., 2015) or face recog-
nition (Deng et al., 2018). However, their application has gone
beyond standard problems and they are being actively used for
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remote sensing applications (Ball et al., 2017). Another scen-
ario where CNNs have stood out is single image super-resolution
(Yang et al., 2018). Several methods have been proposed in the
literature for standard images using different architectures and
learning methods, from standard CNNs (Kim et al., 2016) to
Generative Adversarial Networks (GANs) (Ledig et al., 2017).
These methods have clearly outperformed previous classical
models ranging from bicubic interpolation to reconstruction meth-
ods (Yan et al., 2015). Hence, they seem to be excellent can-
didates for super-resolving Sentinel-2 RGB images to greater
resolutions.

Nevertheless using these networks trained in standard images
for super-resolution of satellite images has shown to provide
poor results (Liebel, Körner, 2016) as they are not specifically
trained for the characteristics of these kinds of images. There-
fore, there is a need for creating specific CNNs for the problem
at hand, the super-resolution of Sentinel-2 images. In this work,
we will focus on the RGB bands, although the same methodo-
logy can be extended to NIR band. CNNs for super-resolution
fall into the category of supervised machine learning. This
means that the neural network is trained by giving the desired
output for each input image. Hence, in super-resolution, low
and high resolution image pairs are required. This is a challen-
ging scenario as there are no higher than 10m resolution images
available from Sentinel-2. Consequently, the main question is
how to create these image pairs.

In this work we propose to consider satellite images from other
sensors as a source for training neural networks for SISR of
Sentinel-2 images. A similar approach has been considered in
(Beaulieu et al., 2018). Nonetheless, few experiments are car-
ried out and the usage of the specific sensors is not properly
justified. We have reviewed existing sensors aiming at finding
the most similar one to Sentinel-2 in terms of spectral bands
(RGB and NIR). As we explain in Section 3, we found that im-
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ages from RapidEye 1 are captured in almost the same spectral
band, expecting that the obtained images will be the most sim-
ilar to Sentinel-2, but having twice the resolution of these (5m).
To increase the similarity, we tried to find images of the same
date. However, even with this constraint and after the proper
pre-processing, we found that there were some effects resulting
in very dissimilar zones in the image pairs. For this reason, both
a manual and automatic validation processes were required.

For the experimental study we have considered a state-of-the-
art model called EDSR (Enhanced Deep Residual Networks)
(Lim et al., 2017) with some modifications and several images
from California area, as they are freely available from 2. Sev-
eral learning strategies have been tested and evaluated using the
commonly considered metrics for super-resolution evaluation:
the peak signal to noise ratio (PSNR) and the structural simil-
arity (SSIM) (Zhou Wang et al., 2004). We will show that the
proposed learning scheme leads to promising results but several
challenges remain to be addressed.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly introduce deep learning and CNNs, mainly
focusing on image super-resolution. Then, Section 3 presents
our proposal for super-resolving Sentinel-2 images. The exper-
iments are carried out in Section 4. Finally, our conclusions and
future work are presented in Section 5.

2. PRELIMINARIES

Deep learning has supposed a major advance in artificial intelli-
gence due to the excellent results obtained in various tasks such
as computer vision, natural language processing, speech recog-
nition or machine translation. More specifically, CNNs have
super-passed previous computer vision and image processing
methods for tasks such as classification, semantic segmenta-
tion, face recognition or image super-resolution. This is why
we focus our attention on CNN-based SISR.

The first CNN was proposed by LeCun et al. (Lecun et al.,
1998) for the classification of handwritten digit recognition with
the well-known MNIST dataset. However, until AlexNet was
proposed in 2012 (Krizhevsky et al., 2012), the power of CNNs
was ignored. This model led to a 10% of increase in accuracy
with respect to previous non-CNN-based models. Since then,
this number has decreased to numbers even below human cap-
ability thanks to CNNs. Anyway, their capability goes beyond
image classification problems and SISR is another field where
they have stood out. We briefly recall several approaches for
this purpose in Section 2.1 and focus on EDSR model in Sec-
tion 2.2, which is the model considered for the experiments.

2.1 CNNs for Single Image Super-Resolution

The objective of SISR is to increase the spatial resolution of an
image, considering only the information in the image itself and
some acquired knowledge in the form of an algorithm or model
(Yang et al., 2018). In the literature, three kinds of methods can
be found for this purpose: interpolation-based, reconstruction-
based and learning-based methods. Among interpolation based
methods, bicubic interpolation (Keys, 1981) is the most well-
known approach. Reconstruction-based methods (Yan et al.,

1https://directory.eoportal.org/web/eoportal/satellite-
missions/r/rapideye

2https://www.planet.com/trial/

2015) make use of some sophisticated prior knowledge to gen-
erate flexible and sharp details. Learning-based methods have
been recently dominated by deep learning approaches with ex-
cellent results in standard images (Yang et al., 2018). This is
why we focus on these types of methods.

For learning how to super-resolve an image using CNNs, one
needs to give the CNN pairs of a low resolution image and a
high resolution image. This way, the network is able to extract
high-level abstractions from the low resolution image bridging
the gap between the low resolution and high resolution spaces.
Commonly, the pairs of images are obtained out of the same
high resolution image by downsampling. This is the main prob-
lem we aim to face in this work, as there are no Sentinel-2 RGB
images available at 5m resolution, our objective.

Once the training set is available, several different CNN archi-
tectures and optimization objectives can be considered (Yang
et al., 2018). SRCNN (Dong et al., 2014) was the first ar-
chitecture presented for SISR. It was based on firstly carrying
out a bicubic interpolation and then going through a three-layer
CNN. Both parts have been further improved with most recent
approaches as bicubic interpolation resulted in a high compu-
tational cost and could produce wrong estimations in the final
image. Likewise, deeper and more complex architectures can
lead to better results as in other computer vision tasks. Regard-
ing upsampling, Pixel Shuffle with sub-pixel convolution (Shi
et al., 2016) was proposed as a part of ESPCN, improving both
computational complexity and final performance. Moreover,
ICNR initialization (Aitken et al., 2017) allowed to remove the
checkerboard pattern present in several CNN-based approaches.
With respect to the depth of the networks, VDSR (Kim et al.,
2016) was the first deep network for super-resolution. It was
composed of 20 layers based on the well-known VGG network
(Simonyan, Zisserman, 2014) and started also from bicubic in-
terpolation, although a residual connection was added aiming
at improving performance and accelerate convergence. SRRes-
Net (Ledig et al., 2017) is based on concatenating several Res-
Blocks commonly used for image classification. However, no
major adaptations were made for the super-resolution problem,
which can be suboptimal as argued by the authors of EDSR
(Lim et al., 2017). This CNN is based on removing unnecessary
modules from SRResNet and using the proper loss function to
achieve the best performance in the problem at hand. We briefly
detail the properties of this network in the next section as it is
the base for our proposal.

Apart from the architecture, the loss function considered for
learning the parameters of the CNN is another key factor. The
L2 norm, i.e., Mean Square Error (MSE), has been the most
widely used loss function. Nevertheless, in EDSR the authors
used the L1 norm, i.e, Mean Absolute Error (MAE), claiming
that it resulted in better convergence. The usage of GANs can
also be seen as a different form of training. This is the case
of SRGAN (Ledig et al., 2017), which trains a SRResNet us-
ing GAN learning. That is, a discriminator network is used for
learning whether the produced image is the real high resolution
image or the super-resolved one, and its loss function is com-
bined with the L2 norm. This kind of learning tend to lead to
good visual results, but this is not usually reflected in the per-
formance measures due to their capability to picture missing
pixels.

Notice that most of the proposed networks focus on 4x scale,
where difference between bicubic interpolation and CNN-based
approaches becomes higher. In this work, we focus on a first
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step for Sentinel-2 super-resolution aiming at doubling the res-
olution of the original images (2x).

2.2 EDRS: Enhanced Deep Residual Networks

EDSR has several properties that makes it different from previ-
ous approaches. It is based on SRResNet, but with the proper
modifications according to the properties of SISR. Bearing this
in mind, the authors proposed to remove batch normalization
from ResBlocks. Using these blocks is interesting as they allow
the information to flow through the network without modific-
ations, since the output should be similar to the input. How-
ever, the key point here was that removing batch normaliza-
tion the information suffered less changes, which was desired in
this case due to the aforementioned reason (different from im-
age classification problem). Moreover, a residual scaling factor
(Lim et al., 2017) was introduced into the network to stabilize
learning (default value of 0.1).

Two main parameters are required to define the architecture of
EDSR: the number of ResBlocks and the number of filters. In
this work we consider the simplest version of EDSR with 8
ResBlocks and 64 filters. After the ResBlocks, a Pixel Shuffle
upsampling is used to finally increase the resolution of the im-
age. This is done at the end, which makes EDSR faster than
other alternatives where upsampling is performed just before
going through the network, which results in all operations being
performed over the higher resolution image. Interestingly, this
operation procedure allows EDSR to take advantage of lower
scales super-resolutions for higher scales ones. This is known
as progressive resizing. This means that the EDRS learned for
2x super-resolution can be used as a pre-trained model for 4x
super-resolution. The only required modification is to add a
new Pixel Shuffle upsampling at the end of the network. This
allows one to make convergence for higher resolutions faster.
Likewise, we will use a similar strategy although we will al-
ways work with 2x scale. A scheme of the EDSR used in this
work is presented in Figure 1.

Figure 1. Architecture of EDSR.

With respect to the loss function, the authors proposed to use L1
norm because they found that its convergence was faster than
using L2 norm. In testing phase, they included a self-ensemble
model (named as EDSR+ in the original paper), where the same
image was augmented for testing with flips and 90 rotations up
to 7 augmented inputs plus the original image. Then the 8 im-
ages are passed to the network and the predictions are averaged
(obviously, after undoing transformations).

3. SENTINEL-2 TO RAPIDEYE:
SUPER-RESOLUTION OF SENTINEL-2 IMAGES

In this section we present our proposal for the super-resolution
of Sentinel-2 images, which consists in learning a EDSR model
using images from a different sensor as target images. The pro-
posal including the explanation of why we consider RapidEye
satellite is presented in 3.1. Then, Section 3.2 details the data

we have used for training and Section 3.3 explains the different
settings we have considered for the network training.

3.1 Proposal

The main problem we need to address in order to apply EDSR
to Sentinel-2 images is that we do not have any high resolution
image at 5m. Therefore, we tried to find the sensor with the
most similar spectral bands to those of Sentinel-2 but provid-
ing us with higher resolution images at 5m. We found that the
satellite satisfying these properties was RapidEye 3 operating
since 2009. In Figure 2, we can observe that the spectral bands
for both satellites are similar and hence, we consider RapidEye
images as excellent candidates for our purpose.

Figure 2. Comparison between RapidEye and Sentinel-2
spectral bands for RGB and NIR.

Obviously, the raw products of RapidEye and Sentinel-2 have
different magnitudes. In Sentinel-2, one can select the the pro-
cessing level (e.g., L1C is top of atmosphere reflectance and
L2A is bottom of atmosphere reflectance). Otherwise, in Rap-
idEye digital numbers are provided, which need to be converted
into the appropriate magnitude (top of atmosphere reflectance
in our case). These aspects are detailed in the next section.
Notice that we should restrict ourselves to work with top of at-
mosphere reflectance as it is the level of processing in which
RapidEye images are provided.

3.2 Datasets

Once the most suitable sensor for super-resolving Sentinel-2
images has been decided, we need to download image pairs.
Since images are captured by different satellites, it may be dif-
ficult to find image pairs that are temporarily close to each other
so that we may find the minimum number of changes between
them. For this reason, we try to make them match the date as
much as possible and we also only consider images with cloud
cover less than 10%.

RapidEye images were downloaded using 14 days free trial
from Planet 4, which gives access to open California. Notice
that we aim to extend this study in the future with strategic-
ally selected images from different areas of interest. Hence, all
the images considered in this study are from California state
(United States of America, USA). To make our network more
robust against the super-resolution of urban areas, we focused
on the main urban cities of California: Los Angeles, Beberly-
hills, Calabasas, San Jose, Hayward and Yuba.

In first place, we downloaded images from RapidEye satisfying
the cloud cover restriction (Analytic Ortho Tile products are

3https://directory.eoportal.org/web/eoportal/satellite-
missions/r/rapideye

4https://www.planet.com/
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used). Then, we found the images from Sentinel-2 satisfying
the same restriction and we took the ones minimizing the dif-
ference with respect to the acquisition date of RapidEye ones
(Sentinel-2 L1C products are used). For the future, we aim to
optimize this process by first matching image pairs with min-
imum difference between dates (with less than 10% cloud cover
in both).

After downloading the images, we need to normalize them so
that they are almost the same but with different resolutions. To
do so, we carried out the following process:

1. Convert Sentinel-2 products to GeoTIFF raster (RGB).
2. Convert RapidEye RGB data to Top of Atmosphere Re-

flectance.
3. Match RapidEye tiles in Sentinel-2 image and crop ac-

cordingly.
4. Outlier values in RGB images are detected with the per-

centiles 1 and 99 of each band in both products. These
values are changed to take the minimum or the maximum
possible value, respectively.

5. With the maximum and minimum values after outlier re-
moval, MaxMin normalization is performed to create the
RGB images in uint8.

At this point, we have both images at the same scale and range,
almost ready to be used for training the network. However, by
visual inspection we found that there were some places where
both images were highly different. Since such a large difference
could hinder the learning of our network, we carried out both a
manual and automatic validation processes by patches. Hence,
we split the images in patches of 96x96 pixels in Sentinel-2 res-
olution (a typical value used in SISR with CNNs) and revised
all patches one by one looking at major differences, which were
marked for removal. Afterwards, a statistical validation based
on both the mean and standard deviation of the pixel intensity
values was carried out (we acknowledge that doing it the other
way would have been more efficient). We computed the mean
and standard deviation of each band and satellite for all the
patches of 96x96 pixels and plotted the ratio between Sentinel-
2 and RapidEye patches in histograms. By visual inspections
different threshold values were selected for the mean (0.94 <
µ < 1.15) and standard deviation (0.77 < σ < 1.25). A patch
pair was removed if any of those inequalities was not satisfied
for at least one band. An example of the differences between
images from both satellites and the corresponding mask with
validated/removed patches is shown in Figure 3. After valida-
tion, 3931 patches were considered for the experiments out of
6048, i.e., 35% of the patches were removed either by manual
(1711) or automatic (442) validation.

Figure 3. Example of validated/removed patches in the city
Hayward (in red patches removed by manual validation, in

yellow those removed by the statistical validation).

The whole set of images considered for our study is summar-
ized in Figure 4 and Table 1, where for each image pairs, the

main city covering the images, the dates of the Sentinel-2 and
RapidEye images, the delay between both images (in days),
the set to which we have assigned the images and the final
number of generated patches from the image pairs are presen-
ted. Moreover, Table 2 shows the final number of patches con-
sidered for each set (training, validation and test). Recall that
this data partitioning is the one usually considered for training
and evaluating machine learning models. Most of the data is
used for training (approximately 75% of the patches). Few data
is considered for validation (7.5%), which in our case serves
for deciding when the network is saved during training and the
rest is used for testing, that is, to obtain the final result of each
configuration over a set of patches that were not used for fitting
the model.

Figure 4. Location of images considered for the study.

City Sentinel date RapidEye date Delay (d) Set #Patches

Yuba 2018-08-28 2018-08-29 1 Train 616
Calabasas 2018-07-23 2018-07-02 21 Train 581
Beberlyhills 2018-07-23 2018-06-13 40 Train 584
Los Angeles N 2018-07-23 2018-08-05 13 Train 611
Los Angeles C 2018-07-23 2018-08-05 13 Train 526
San Jose 2018-07-09 2018-08-20 42 Val 72
Los Angeles S 2018-07-23 2018-08-05 13 Val 223
Hayward 2018-07-09 2018-07-04 5 Test 414
Los Angeles W 2018-07-23 2018-08-05 10 Test 304

Table 1. Summary of the images used from Sentinel-2 and
RapidEye to form our dataset.

3.3 Network training

Regarding our implementation of EDRS, we have used fast.ai
library (Howard et al., 2018) with PyTorch (Paszke et al., 2017)
and followed several guidelines from 5. In order to avoid check-
erboard pattern produced by Pixel Shuffle we initialize this layer
using ICNR (Aitken et al., 2017). The other major change is

5https://course.fast.ai/
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Set Images #Patches Ratio %

Train 5 2918 74.2
Val 2 295 7.5
Test 2 718 18.3

Total 9 3931 100

Table 2. Summary of the images used from Sentinel-2 and
RapidEye to form our dataset.

that we have considered a more advanced loss function that
suits better our specific scenario where both images comes from
different sources. In this case, although we have established a
proper validation so that images from different sensors are al-
most the same, only relying on L1 or L2 norms led to blurry
results. Hence, we modified this behavior by adding both a fea-
ture loss based on VGG16 (Simonyan, Zisserman, 2014) and
a style loss (Johnson et al., 2016) based on the same network.
The former computes the L1 loss between the activations of
different layers of the VGG16 when both the target image and
the super-resolved one are forwarded through the network. The
latter is commonly used in style transfer and tries to force the
super-resolved image to have similar correlations to those of
the target one among the activations of the different channels in
several layers of VGG16. Using these losses together with the
L1 norm (pixel loss) allows us to make the network focus not
only on individual pixel differences but also on the overall look
of the resulting image.

Following (Lim et al., 2017), we used a batch size of 16. We
followed the guidelines of (Smith, 2018) for training the net-
work using one-cycle policy. That is, when training a network
from scratch we first looked for the most appropriate learning
rate for each run using the learning rate finder. Then, we run
50 epoch with this maximum learning rate. Again, learning rate
finder is used for finding the best learning rate for another 100
epoch run. As we will explain afterwards we take advantage
of transfer learning by progressive resizing. In this cases, we
start from an already trained model and hence, we run learn-
ing rate finder and use this learning rate for further training 50
epochs. Afterwards, the learning rate is divided by 10 and 30
more epoch are run. This process is repeated twice. The learn-
ing rates used for each configuration and the learning scheme
used are detailed in Table 3. The different configurations are
explained hereafter.

With the idea of progressive resizing of EDSR, where first the
model for 2x is trained and then, the model for 4x is trained
from the previous one simply adding another upsampling layer,
we have thought of different strategies for learning using Sentinel-
2 and RapidEye images. However, in this case we always con-
sider the same scale factor (2x), but change the resolution of
the images from which we train the network. This is known
to accelerate convergence and improve generalization. Bear-
ing this idea in mind, we tested different learning strategies.
To do so, we consider image patches at different resolutions:
low resolution (20m), medium resolution (10m) and high res-
olution (5m). Notice that with this nomenclature, the original
Sentinel-2 (SE) images are in medium resolution and RapidEye
(RE) ones in high resolution. Our final objective is to perform
that translation from 10m to 5m (SE2RE). However, we can
first pre-train the network to move from 20m to 10m and use
that network to faster and better train the subsequent model
super-resolving from 10m to 5m. Moreover, we can perform
these pre-trainings either with Sentinel-2 images or RapidEye

ones (as we can downsample both of them to 10m and 20m,
respectively). Table 3 summarizes all the configurations tested.
Mainly, we can differentiate four main ideas:

1. Pre-train with only RapidEye images (RE2RE) and finally
fine-tune with Sentinel-2 to RapidEye (SE2RE). Here, we
have two main possibilities, to pre-train first from 20m to
10m (1.1 model) and then from 10m to 5m using RapidEye
(1.2 model) and then move to Sentinel-2 to RapidEye (10m
to 5m again but with different images, 1.4 model); or to
pre-train with RapidEye only for 20m to 10m and then
move to Sentinel-2 to RapidEye (10m to 5m, 1.3 model).

2. Pre-train with Sentinel-2 as long as possible (20m to 10m,
2.1 model), and then continue with Sentinel-2 to RapidEye
(10m to 5m, 2.2 model).

3. Always maintain the idea of training from Sentinel-2 to
RapidEye for pre-training (20m to 10m, 3.1 model) and
fine-tuning (10m to 5m, 3.2 model).

4. Do not carry out pre-traing and directly train the network
from scratch for super-resolving 10m to 5m (Sentinel-2 to
RapidEye, 4.1 model).

Configuration Learning scheme

1.1. RE20 → RE10 50 ep, lr 5e-3 → 100 ep, lr 1e-03
1.2. RE10 → RE5

(from 1.1)
50 ep, lr 1e-4 → 100 ep, lr 1e-3

1.3. SE10 → RE5

(from 1.1)
50 ep, lr 1e-4 → 30 ep 1e-5 → 30 ep, lr 1e-6

1.4. SE10 → RE5

(from 1.2)
50 ep 1e-3 → 30 ep, lr 1-4 → 30 ep, lr 1e-5

2.1. SE20 → SE10 50 ep, lr 5.25e-3 → 100 ep, lr 5.25e-3
2.2. SE10 → RE5

(from 2.1)
50 ep, lr 2.75e-4 → 30 ep, lr 2.75e-5 → 30 ep 2.75e-6

3.1. SE20 → RE10 50 ep, lr 4.37e-3 → 100 ep, lr 1e-3
3.2. SE10 → RE5

(from 3.1)
50 ep, lr 1e-4 → 30 ep 1e-5 → 30 ep, lr 1e-6

4.1. SE10 → RE5 50 ep, lr 6.31e-3 → 100 ep, lr 1e-3 →
→ 30 ep, lr 1e-4 → 30 ep, lr 1e-5

*ep: epoch; lr: learning rate; RE: RapidEye; SE: Sentinel-2

Table 3. Configurations considered in the experiments.

The rest of the parameters for training the network are presented
in Table 4. We consider bicubic interpolation for comparison
with the proposed super-resolution. In the future, we aim to
extend this comparison with more complex methods.

Param. name Value

Batch size 16
VGG16 layers First 3 Max-pooling inputs
(for feature/style losses)
VGG16 layer weights (feature loss) (0.2, 0.7, 0.1)
VGG16 layer weights (style loss) (200, 2450, 50)
Losses weighting (1.0, 1.0, 1.0)
(pixel, feature, style losses)
Optimizer Adam
Learning strategy Once Cycle Policy (pct start=0.7)
Weight decay 1e-7

Table 4. Common parameters for all configurations.

3.4 Evaluation measures

For the evaluation of the results obtained, we have considered
the two most widely used metrics for super-resolution evalu-
ation: the peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) index (Zhou Wang et al., 2004).

The PSNR measure the image restoration quality comparing
the obtained super-resolved image (from SE) with the ground
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truth (from RE). Notice that it is tightly related to the mean
squared error and hence, measures the differences between im-
ages pixel-wise:

PSNR(y, ŷ) = 10 · log10(
v2max

MSE
) (1)

where v2max is the greatest possible difference between two
pixel values and

MSE(y, ŷ) =
1

N ·M · C

N∑
i=1

M∑
j=1

C∑
k=1

(yijk − ŷijk)2 (2)

where N,M,C are the number of rows, columns and channels
of the image, respectively.

Different from the PSNR, the SSIM is designed to be consistent
with human perception. Hence, it may even be more important
than PSNR for certain scenarios such as ours. Notice that we do
not have real ground truth of Sentinel-2 at 5m, but approximate
ones from RapidEye. Hence, perception may capture better the
quality of the prediction rather than the pixel-wise difference.

4. EXPERIMENTAL STUDY

In this section we present and discuss the results of our pro-
posal.

4.1 Results

Table 5 presents the results in terms of PSNR and SSMI per-
formance measures. Observe that we show the results for both
the super-resolution of RapidEye (10m) to RapidEye (5m) (RE2RE)
and Sentinel-2 (10m) to RapidEye (5m) (SE2RE). The former
allows us to check whether pre-training in RapidEye is work-
ing properly, whereas the latter is the main focus of this work,
the results of Sentinel-2 super-resolution. Notice that we do
not expect to achieve the same results with Sentinel-2 super-
resolution as those we can achieve with RapidEye 10m to 5m,
as we are dealing with images coming from different sensors
and hence, the objective is not to transfer one image to the other
but simply to super-resolve the first one. Anyway, this numbers
gives us an intuition of how well super-resolution is performing.

Additionally, in Figure 5 we also provide several examples of
super-resolved patches so that visual comparison between bicu-
bic interpolation and the proposed method can be performed.
The configuration selected is the one with the best performance
metrics (model 1.4).

4.2 Discussion

We will first analyze the results in Table 5, discussing the effects
of the different configurations. Then, we will comment on the
visual results in Figure 5.

First, we can observe that bicubic interpolation can be outper-
formed by our EDSR-based solution in both scenarios (RE2RE
and SE2RE). The results of model 1.2 (pre-trained in 1.1) in
RE2RE are impressive, achieving 35 dB in PSNR and a SSIM
of almost 0.96. Obviously, these results do not transfer well
when we evaluate the model in SE2RE task. Performance is
decreased due to two main reasons: 1) the model is not trained

RE10 → RE5 SE10 → RE5

Configuration PSNR SSIM PSNR SSIM

0.0. Bicubic 31.68 0.9094 26.80 0.8055
1.1. RE20 → RE10 33.88 0.9389 26.38 0.7989
1.2. RE10 → RE5

(from 1.1) 35.49 0.9572 26.95 0.8137

1.3. SE10 → RE5

(from 1.1) 32.61 0.9383 27.63 0.8220

1.4. SE10 → RE5

(from 1.2) 32.14 0.9395 27.81 0.8285

2.1. SE20 → SE10 33.76 0.9392 26.48 0.7979
2.2. SE10 → RE5

(from 2.1) 32.64 0.9404 27.62 0.8220

3.1. SE20 → RE10 31.23 0.9189 26.87 0.7983
3.2. SE10 → RE5

(from 3.1) 32.07 0.9288 27.43 0.8178

4.1. SE10 → RE5 32.18 0.9355 27.75 0.8253

Table 5. Results obtained by the different configurations in test
set for both PSNR and SSIM.

with Sentinel-2 images; 2) The task is much harder as super-
resolved images are evaluated with images coming from a dif-
ferent source than the input image. Hence, it is clear that we
need to train the model with Sentinel-2 images as input and
RapidEye ones as outputs if we want to perform well in SE2RE.

The most straightforward way to do so is to follow model 4.1,
where no pre-training is carried out. However, attending to the
results, we can observe that this solution is suboptimal. The
model with the best performance is 1.4, which is trained after
model 1.2 is obtained, which at the same time starts from the
model obtained in 1.1. This allows us to achieve a more ac-
curate model than directly addressing the super-resolution of
Sentinel-2 to RapidEye. Notice however that not all pre-trainings
are performing equally, since the rest of the models are not able
to improve the results of 4.1 (no pre-training).

Focusing on the visual results in Figure 5, we should highlight
the difference between bicubic and the proposed approach. Im-
ages are less blurry and more sharpen. Edges are better defined.
In general, it could be difficult to differentiate between the Rap-
idEye and the super-resolved one. However, looking at the last
image, one can observe that with 10m resolutions there are de-
tails that can be hardly recovered, such as one of the roads in the
lower left part of the image. This can be observed in RapidEye,
but there is no way to see that horizontal road in Sentinel-2 and
hence, our proposal cannot imagine it. We should finally ac-
knowledge the fact that the differences in numbers in Table 5,
are more clearly observed when looking at the output images of
the network, which is because the evaluation is being performed
with respect to RapidEye instead of a Sentinel-2 image at 5m
resolution, which does not exist.

5. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a novel way for super-resolving
Sentinel-2 RGB bands to 5m resolution. To do so, we con-
sider using images from another satellite with similar spectral
bands but capturing images at a higher resolution to learn a deep
learning model. The selected satellite is RapidEye. With pairs
of images of both satellites we have been able to train a network
based on EDSR with some changes such as a loss function con-
sidering feature and style losses, a proper initialization of Pixel
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Sentinel-2 RapidEye (PSNR / SSIM) Bicubic (22.26 db / 0.7823) Proposed (22.94 db / 0.8249)

Sentinel-2 RapidEye (PSNR / SSIM) Bicubic (22.22 db / 0.7484) Proposed (22.84 db / 0.7793)

Sentinel-2 RapidEye (PSNR / SSIM) Bicubic (22.91 db / 0.7756) Proposed (23.36 db / 0.7894)

Sentinel-2 RapidEye (PSNR / SSIM) Bicubic (24.90 db / 0.7408) Proposed (25.28 db / 0.7629)

Figure 5. Visual comparison between the bicubic interpolation and the proposed method.

Shuffle layer and using one-cycle learning policy. Moreover, we
considered different strategies for learning based on progress-
ive resizing idea. We should highlight the results, evaluated
in terms of PSNR and SSIM, obtained by our proposed model
which is based on previous training phases on RapidEye images
(20m to 10m and 10m to 5m). Visual results showed that the
images obtained avoid the blurry effect of bicubic interpolation.

Nonetheless, there are still several future works that should be
considered. Regarding the dataset used, we want to include
more images for training, validation and testing. In fact, we do
not only want more images but also images which are better co-
registered, that is, whose capture days differ as less as possible.
We will also extend the work to other zones different from Cali-
fornia making use of subscription-based images of RapidEye.
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With respect to the CNNs, we would like to carry out a proper
comparison among the state-of-the-art models, including GAN-
based approaches. In this way, we want to extend the experi-
mental comparison including other methods for super-resolution
not based on neural networks. Finally, it will be interesting to
think of increasing the resolution of Sentinel-2 images further,
e.g., considering 4x scale.
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