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ABSTRACT:

A method to remove random errors from 3D point clouds is proposed. It is based on the estimation of a local geometric descriptor
of each point. For mobile mapping LiDAR and airborne LiDAR, a combined standard mesurement uncertainty of the LiDAR
system may supplement a geometric approach. Our method can be applied to any point cloud, acquired by a fixed, a mobile or an
airborne LiDAR system. We present the principle of the method and some results from various LiDAR system mounted on UAVs.
A comparison of a low-cost LIDAR system and a high-grade LiDAR system is performed on the same area, showing the benefits of
applying our denoising algorithm to UAV LiDAR data. We also present the impact of denoising as a pre-processing tool for ground
classification applications. Finaly, we also show some application of our denoising algorithm to dense point clouds produced by a

photogrammetry software.

1. INTRODUCTION

Point clouds acquired by low-cost UAV LiDAR or Photogram-
metric systems are, for some of them, subject to a significant
level of uncertainty. Combined with relatively low sampling
rates in the case of LiDAR data, this may cause difficulties to
reconstruct accurately underlying surfaces or 3D structures.

Three types of errors may affect the uncertainty of LIDAR point
clouds:

e Systematic errors generate uncertainty that may become
visible within overlaps;

e Random errors from sensors (IMU, GNSS, LiDAR) pro-
duce measurement noise;

e Non modeled errors generate outliers.

In this paper, we shall focus on techniques to remove the ran-
dom measurement noise that may degrade 3D point clouds pre-
cision.

Most denoising methods apply filters that remove the high fre-
quency component of a local surface (Rosmanand et al., 2013),
at the price of smoothing irregularities and 3D features. One of
the main issues of denoising is the design of a method that both
reduce the level of noise while preserving details and features
that the user wants to recover from the LiDAR or the photo-
grammetric point cloud. Buildings, as all man-made infrastruc-
tures (pylons, power lines, dams, etc...), are present in point
clouds. As they naturally exhibit edges, the main requirement
of a denoising algorithm is to preserve them.

The denoising method developed by GEOWN aims at reducing
the level of random errors' present in a point cloud. Random
errors produce noise whilst gross errors produce outliers that no
physical model can explain.

*Corresponding author
TRandom errors should be distinguished from systematic errors and
gross errors. Indeed, systematic errors are produced by the presence of

1.1 Related work

Several methods for denoising were proposed and most of them
use the underlying local geometry of the point to be denoised
(Deschaud, Goulette, 2010),(Duguet et al., 2004),(Digne,
2012). Most methods differ in the geometric models and mod-
eling methods they use. For instance, the local normal vector
to a point, estimated by covariance analysis (Boulch, Marlet,
2012),(Mitra, Nguyen, 2003) Randomized Hough Transform or
Moving Least Square (Fleishman et al., 2005) may be used to
describe the underlying local surface at a given point. Bilateral
filters move points along the local normal to the surface, accord-
ing to a weighting scheme defined as a function of the ortho-
gonal distance of neighboring points to the normal. Descriptors
of the point geometry can also be constructed to define a meas-
ure of similarity between the point and local smooth surfaces
(Digne, 2012). Another method is based on Statistical Outlier
Removal (SOR) filters which eliminate points with low local
density, independently of the local surface. In the SOR-OD
method (OD standing for Orthogonal Distance), the distance to
neighbors is replaced by the orthogonal distance to a best fitted
plane within the neighborhood of the point.

Most of these methods were designed for point clouds of quite
different nature than the ones we experience in the UAV LiDAR
industry. Indeed, most of the work on denoising was devoted
to extremely dense data sets, at very low scale (scans of man-
ufactured objects for instance). However, most UAV LiDAR
produce point clouds at relatively low density, unlikely larger
than 200pts/m2. In this context, the techniques presented above
are, for some of them irrelevant, as the construction of a local
descriptor of the surface is unstable in the case of point clouds
with low density and high level of noise.

bias in some integration parameter (boresight, latency, lever-arm) or by a
sensor measurement bias (LiDAR range, for instance). Systematic errors
produce inconsistencies in a point cloud formed by the superimposition
of survey strips with overlaps, as produced by an UAV.
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2. THE GEOWN APPROACH TO DENOISING

2.1 A geometric approach

The GEOWN denoising tool is based on the estimation of a
geometric descriptor of the local surface to each point to be
denoised. Normals® to the points are estimated and refined to
preserve the local geometric features of the point cloud.

The local descriptors are generally determined by using a purely
geometrical description of the neighborhood of each point. In
case of very dense point clouds, this option is generally satis-
factory, but for sparse point clouds (like the ones provided by
UAVs), it is relevant to take into account not only the local geo-
metry, but also an uncertainty model of each point.

Besides, in a geometric filter approach, each point is considered
with a unit weight, independently of its uncertainty level. Thus,
if in the same neighborhood, some points are from overlapping
and noisy strips (or from outer beams), they are denoised to-
gether with points of better quality. The overall result will be
an unweighted average between good quality and a low quality
points, which may create a bias in the final denoising result.

To overcome these difficulties, we developed a combined geo-
metric/probabilistic approach.

2.2 A Combined Standard Measurement Uncertainty
(CSMU) estimation

To estimate the uncertainty associated to each LiDAR point
that will be used in our probabilistic denoising method, we de-
veloped a combined standard measurement uncertainty model.
The first stage is to make a first order approximation of the
classical point georeferencing model, obtained from the geo-
metry and timing model of the LiDAR system. The geometry
of a LiDAR system (see figure 1) is defined through a Local
Geodetic Frame (navigation frame ((n)), used for orientation
purposes, the choice of Positioning Reference Point (PRP, de-
noted by P,,) (i.e; the point at which position is computed by
the GNSS system), the lever-arm vector a from the PRP to op-
tical center of the LiDAR and the boresight between the INS
frame and the LiDAR body frame.

We write the georeferencing model as follows:
Xn(t) = Pa(t — dty) + Cii(t — dts) (Cys mos(t) +anr) (1)

where t is the time associated to the LiDAR data, dt,,, dt; are re-
spectively the time delays from LiDAR to positioning and INS.
Cy; is the navigation frame to boty INS transformation, and
CPL is the boresight transformation.

We consider variations of the point geo-referencing model
given by equation (1) due to these input parameters variations:

e Time-stamping may be subject to delays (position-LiDAR
and IMU-LiDAR), denoted by dt, and dt;

o P, apr,

e (¢, 0,1) defining the IMU to navigation frame transform-
ation Cy7,

2The normal to a point p can be computed by a Principal Component
Analysis of the neighbors of p in using their covariance matrix.

Figure 1. Geometry of an airborne LiDAR system. The
positioning system is supposed to deliver the position of the
PRP, denoted by P,. The lever-arm is denoted by @, (bS) is the
LiDAR body frame, and (bI)is the IMU body frame.

e (pp,0,1) defining the LiDAR to IMU mis-alignment
chL.

e p, «, (B defining the LiDAR return rps.

To supplement this error model, we introduced the grazing
angle between the LiDAR beam and the local terrain, which
introduces a range bias due to the other variables (attitude,
boresight, position, lever-arm, latency). This CSMU uncer-
tainty model is given as a covariance matrix ¥sx, associated
to each point. A result of this model is shown in figure (2).

Figure 2. The uncertainty ellipsoid associated to a LIDAR point,
as defined by our CSMU model including grazing effects. The
local plane to the point and its normal are displayed. The
straight line is the line from the LiDAR to the point. One can see
that the ellipsoid main axis is relatively close to this axis.

2.3 The GEOWN probabilistic denoising approach

The approach proposed by GEOWN provides to the user a tool
to reduce the noise level of an UAV LiDAR point cloud while
preserving sharp edges and features. To do so, we introduced a
denoising filter including both a geometrical and a probabilistic
analysis, as explained below.

Suppose that we can associate to each point its covariance mat-
rix and therefore its confidence ellipsoid representing its Com-
bined Standard Measurement Uncertainty (CSMU) model. The
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CSMU is computed by using the estimated standard uncertainty
of each sensor (GNSS, IMU, LiDAR), as explained in the pre-
vious section. For the LiDAR system, ranging uncertainty and
scan angle precision are generally given by the manufacturer.

Whenever this model is representative of the point actual uncer-
tainty, we can use it to make a compromise between the local
geometry and the minimization of the point uncertainty level.
Indeed, the confidence ellipsoid allows the algorithm to extend
a point coordinates to a multiplicity of probable positions that
can be used to accurately estimate the true coordinates of the
point.

The GEOWN probabilistic filter generalizes geometric ap-
proaches at two different levels:

e The displacement step is weighted by the CSMU of its
neighbors. If the neighbors to a point exhibit different
levels of uncertainty, then the displacement step associated
with this point will be more impacted by points that have a
low level of uncertainty. By doing so, our method acknow-
ledge the fact that all points of a point cloud are not shar-
ing a common confidence level concerning the geometrical
descriptors that can be computed from their coordinates.

Figure 3. A point X, its ellipsoid of uncertainty, its normal
vector to the local plane 7x . Classical algorithms move points
along Ux. The GEOWN algorithm makes a compromise
between C (X), the semi-major axis of the uncertainty ellipsoid
and the normal 7x . The denoised point will be located within
the cone formed by these two vectors, making a geometric and
probabilistic compromise.

e Instead of being the normal vector to the current point p,
the displacement vector is a direction optimizing the prob-
ability level of the displaced point together with a geomet-
rical criterion defined by a local plane (Cf. Figure 3).

This geometric/probabilistic approach makes a fundamental
difference between our denoising algorithm and the purely geo-
metrical approaches that were proposed in the literature. By
taking into account the acquisition conditions of each point,
our algorithm respects the raw data associated to the points and
compute an estimation of the denoised positions that reflects
these raw data. As shown on the Figure (4), the knowledge of
the CSMU is an information reflecting the conditions in which
a point has been acquired; and the estimation of a denoised po-
sition guided only by the normal vector of the scanned surface
could lead in many cases to a denoised point that is no longer
coherent with its own raw data.

Finally, the GEOWN probabilistic approach to point cloud
denoising overcome the presence of outlying points near the
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Figure 4. The knowledge of the acquisition history of each point
allows the GEOWN denoising algorithm to estimate the
denoised position of each point with respect to its acquisition
history.
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scanned surface. For some classical denoising methods, out-
liers® can cause some artifacts by corrupting the surface nor-
mal estimation, leading to false denoised positions. The fact
that each point CSMU is taking into account while estimating
the position and orientation of the scanned surface allows the
GEOWN denoising tool to eliminate points exhibiting an un-
certainty ellipsoid largely incoherent with their neighbors.

The fact that our denoising method produces an estimation of
each point denoised position coherent with the raw data allows
us to propose a denoised position for almost all the elements of
the point cloud. As a consequence, the output point cloud has
the same density as the input one (where most popular denois-
ing methods are removing points from the dataset). For applic-
ations that require to have a perfect match between the raw data
and the point position, our tool is also capable to produce a de-
noised point cloud by suppressing points that are far from the
estimation of their denoised position. By applying this second
type of filter, the denoised point cloud has a lower density but
the remaining points has not been moved at all.

2.4 The GEOWN denoising workflows

GEOWN developed two workflows that can adapt themselves
to any point cloud:

1. For a general point cloud (from LiDAR or Photogram-
metry), without LiDAR raw data: we apply a series of
geometric filters that produce a denoised point cloud in the
same coordinate system than the original one. The lack of
knowledge about the points acquisition history does not al-
low our probabilistic tool to be used, but the combination
of successive geometrical tools allows the computation of
a denoised point cloud preserving sharp edges and sparse
elements.

2. For LiDAR only and with raw data information, we first
compute a CSMU model that feeds a series of geomet-
ric/probabilistic filters. This workflow is recommended
for low precision LiDAR systems as the characteristics of
each sensor are taken into account during the process.

3Qutliers are not meant to be filtered by a denoising tool as they can
not be considered as random noise. However, they can deeply impact the
results of a denoising tool if their influence if not denied properly.
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Figure 5. GEOWN denoising workflow.

3. RESULTS OF DENOISING FOR POINT CLOUDS
GENERATED BY A UAV LIDAR SYSTEM

We provide some examples of results given by the GEOWN
denoising algorithm. The point clouds that we used come from
various LiDAR systems (Sick, Velodyne) integrated on UAVs.
In this case, the typical initial point cloud thickness is around
15cm.

We start with a point cloud representing a building and sur-
rounding ground (see Figure 6). This point cloud is challenging
because it contains various elements such as regular ground and
complex sharp edges. On this Figure, we see that the flat ground
has been strongly denoised, while the roof has been lightly de-
noised in order to preserve the object characteristics.

Figure (7) illustrates how the denoising method behaves on
an irregular curved object, without sharp edges but with small
curvatures. To do this, we used a point cloud acquired on a car
with a low cost UAV LiDAR system. We see that the car’s struc-
ture has been recovered without artifacts. We remark that the
interface between the different parts of the car are still smooth.

In Figure (8), we show the result of our denoising algorithm
on a dataset produced by a Velodyne VLP16 coupled to an Ap-
planix APX15. This kind of system exhibits a relatively high
level of measurement noise that can be significantly reduced
thanks to a GEOWN algorithm.

4. COMPARISON WITH OTHER DENOISING
METHODS

In this section, we compare the GEOWN denoising algorithm
with a Statistical Outlier Rejection (SOR) method using the Or-
thogonal Distance (OD) to local fitted planes. We shall denote
this method as SOR-OD and see through a series of examples
that it produces significant distortions on edges. This will illus-
trate the fact that the normal to a point is not necessarily the
best direction to choose for denoising. This is a good reason
to use the GEOWN denoising algorithm.

4.1 Comparison for simulated point clouds

To compare the two denoising methods, we simulated several
point clouds containing elements that can be challenging for a
denoising method and thus they can enlighten performance dif-
ferences (sharp edges, curves, multiple surface orientations...).

Figure 6. Denoising results on building (original point cloud in
red, denoised point cloud in green). The two bottom images are
zooms respectively on the edge of the roof and on the flat
ground. The results show that our method produced an accurate
denoised point cloud respecting the underlying structures. Roof
edges have been preserved while the ground has been
significantly denoised.
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Figure 7. Denoising results on a car (original point cloud in red,
denoised point cloud in green).

Figure (9) shows the denoising results for SOR-OD and for
GEOWN’s method on one of these artificial datasets. It can be
seen that the trueness of GEOWN denoising is better than the
trueness of the point cloud created by SOR-OD, when the two
methods are applied with their optimal parametrization. The
edge of the bi-plane is smoothed by the SOR-OD and the res-
ulting denoised point cloud exhibits a delimitation reflecting the
fact that the noisy points has been deleted with respect to their
orthogonal distance to the scanned surface. On the other side,
the denoised point cloud produced by the GEOWN denoising
tool reflects the fact that an estimation of the denoised position
of each point is computed, with respect to their raw data.

4.2 Comparison for real point clouds

Figure (10) illustrates GEOWN denoising and the SOR-OD
denoising on a flat point cloud obtained by a SICK LiDAR
coupled with an APX-15 INS mounted on a UAV. The thick-
ness of the denoised point cloud produced by our tool is half
the one of the point cloud denoised by the SOR-OD. This gain
is allowed by the fact that our method replaces the points posi-
tion by their denoised coordinates.

As mentioned before, one of the main characteristics of
GEOWN’s denoising method is to preserve sharp edges. Fig-
ure (11) illustrates the two methods for a building cornice us-
ing similar parameters for both methods. We observe that the
SOR-OD method is suppressing some relevant points located
at the limit of the cornice. However, these points contain es-
sential geometric information about the shape of the cornice.
The SOR-OD method thus appears to be unable to differentiate
them from the rest of the cornice.

Figure 8. Denoising of a Velodyne VLP16 LiDAR on a wall and
a roof (original point cloud in red, denoised point cloud in
green). We can see that edges were preserved while walls and
flat roof facets are strongly denoised.

5. HOW DENOISING IMPROVES THE LIDAR
SYSTEM PRECISION

We show through examples that the GEOWN denoising tool
can be used to enhance point clouds produced by many LiDAR
sensors. This may be very interesting to reduce the gap between
the original quality of the low precision LiDAR point cloud and
the type of results that could be obtained by using high precision
Sensors.

In order to make a comparison, we are going to compare a
point cloud from a Sick/APX-15 LiDAR, which produces point
clouds with a thickness of about 15cm and an other point cloud
acquired with a Riegl VUX-1DL.

In Figure (12), we observe that the roof point cloud using the
low precision LiDAR (in red) has a thickness of 15cm which is
3 times the thickness of the high precision LiDAR point cloud.
In addition, the two tiles on the roof are barely visible in the
low-cost point cloud.

By applying GEOWN denoising, we can reduce the noise level
of the low precision point cloud to match the thickness of the
precise LiDAR. Figure (12) shows the result we obtained. The
thickness of the denoised point cloud is close to the high grade
point cloud and the sharp edge has been preserved. We also
remark that the two tiles were preserved.

This first result shows how GEOWN denoising can improve the
precision of a LIDAR system. Our algorithm can also be tuned
according to the needs of the user: Figure (13) shows that if we
require a very thin point cloud, the point neighbor size can be
adapted accordingly. Here, the thickness of the low precision
point cloud was reduced to a level below the noise level of the
high grade LiDAR one.

The aim of a denoising method is to extract as much as possible
information from the point cloud and to use this information
to adjust the denoising to match the underlying structure of the
scanned scene. The denoising method developed by GEOWN
fulfills this task.

6. RESULT FOR POINT CLOUD FROM
PHOTOGRAMMETRY

The behavior of a denoising algorithm is naturally improved in
the case of high density point clouds, such as those produced
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Figure 9. Denoising results on bi-plane with 30cm radius
(Original point cloud on top, reference denoising method on the
middle and GEOWN on the bottom)

Figure 10. Denoising on flat surface (red) with classical filter
(blue) and GEOWN filter (green).The two algorithms have been
tuned with similar parameters: the size of the neighbourhood of

each point was exactly of the same size in the two algorithms

(r=50cm). One can easily check in this figure that we obtain a

thickness of 2cm against S5cm for the SOR-OD.

by a photogrammetry process. Indeed, with a greater density,
the local geometry of the point cloud can be estimated at lower
scale, resulting in a better local geometric description of the
point cloud.

To illustrate this fact, we tested the GEOWN denoising on a
dense data set, produced by Fast ORtho Mapping (FORMap),
a photogrammetry tool developed by GEOWN. The Ground
Sampling Distance (GSD) of the dataset was lcm. In Figure
(14) top, a colorized point cloud from FORMap is shown. The
car roof and hood are subject to typical errors of a photogram-
metry process on sleek surfaces (lack of correlation between
pixels) producing significant errors and noise. After denoising,
we can see that the low GSD of the point cloud allows us to es-
timate accurate surface descriptors that can efficiently denoise
the point cloud. Note that here, a purely geometric filter has
been applied as the LiDAR system CSMU model can not be
applied to photogrammetric datasets.

7. THE IMPACT OF DENOISING ON LIDAR
CLASSIFICATION TOOLS

Point cloud denoising, unless of outliers detection, is an opera-
tion that is not largely used in classical point cloud processing
workflow. This is mainly due to the fact that denoising is per-
ceived as an operation of point cloud enhancement that is not
necessary when the final usage of the point cloud is not visibly
linked with the point cloud thickness. However, the denoising is
actually a step that enhance, not only the point cloud character-
istics, but also the accuracy and efficiency of other processing
tools.

This section illustrates how the GEOWN denoising tool can im-
prove the accuracy of a basic ground classification tool from
LASTools (lasground). To do so, we compare the results of the
ground classification on a raw point cloud acquired with a high
quality LIDAR mounted on a UAV, and the results obtained with
the same parametrization on the denoised point cloud. Figure
(15) shows the two classified point clouds. We see that on the
raw point cloud, the ground classification algorithm is not able
to recover all the ground points. The noisy points are causing
inaccurate normals estimations and thus erroneous orthogonal
distance and slope estimation. As a consequence, the classified
point cloud contains a lot of misclassified ground points.

The classification results obtained on the denoised point cloud
are more accurate, because the reduced thickness of the point
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Figure 11. Denoising results on roof cornice (SOR-OD on the
top and GEOWN on the bottom)

cloud allows the classification algorithm to estimate precisely
the true ground geometric characteristics. The quality of these
results is made possible by the preservation of the point cloud
density by the GEOWN denoising tool. If noisy points were
deleted from the point cloud instead of being moved towards
their most probable position, the ground detection could not be
performed with the same resolution. A point cloud with a pre-
served density results in a finer description of smooth surfaces.

Point cloud denoising significantly improves ground segment-
ation performance. This is an example of how the usage of
denoising in a classification workflow may help to produce
cleaner results. Many algorithms based on surface reconstruc-
tion or surface feature estimation, such as meshing or volume
computation, could see their performances enhanced by using a
denoised point cloud in input rather than a raw point cloud.

8. CONCLUSION

The GEOWN denoising tool is efficient, capable and adapted
for noisy point cloud enhancement. The GEOWN method was
compared to a classical method, and the results show that our
algorithm provides more accurate results and a greater noise re-
duction for similar parameters. The GEOWN denoising tool
delivers cleaned point clouds, considering their a priori uncer-
tainties for the estimation of the denoised positions.

The GEOWN denoising tool can be used in several contexts
but has a constant objective: extract reliable information from
a noisy point cloud. The reliability of the extracted information
is linked with the quality of the geometric descriptors that are
used. The results presented in this document confirm the quality
of the geometrical properties of our algorithm.

The GEOWN denoising method can help point cloud produ-
cers and users who require precise data, but are not equipped
with high grade LiDAR systems. The tool has point cloud

Figure 12. Top: Original point clouds by a low precision LiDAR
(red) and a high precision LiDAR (green). Bottom: Denoised
point cloud (Orange: denoised point cloud, green: high grade

point cloud).

thinning capabilities without excessive smoothing of the sharp
edges or features. Even if denoising can’t improve the LiDAR
resolution, the GEOWN denoising tool can produce clean point
clouds with a precision level similar to what could be obtained
with a high precision sensor.

Finally, denoising may improve the quality of point cloud clas-
sification tools in providing a cleaner description of the surfaces
to be denoised. As our denoising tool does not affect either the
density nor the complex structures like vegetation, the signal
to noise improvement of the point cloud enable the user to get
enhanced performances for various applications.
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Figure 14. Top: Original dense colorized point cloud as
produced by the GEOWN FORMap photogrammetry tool.
Bottom: Denoised point cloud.

Figure 15. Top: Ground classification on original point cloud
(green : ground, blue : not ground). Bottom: Ground
classification on denoised point cloud (green : ground, blue : not
ground).
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