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ABSTRACT: 
 
This study compares two possible radiometric calibration approaches of Tetracam μMCA Snap multispectral camera using the Dark 
offset subtraction and Look-Up Table (LUT) methods. A laboratory-based calibration using correction images taken under the 
controlled conditions was compared with a rapid in-situ based calibration featuring correction images taken during the field campaign. 
The hypothesis was that the accuracy of in-situ calibration could be comparable with the laboratory calibration, and thus could replace 
it and simplify the radiometric calibration process. The accuracy of calibration approaches was assessed by comparison of three 
validation targets reflectance values extracted from corrected UAV images based on laboratory and in-situ calibration with a reference 
spectroscopy measurement. The results of the field experiment showed that both calibration approaches led to significant accuracy 
improvement compared to raw data. The vignetting correction using resulted in a significant reduction of the Coefficient of variation 
by half in all bands and overall equalizing the DNs on the selected diagonal profile. The NRMSEs after processing all corrections 
ranged from 0.24 to 3.40%. Although the statistical testing revealed slightly better agreement of laboratory calibrated reflectance with 
reference data, the accuracy of in-situ calibration is sufficient, because the accuracy improvement quantified by the NRMSE is 2 – 10 
times better using both calibration approaches compared to raw data than the NRMSE differences between them. These findings make 
the proposed in-situ approach usable for various environmental studies featuring UAV multispectral photogrammetry. 
 
 

1. INTRODUCTION 

Unmanned Aerial Systems (UAS) featuring multispectral sensors 
are popular remote sensing instruments for rapid mapping and 
monitoring of dynamic phenomena in geosciences, because they 
have lower operational costs, higher spatial resolution and 
flexible temporal resolution compared to conventional remote 
sensing (Manfreda et al., 2018; Minařík and Langhammer, 2016; 
Zhang and Kovacs, 2012). Moreover, UAS can be operated on 
demand in often varying conditions, which increases the 
importance of radiometric calibration in the image processing 
(Aasen et al., 2018). 
The raw spectral data are altered by a mixture of effects that 
include the current surface conditions, atmospheric effects, 
topographic effects, and sensor characteristics (Smith and 
Milton, 1999). These alterations of the original digital numbers 
(DN) limit the quality and validity of the raw data for further 
photogrammetric processing and time-series analysis in 
environmental studies (Kelcey and Lucieer, 2012a). Some of the 
UAS multispectral sensors, such as multiple camera arrays form 
Tetracam MCA family or sensors based on converted cameras 
are implemented using only basic or no calibration protocol and 
the sensors’ radiometric properties are not known (Aasen et al., 
2015; Tetracam Inc., 2015). For newest multiple array systems 
(MicaSense RedEdge and Parrot Sequoia), the basic radiometric 
calibration is implemented into photogrammetric software 
(Parrot., 2017). However, such approaches are usually 
simplified, and for an accurate data collection, analysis, and 
comparison of data across different sensors, there is a need to 
develop user-designed correction methods (Assmann et al., 
2018). The results of imaging should be processed quickly. 
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Hence, the used sensor corrections and radiometric calibration of 
the images should be relatively simple and standardized 
preferably featuring empirical, image-based calibration methods.  
The calibration workflow for multiple array multispectral 
cameras (e. g. Tetracam μMCA, Parrot Sequoia and MicaSense 
Red-Edge) generally involves: a noise reduction, a vignette effect 
reduction and an atmospheric correction to surface reflectance 
using empirical approach (Nocerino et al., 2017; Padró et al., 
2019, 2018; Pozo et al., 2014). Assmann et al. (2018) proposed 
workflow of vegetation monitoring with radiometric calibration 
using Parrot Sequoia. Iqbal et al. (2018) and Guo et al. (2019) 
successfully evaluated the suitability of the empirical line method 
for atmospheric corrections of UAS data.  
The common image-based sensor correction methods are a Dark 
offset subtraction method for noise reduction (Kelcey and 
Lucieer, 2012b; Mansouri et al., 2005) and Look-Up Table 
(LUT) method for the vignetting correction (Yu, 2004). The main 
principles of both methods are calculation of a database of 
correction images in the laboratory and then applying the 
correction images that were taken under in the same conditions 
as during flight (Minařík et al., 2019). The large database of 
correction pictures for all combinations of relevant exposures, 
ambient temperatures and light intensities under laboratory 
conditions should be built, which is time and storage consuming. 
An alternative to this approach is to acquire a set of correction 
pictures in the field. Dark images could be taken in a portable 
black box and vignetting correction images could be generated 
by capturing photos of spectrally homogeneous panels under the 
same illumination in the field. However, only a few authors have 
addressed this for hyperspectral sensors. Aasen et al. (2015) and 
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Yang et al. (2017) included in-situ LUT flat field calibration into 
their processing workflows.  
The aim of this study is to compare two possible radiometric 
calibration approaches of Tetracam μMCA Snap multispectral 
camera using the Dark offset subtraction and LUT methods. We 
compared a laboratory-based calibration using correction images 
taken in the laboratory under the controlled conditions with a 
rapid in-situ based calibration featuring correction images taken 
during the field campaign. The hypothesis was that the accuracy 
of in-situ calibration could be comparable with the laboratory 
calibration, and thus could replace it and simplify the radiometric 
calibration process. This study stems on and extends the previous 
study (Minařík et al., 2019) which proposes the calibration 
workflow for multiple array camera arrays based on laboratory 
experiments. 
 

2. METHODS 

2.1 Multispectral camera array 

We used a Tetracam μ-MCA Snap 6 (Figure 1) multiple camera 
array system to capture the images in six independent channels 
with changeable bandpass filters. The nonuniform global snap 
sensor’s relative sensitivity to light and the nonuniform filter 
transmittance is compensated using the relative exposure settings 
to the master channel (Band 4), which are set in the cameras’ 
production and differ for each camera model. The sensor 
parameters are given in Table 1.  
 

 
 

Figure 1. Multiple camera array Tetracam μ-MCA Snap 6. 
 

Specification Description/Value 

Type 

µMCA 6 Snap, 

6 identical global shutter sensors, 

changeable bandpass filters 

 

Sensor 
1.3 mega-pixel CMOS sensor 

(1280 x 1024 pixels) 

Sensitivity ~450 nm to ~1000 nm 

Pixel Size  4.8 microns 

Focal length 9.6 mm fixed lens 

Aperture  f/3.2 

Horizontal Angle of 

View 
38.26° 

Vertical Angle of View 30.97° 

Default Depth of Field ~2 meters to infinity 

Bands B1: 550 nm (FWHM 20 nm) 

B2: 650 nm (FWHM 20 nm) 

B3: 700 nm (FWHM 20 nm) 

B4: 800 nm (FWHM 20 nm) 

B5: 900 nm (FWHM 20 nm) 

B6: 950 nm (FWHM 20 nm) 
Table 1. Technical parameters and the band composition of the 
used camera model. 

 
2.2 Applied correction methods 

2.2.1 Noise reduction 
We used dark offset subtraction method (Kelcey and Lucieer, 
2012b; Mansouri et al., 2005) for noise reduction. This method 
estimates the noise of sensor from dark images in the absence of 
light when no signal is generated, and only noise is present. 
Through averaging, the characteristics of the sensor-specific per-
pixel distribution of the noise can be extracted for the same 
exposure times that are used in the field. The Standard Deviation 
(SD) is the approximation of the remaining noise following the 
dark offset subtraction. 
 
2.2.2 Vignetting reduction 
We used look-up table (LUT) correction method (Yu, 2004) for 
the per-pixel vignette effect, nonuniform quantum efficiency 
effect, and dust defects reduction. The LUT was calculated from 
a set of flat field noise corrected images under uniform 
illumination. The LUT correction method is constructed on the 
assumption that the brightest pixels in the center are not affected 
by any error and they can serve as reference values for 
normalization (Minařík et al., 2019). The correction coefficients 
were computed as the ratio of the central DN to the DN of each 
pixel using equation 1 (Yu, 2004): 
 

ILUT(i, j) = Iref, max/Iref (i, j)    (1) 
 

where ILUT(i, j) is the correction coefficient of the pixel at position 
(i,j), Iref, max is the maximum brightness value of the image and Iref 

(i, j) is the brightness value of pixel position (i,j). 
 
2.2.3 Atmospheric corrections method 
We chose the empirical line method (Teillet, 1986), which is 
widely used for UAV imaging (Iqbal et al., 2018). The method 
assigns a reflectance value to each pixel that is based on the 
computed linear relationship between the known reflectance 
value of the light and the dark reflectance panels (see Figure 2) 
and their DN numbers that were extracted from images. 
 
2.3 Laboratory calibration 

The laboratory sensor calibration of the camera was conducted in 
the air-conditioned calibration laboratory of the Global Change 
Research Institute of the Czech Academy of Sciences featuring a 
CSTM-LR-20-M optical integrating sphere (Labsphere Inc.).  
Firstly, the sensor´s linear response was investigated in the 
integrating sphere as a presumption of using an empirical line 
method for different exposure times (50, 250, 500 and 1000 μS) 
typically used in the field. The linearity was confirmed using a 
regression coefficient that was higher than 0.99 regardless the 
exposure time and light intensity. 
The dark offset images were taken in a completely dark room 
using the same exposure times (50, 250, 500 and 1000 μS). 
Twenty dark offset samples were taken to eliminate a random 
noise. The average images were calculated. The appropriate dark 
offset (500 μS) image was subtracted from a field image. 
The per-pixel vignette effect was corrected using a set of flat field 
noise corrected images. In the laboratory, the integrating sphere 
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served as the flat field surface. The same datasets were used for 
calculating vignetting correction coefficients as for linearity 
testing to be consistent. The average image was computed using 
the set of 20 images with the same exposure time. After 
subtracting the corresponding dark offset image from the average 
flat field image, the correction coefficient images were 
computed. The appropriate correction image (500 μS) was then 
applied to the test image from a field experiment. 
The noise corrected average flat field image with exposure time 
500μS was used for Signal-to-Noise Ratio (SNR) estimation. 
SNR was estimated as the ratio of average DN value extracted 
from flat field image to the SD of the corresponding dark offset 
imagery.  
 
2.4 Rapid in-situ calibration and field experiment 

The field experiment was conducted in March 2018 at noon from 
a height of 15 m with a Ground Sampling Distance of 0.75 cm 
(Figure 2). As a test field, we used a beach volleyball court since 
the sand represents an almost lambertian surface with stable 
reflectance (Baugh and Groeneveld, 2008).  
 

 
 
Figure 2. The design of the field experiment. Figure shows the 
distribution of calibrating (1, 9) and validation (4, 5, 7) targets. 
Red squares mark the validation targets. 
 
The exposure time was set to 500 µS in coherence with the 
illumination and a general rule of thumb that the brightest object 
on the surface (white target) should reach a maximum of 80% of 
the radiometric resolution. 
The rapid in-situ calibration was performed during a field 
experiment. The portable black box was used for taking the dark 
images. Twenty dark offset samples were taken to eliminate a 
random noise. The same exposure time 500 µS was used. The 
average image was calculated and subtracted from the field 
image. The calibration target Cream 1 served as the flat field 
surface for in-situ vignetting corrections. The average image was 
computed using a set of 20 calibration images from a near-ground 
level (1 m). After subtracting the corresponding dark offset image 
from the average flat field image, the correction coefficient image 
was computed. The field image was multiplied by the correction 
coefficient image then. 
Before the accuracy of in-situ and laboratory calibration 
comparison using validation targets, the effect of vignetting 
correction method was investigated at selected profile (see Figure 
2), because both the vignette effect reduction and non-uniform 
quantum efficiency of the chip cells have the most significant 
impact on sensor calibration overall accuracy (Lebourgeois et al., 
2008). We compared Coefficients of Variation (CV) of DN 
extracted from the raw image and corrected image using two 
proposed calibrating approaches. 

The accuracy of laboratory and in-situ radiometric calibration 
was assessed by comparison of three validation targets 
reflectance values extracted from corrected UAV images based 
on laboratory and in-situ calibration with a reference 
spectroscopy measurement. The calibration targets were placed 
in the middle to reduce the vignette effect and aid empirical line 
construction. Three verification targets were placed on the edges 
and in the corners of the image where the vignette effect was the 
strongest.  
The targets were made of metal plates (40 × 40 cm) that were 
professionally painted using NEXTEL colours. We computed the 
empirical line for every channel of the laboratory and in-situ 
calibrated images extracting values from 500 pixels. The median 
value was used to assign the reflectance value. We used 500 
reflectance values from each validation target for descriptive 
statistics, Normalized Root Square Error (NRMSE) calculation 
and statistical testing. 
 

3. RESULTS AND DISCUSSION 

3.1 Signal to noise ratio 

The results of signal-to-noise analysis are in Table 2. Band 6 
records the worst response to dark offset subtraction resulting in 
the highest remaining noise (SD) and the lowest SNR. This may 
be due to fact that band 6 has the longest relative exposure time 
and the lowest filter transmittance. Both properties increase the 
image noise (Al-Amri et al., 2010). Band 1 records the lowest 
remaining noise, but the SNR is relatively low. This is due to 
relatively low dynamic range of flat field image caused by short 
relative exposure time of band 1. The relative exposure time of 
band 1 may seems underestimated, but the reason is the radiance 
difference in the halogen light of the sphere and sunlight. While 
sunlight has a maximum radiance of approximately 500 nm, the 
sphere light has a maximum radiance of 900 nm (Minařík et al., 
2019).  
On the other side, the band 4 (master channel) and band 2 
generate the highest quality data. It confirms the appropriate 
master channel selection by manufacturer. The manufacturer 
selects master channel individually according to the featured set 
of bandpass filters. The filter that produces the greatest numbers 
of electrons in response to the radiation is then by the 
manufacturer selected as master channel (Tetracam Inc., 2015). 
The other bands reveal balanced SNR. 
 

Band Avg. flat 
field DN 

SD of dark 
offset image 

SNR 

B1 18864.84 133.57 141.33 
B2 40944.57 174.36 234.81 
B3 43762.72 217.46 201.24 
B4 37239.93 166.86 223.17 
B5 34695.04 162.56 213.41 
B6 37215.58 376.30 100.22 

Table 2. The results of signal-to-noise analysis. 
  
The resulting SNR are higher to values presented by Kelcey and 
Lucieer (2012a), but it can be caused by different type of surface 
(artist´s canvas). Hruska et al. (2012) calculated in-flight SNR 
values around 120 compared to SNR around 250 reported by the 
manufacturer for hyperspectral sensor PIKA II. This decrease of 
SNR can occur, because the true SNR is obtained only when 
calculating a uniform image, as in an integrating sphere or an 
otherwise uniformly lit featureless image. When the calculation 
is applied to an image with significant features and luminance 
variations it reflects only the variability or complexity of the 
image (Heinold, 2017).  
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3.2 Rapid in-situ and laboratory calibration comparison 

The effect of vignette effect reduction was first investigated using 
the randomly selected sand profile to compare the normalized 
DNs of the raw and corrected images (Figure 3). The original 
profile (red lines) reveals a substantial decrease of the DNs that 
is caused by the vignette effect. Conversely, the normalized DNs 
show no decrease or only a slight decrease. Moreover, the green 
in-situ line is almost identical to blue laboratory line. It indicates 
that both averaged flat field images of integrating and target 
Cream 1 provide relatively equal options for vignetting 
correction by LUT method. If we compare the CV of the profiles, 
we can see that there is a significant reduction in the variation 
from 50% to 70% after correction occurs in both cases (Table 3). 
 

  
 (a) (b) 
 

 
 (c) (d) 
 

  
 (d) (e) 
 
Figure 3. DNs extracted along profile from raw image (red lines), 
laboratory corrected image (blue lines) and in-situ corrected 
image (green lines): (a) Band 1; (b) Band 2; (c) Band 3; 
(d) Band 4; (e) Band 5; (f) Band 6. 
 

Band raw CV % Laboratory 
cal. CV % 

In-situ cal. 
CV % 

B1 7.69 3.36 3.16 
B2 6.71 2.50 2.24 
B3 6.02 3.09 2.54 
B4 6.49 3.45 3.42 
B5 5.22 2.44 2.29 
B6 6.33 2.42 2.39 

Table 3. Coefficients of variation at selected profile. 
 
The vignetting correction using the LUT method, which is the 
most for precise application compared to the optical modelling 
method (Yu, 2004), significantly reduced the diagonal profile 
variance. The CV decreased by half in all bands and the DNs 
were equalized. The similar results were achieved in the study by 
(Olsen et al., 2010), who presented a calibration of a spaceborne 
linear scanner using a CCD chip. Moreover, we obtained equal 

CV values for laboratory and in-situ calibration, which can be 
considered a simple form of validation.  
Figure 4 compares the three validation target reflectance curves 
that are derived from the spectrometer measurement using the 
median reflectance values of the same targets that are extracted 
from the raw (red dots) and corrected data using correction 
images taken in the laboratory (green dots) and in-situ (dark 
green dots). The most significant improvement occurs as 
expected at target 4 (a) due to the strongest vignette effect 
resulting from its location in the selected field image. The raw 
values are strongly underestimated (~0.35) compared to the 
reference and corrected values (~0.42). Lower, but still 
inconsiderable, improvement of the conformity with reference 
data was obtained at target 7 (c), because of the vignette effect 
reduction. On the contrary, target 5 (b) reveals only minor 
improvement, because the target is placed closer to the image 
center and the vignette effect is not so strong.  

  
(a) 

 

  
(b) 

 

 
(c) 

 
Figure 4. The comparison of three validation target reflectance 
curves: (a) Pearl 4; (b) Light Grey 5; (c) Medium Grey 7 derived 
from a spectrometer measurement with median reflectance 
values of the same targets extracted from raw (red dots), 
laboratory corrected (green dots) and in-situ corrected image 
(dark green dots). 
 
If we compare the normalized root mean square errors 
(NRMSEs) between raw data, laboratory and in-situ corrected 
images (Table 4). We see the similar accuracy improvement of 
using both calibration approaches. The NRMSE values for target 
4 are ten times lower in the corrected images. The NRMSE values 
of target 7 are 2-10 times lower in the corrected images. The 
calibration accuracy improvement at target 5 is only minor, 
because the local vignette effect is relatively minor resulting in 
low vignetting correction coefficient. 
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WL R4 L4 S4 R5 L5 S5 R7 L7 S7 

550 17.6 1.4 
* 

3.4 0.9 0.7 
* 

1.2 3.3 1.7 
* 

1.9 

650 13.9 2.1 
* 

2.8 2.4 0.8 
* 

2.9 5.7 1.2 0.8 
* 

700 13.3 0.9 
* 

1.2 0.9 0.9 0.8 
* 

7.2 0.2 0.2 

800 8.6 0.5 0.5 1.1 0.7 
* 

0.8 4.4 0.6 
* 

0.7 

850 9.8 1.1 
* 

0.8 0.8 0.8 
* 

0.9 2.5 1.0 0.7 
* 

900 11.6 0.7 
* 

1.4 0.9 0.7 0.7 3.1 0.5 
* 

0.9 

 
Table 4. The normalized root mean square errors of reflectance 
values comparing the reference spectral curve of verification 
targets with reflectance values extracted from the raw and fully 
corrected images. The normalization was performed by dividing 
the RMSE by interquartile range. The values are expressed as 
percentage. WL is wavelength in nanometres, R is raw data, L is 
laboratory calibrated data and S is in-situ calibrated data. The 
numbers define the calibration target. * marks lower NRMSE 
value in the corresponding pair of L and S. 
 
The lower values of laboratory-based calibration NRMSE 
indicate less residual variance. Hence, we used a Mann-Whitney 
U test to test the hypothesis that the resulting reflectance values 
of three validation targets extracted from the laboratory 
calibrated and in-situ calibrated image are from the same 
distribution (Table 5). The resulting p-values show significant 
differences in most cases. The result shows that the calculated 
reflectance estimates based on laboratory calibration are slightly 
more accurate because of the controlled illumination conditions 
resulting in more balanced flat field correction image. Moreover, 
the result shows that the null hypothesis cannot be rejected three 
times (Band 1,3,4) in the case of the darkest target 7 compared to 
one case of targets 4 and 5. This relates to the reflectance values 
distribution of the targets. The dark target reveals the lower 
variance of reflectance values no matter of illumination 
conditions in general.  
 

Band 
p-value 

Pearl 4 Light Grey 5 Medium Grey 7 

550 nm < 0.001 < 0.001 0.2466 

650 nm < 0.001 < 0.001 < 0.001 

700 nm < 0.001 < 0.001 0.2879 

800 nm 0.3407 0.2294 0.2238 

850 nm < 0.001 < 0.001 < 0.001 

900 nm < 0.001 0.005 0.006 

 
Table 5. The results of Mann-Whitney U test. The null hypothesis 
was: Resulting reflectance values of three validation targets 
extracted from the laboratory calibrated and in-situ calibrated 
image are from the same distribution 
 
The resulting NRMSE values are comparable with the results of 
previous works of Pozo et al. (2014) (2%), Aasen et al. (2014) 
(1%) and Yang et al. (2017) (5%) focused on calibration of 
hyperspectral sensors. In general, Richter and Schläpfer (2002) 
consider NRMSE values under 2% as a very good agreement 
with reference data and NRMSE values under 5% as a sufficient 
match. Moreover, Aasen et al. (2015) implemented in-situ 

calibration into main image processing chain, because the results 
were comparable with laboratory calibrations and in-field 
calibrations perform better for the systematic pattern removal.  
These findings make the proposed in-situ approach usable for 
various environmental studies featuring UAV multispectral 
photogrammetry. To achieve the proper spectral image properties 
and retain the consistency across multispectral UAV imaging 
campaigns, the radiometric calibration procedure should be 
included into every processing chain (Aasen et al., 2018; Kelcey 
and Lucieer, 2012a). In the case of multispectral frame cameras, 
the vignette effect removal has the greatest impact on calibration 
accuracy (see Figures 3,4 and Table 4), which is consistent with 
the findings of Lebourgeois et al. (2008). Although the statistical 
testing revealed slightly better agreement of laboratory calibrated 
reflectance with reference data, the authors consider the proposed 
rapid in-situ calibration approach as an alternative to classic 
laboratory radiometric calibration. The differences between the 
accuracy of both calibration approaches are minor compared to 
the raw data. A similar agreement between laboratory and field 
calibration of a modified colour infrared single-lens reflex 
camera, but without noise removal. was achieved by Crusiol et 
al. (2017). The correlation coefficient of r > 0.9 was found for the 
cross calibration.  
The main advantage of the proposed in-situ calibration method is 
that there is no need to additional equipment investment like the 
integrating sphere and building and maintaining the database of 
noise and vignetting reduction images apriori, which is the basic 
principle of dark offset subtraction and LUT correction methods. 
The calibration images are taken during the filed experiment 
under the same weather conditions and the database can be built 
“on the fly”. Every step of the proposed workflow can be used as 
it is designed for another multiple array multispectral cameras 
systems with monochrome frame global shutter sensors and 
linear response to radiation e.g. Parrot Sequoia and MicaSense 
Red-Edge.  
In addition to simplifying the radiometric correction approach as 
is proposed here, the empirical line method could be simplified. 
Moran et al. (2001) refined an empirical line approach using only 
one within-scene calibration target for factor retrieval from 
Landsat-5 TM and Landsat-7 ETM+. A similar approach has 
been tested by Iqbal et al. (2018) for UAV sensor. If the UAV 
multispectral camera has a linear relationship between raw DN 
values and reflectance with intercept close to zero, the empirical 
line can be constructed using only one light target and zero as 
dark target. Or a universal empirical equation can be used after 
performing the corresponding experiment (Guo et al., 2019). 
However, the universal empirical line is model specific, because 
of the selected set of filters and cannot be applied to a different 
set (Assmann et al., 2018).  
 

4. CONCLUSIONS 

This study aimed to test and compare two possible radiometric 
calibration approaches of Tetracam μMCA Snap multispectral 
camera using the Dark offset subtraction and LUT methods. We 
compared the standard laboratory-based calibration using 
correction images from the prepared database with a rapid in-situ 
based calibration featuring correction images taken during the 
field campaign. The hypothesis was that the accuracy of in-situ 
calibration could be comparable with the laboratory calibration, 
and thus could replace it and simplify the radiometric calibration 
process by eliminating the main drawbacks of building the large 
database correction pictures for all combinations of relevant 
exposures, ambient temperatures and light intensities apriori.   
The results of the field experiment showed that both calibration 
approaches led to significant accuracy improvement compared to 
raw data. The vignetting correction using resulted in a significant 
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reduction of the Coefficient of variation by half in all bands and 
overall equalizing the DNs on the diagonal profile. The NRMSEs 
after processing all corrections ranged from 0.24 to 3.40%. The 
results show that the calculated reflectance estimates based on 
laboratory calibration are slightly more accurate, because of the 
controlled illumination conditions resulting in more balanced flat 
field correction image.  
Although the statistical resting revealed slightly better agreement 
of laboratory calibrated reflectance with reference data, it can be 
concluded that the accuracy of in-situ calibrated approach is 
sufficient and can be used as an alternative to classic laboratory 
approach, because the accuracy improvement quantified by the 
NRMSE is 2 – 10 times better using both calibration approaches 
compared to raw data than the NRMSE differences between 
them.  
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