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ABSTRACT: 

 

Point cloud segmentation is a significant process to organise an unstructured point cloud. In this study, RGB point cloud was 

generated with the help of images acquired from an Unmanned Aerial Vehicle (UAV). A dense urban area was considered with 

varying planar features in the built-up environment along with buildings with different floors. Initially, using Cloth Simulation Filter 

(CSF) filter, the ground and the non-ground features in the Point Cloud Data (PCD) were segmented, with non-ground features 

comprising trees and buildings and ground features comprising roads, ground vegetation, and open land. Subsequently, using 

CANUPO classifier the trees and building points were classified. Noise filtering removed the points which have less density in 

clusters. Point cloud normals were generated for the building points. For segmentation building elements, normal vector components 

in different directions (X component, Y component and Z component) were used to segment out the facade, and the roof points of 

the buildings as the surface normals corresponding to the roof will have a higher contribution in the z component of the normal 

vector. The validation of the segmentation is done by comparing the results with manually identified roof points and façade points in 

the point cloud. Overall accuracies obtained for building roof and building facade segmentation are 90.86 % and 84.83 % 

respectively. 

 

1. INTRODUCTION 

Identification of building rooftops is primarily useful for 

understanding the photo-voltaic (PV) potential of urban areas 

(Wiginton et al., 2010). There are also other areas of study that 

require this information such as the study of urbanisation and 

related phenomenon (Zhao et al., 2015), BIM (Dawood et al., 

2017; Pirotti et al., 2019) and municipal management. With 

ever-growing urban areas and the need for sustainable energy 

practices, reliable and cost-effective techniques to identify 

building rooftops are, therefore, a useful requirement. 

 

Airborne LiDAR has been used for identification of various 

rooftops owing to the geometric details present in the 3D point 

clouds acquired using this platform (Hujebri et al., 2019; Jung 

et al., 2017; Kushwaha et al., 2019; Nguyen et al., 2012; Pirotti 

et al., 2019; Zhao et al., 2015). Although several studies have 

implemented different methods to extract rooftops and facades 

from LiDAR data, the data is generally very costly, and there 

are some limitations on the flexibility of data acquisition. 

Unmanned Aerial Vehicles (UAV) platforms are relatively more 

flexible, and the costs are not high. However, there is a trade-off 

between these platforms in terms of the coverage. Besides, 

UAV-based LiDAR is also a recent development. On the other 

hand,  UAV-based photogrammetry has been extensively 

applied to several urban-related studies in the recent years 

(Fernandez Galarreta et al., 2015; Palanirajan et al., 2019; 

Vetrivel et al., 2018). The costs involved with this technology 

are significantly lower. The optical sensors that are mounted on 

these systems are relatively inexpensive, and they also provide 

textural information which can significantly aid in segmentation 

results (Rouhani et al., 2017; Vetrivel et al., 2015).  

 

As mentioned previously, there have been significant 

advancements in the algorithms for extraction of rooftops. This 

study focused on utilising some simpler methods and techniques 

for identification of rooftops using a low-cost UAV based 

photogrammetry approach that would possibly enable an end-

user to obtain preliminary information about rooftops in a given 

area with relative ease. In this study, UAV based 

photogrammetric point clouds were processed to extract the 

roof and facade features of built-up structures. Surface normals 

are very useful to characterise the underlying surface of an 

object.  They were used to identify roof elements and separate 

them from facade elements. As buildings generally comprise 

standard geometric elements such as planes, curves etc., the 

normals of these elements tend to have regular ‘patterns’. These 

normals on buildings were analysed to understand the 

differences in normals for facades and rooftops. 

 

2. STUDY AREA AND DATASET USED 

The UAV dataset was acquired in a dense urban area located at 

Khanjarpur area, Uttarakhand, India. The location of the study 

area is depicted in Figure 1. The study area comprises densely 

packed buildings, which is a common feature in urban 

settlements in India. Characteristics of rooftop areas in such 

urban structures include parapet walls, staircase openings etc.  

Parameter Dataset  

UAV - Model DJI Phantom 4 Pro 

Optical Sensor FC6310_8.8_5472x3648 

Flying Height 150 m 

Side overlap 60 % 

Front overlap 70 % 

Spatial Resolution 0.021 m 

Table 1: Acquisition details 
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Figure 1: Study area

The dataset used for this study was acquired using a DJI 

Phantom 4 Pro (UAV) with an optical sensor mounted on it. 

The dataset parameters are tabulated and shown in Table 1. 

Flight parameters were decided prior to the acquisition so as to 

ensure the acquisition of images that were ideal for a dense 

point cloud generation. A total of 102 images were acquired. 

Pix4D was used for generation of a dense point cloud, and 

CloudCompare was used for processing the point cloud. 

 

The subset that was chosen for this study is shown in Figure 3. 

This area was considered as there is a presence of several urban 

elements such as buildings with roofs at different levels, roads 

and some trees. The data acquisition was made by keeping the 

camera angle nadir which resulted in less dense points in the 

facade regions. 

3. METHODOLOGY 

Pix4D was used to reconstruct the 3D point cloud, and a subset 

of the larger area was used for further processing and analysis. 

The point cloud was cleaned for any noise by manual 

segmentation. It was then classified to obtain ground points 

using the CSF filter (Zhang et al., 2016). The study area is a flat 

terrain. A cloth resolution of 0.5 and a classification threshold 

of 0.5 were considered. The non-ground points contained 

objects such as trees, buildings, cars, etc. The CANUPO (Brodu 

and Lague, 2012) classifier was then trained to filter the 

buildings and trees from the remaining non-ground points. 

 

A normal vector has three components in x-direction, y-

direction and z-direction respectively. The contribution of the 

normal vector to its component depends on the direction of the 

normal at the given point. For example, if the normal is pre-

dominantly oriented upwards, then the contribution of the 

normal vector in z-component will much greater than the x-

component and y-component. Normals were estimated for the 

filtered dataset, and the components of the normals were 

extracted. It was observed that, for the z-component of the 

normal vector, the components representing the roof portions 

had a range of 0.97 to 1. Subsequently, points with z-

components in this range were classified as roof elements. The 

z-components less than 0.97 were classified as facade 

points. The methodology is shown in Figure 2. 

 

 

Figure 2: Methodological workflow 
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The subset of the photogrammetric point cloud generated from 

the UAV raw images used for the research is shown in Figure 3. 

 

Figure 3: Original Point Cloud Dataset of the study area 

4. RESULTS AND DISCUSSIONS 

The roads, ground vegetation, open land were classified as the 

ground points. The classified ground points are shown in Figure 

4. 

 

 

Figure 4: Ground points  

Trees, plants, vehicles, roofs, compound walls, rooftop tanks, 

are classified as non-ground points. The classified non-ground 

points are shown in Figure 5. 

 

Figure 5: Non-ground points  

The non-ground points consist of trees and buildings. The 

classifier was trained in such a way that the building edges were 

also considered in the same class as trees due to the presence of 

shadows. Similarly, shadows were also present at the staircases 

to the roofs and between buildings where sufficient illumination 

is generally absent. Such characteristics were common in this 

area. As the focus was on the extraction of the planar regions 

representing the roof and facade, the elimination of the other 

‘noisy’ features was useful. The classified building (roof) points 

are shown in blue and trees, staircase, shadow, and building 

boundary points are shown in red in Figure 6.  

 

 

Figure 6: Trees and Building points  

The classified roof points and facade points based on the normal 

information are shown in Figure 7. The roof points are in red 

colour, and the facade points are in orange colour. 

 

 

Figure 7: Segmented roof and facade points 

4.1 Accuracy Assessment  

Three buildings (Figure 8) were considered to assess the results 

of the methodology . The equation mentioned below was used 

for this purpose. 

 

Percentage accuracy = (No. of points segmented by the 

proposed method/ No. of points segmented manually) x100 
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Figure 8: Buildings considered for accuracy assessment 

 

 

(a) 

 

 

(b) 

Figure 9: Building 1 segmentation of roof (left) and facade 

(right) (a) Proposed segmentation, (b) Manual segmentation 

 

 

 

 

(a) 

 

 

 

 

(b) 

Figure 10: Building 2 segmentation of roof (left) and facade 

(right) (a) Proposed segmentation, (b) Manual segmentation 

 

 

 

 

 

 

(a) 

 

 

 

(b) 

Figure 11: Building 3 segmentation of roof (left) and facade 

(right) (a) Proposed segmentation, (b) Manual segmentation 

Sl. no. Element 

No. of points 

segmented % 

Accuracy 
Proposed Manual 

Building 1 

Roof 1089 1247 87.32 

Facade 1104 1305 84.59 

Building 2 

Roof 24236 27283 88.50 

Facade 3572 4434 80.55 

Building 3 

Roof 30173 2912 96.78 

Facade 31174 3259 89.35 

Table 2: Accuracy assessments 

There is a difference in the point density between the proposed 

segmentation method and manual segmentation method. After 

the buildings were segmented out as non-ground points, noise 

filtering was done in which the points not close enough to the 

underlying planar surface (roof or facade) were removed as 

noise points. The regions where point’s density was less were 

also removed as noise points. Furthermore, the points generated 

for a plane by photogrammetric reconstruction are 

comparatively ‘less planar’ in comparison to those acquired 

using LiDAR. This could affect the normal estimation. In order 

to avoid this, noise removal was carried out. These could 

perhaps be a contributing factor in the reduced point densities 

after the noise removal stage. However, the general area 

representing the feature of interest was identified with 

reasonable accuracy. In the near future, the algorithm will be 

tested in different study areas with different features. 
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5. CONCLUSIONS  

The proposed methodology is simplistic yet efficient to obtain a 

preliminary classification of building points into roof and 

facade points of the buildings. UAV photogrammetry can be 

implemented easily in comparison to other 3D technologies 

such as LiDAR and SAR as it is a cost-effective technique.  

Overall accuracies obtained for segmentation of building roofs 

and façades was 90.86 % and 84.83 %, respectively which 

potentially formal useful inputs for studying photo-voltaic (PV) 

potential of urban areas, BIM etc. The resulting segmentation 

was successful in identifying the flat surfaces which are 

necessary for the installation of solar panels while avoiding 

other miscellaneous elements. Although the study area is fairly 

representative of the various kinds of built-up structures, this 

study is planned to test the efficacy of the proposed 

methodology, and suitable modifications, on diverse structures. 
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