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ABSTRACT: 

 

Small-format, consumer-grade multi-camera multispectral systems have gained popularity in recent years. This is specifically due to 

the simplicity of their integration onboard platforms with limited payload capacity, such as Unmanned Aerial Vehicles (UAVs). 

Commercially available photogrammetric software can process the image data collected by these cameras to create multispectral 

ortho-rectified mosaics. However, misalignments of several pixels between spectral bands have been observed to be a common issue 

when employing these solutions, which can undermine the spectral and geometric integrity of the data. Besides, in advanced 

processing workflows such as object detection and classification with deep learning algorithms, band-to-band co-registered images 

are needed rather than one mosaic. We propose a two-fold solution for seamless band-to-band registration of images captured by five 

cameras integrated into a miniature multispectral camera system. This approach consists of 1) a robust self-calibration of the 

multispectral camera system to accurately estimate the intrinsic calibration parameters and relative orientation parameters of all 

cameras; 2) a single capture, band-to-band co-registration method based on trifocal constraints. This approach differs from existing 

literature since it is fully automatic, does not make any assumptions about the scene, does not use any best-fit projective or similarity 

transformations, and does not attempt cross-spectral feature-point matching. Our experiments confirm that the proposed co-

registration method can accurately fuse multispectral images from a miniature multi-camera system and is invariant to large depth-

variations in the captured scene. 
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1. INTRODUCTION 

With the advancement of digital imaging technologies, 

multispectral cameras have been developed in small formats at 

prices affordable by a wide range of end-users. These cameras 

have, thus, become popular in applications such as wildlife 

monitoring, forestry, precision agriculture, heritage 

documentation, disaster management, and even visual odometry 

(Albetis et al., 2019; Beauvisage et al., 2017; Candiago et al., 

2015; Chen et al., 2018; Crutsinger et al., 2016; Dash et al., 

2017; Del Pozo et al., 2017; Hassan et al., 2019; Munawar et al., 

2019; Wang and Thomasson, 2019). 

  

Based on their structural design, these sensors are classified into 

single-camera systems with multiple filters (e.g. ADC Lite by 

Tetracam) and multi-camera systems with multiple lenses and 

sensor arrays (e.g. ALTUM by MicaSense). Single-camera 

systems are very similar to conventional RGB cameras in the 

sense that an array of optical filters cover a single sensor array; 

e.g. replacing the red filter with a near-infrared filter allows 

capturing images in blue, green, and near-infrared bands. 

Besides being light-weight, the main advantage of these systems 

is that there are only one lens and one sensor. Therefore, there 

are no misalignments between the created images; that is, they 

are band-to-band co-registered and ready for application (Sulik 

and Long, 2016). However, the number of available spectral 

bands in these cameras is limited.  

 

Multi-camera systems consist of multiple integrated cameras, 

each of which captures an image in a different spectral band. 

However, images are captured simultaneously, and the relative 

orientation parameters between the cameras are considered rigid 

over their stability period. Each camera in such a system has its 

specific interior orientation parameters and distortion patterns. 

The cameras are also not perfectly aligned and are shifted with 

respect to one another. Ignoring these differences leads to 

significant band-to-band misregistration errors (Jhan et al., 

2017). Therefore, fusing images of multiple spectral bands is 

still a topic of ongoing research.  

 

Existing methods to achieve co-registration of multispectral 

imagery can be divided into single image registration and 

multiple image ortho-mosaicking (Jhan et al., 2018). Multi-

image ortho-mosaicking approaches first use all the images of 

one camera (a.k.a. the reference camera) to create the dense 

point cloud and the digital surface model (DSM) of the scene. 

Then, the DSM is used to create ortho-rectified images of other 

cameras. The result is a multi-band orthorectified mosaic 

(Zhang et al., 2016). Commercial solutions, such as MetaShape 

by AgiSoft, include such processing tools. The pre-requisites 

for this approach to function well include: 1) accurate 

knowledge of the intrinsic calibration parameters of all cameras; 

2) accurate knowledge of the relative orientation parameters 

between each camera and the reference one; 3) proper 

geometric configuration of the reference images to be able to 

apply photogrammetric 3D reconstruction techniques. While the 

two first requirements can be achieved via rigorous calibrations, 

the third one might not be easily accessible in all applications; 

for instance, when highly oblique images are captured that do 

not have adequate overlap either. Besides, many applications do 

not even require 3D reconstruction of the scene, and thus, this 

approach is a computational burden in such applications. For 

instance, for image classification using deep learning 

approaches, numerous single multi-band images are needed 

rather than one large ortho-mosaic. An overall ortho-rectified 
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mosaic of the scene does also not preserve the original quality 

of single images in terms of geometric resolution. Small errors 

in the process of structure-from-motion may also impact the 

accuracy of this ortho-mosaic, which eventually result in 

misalignments between the bands. 

 

On the other hand, single image registration methods aim to 

perform band-to-band registration of images taken by the 

multispectral cameras at each capture instance (Jhan et al., 

2016). This group of approaches avoids the complexities of the 

previous category. They are useful for creating real-time 

vegetation index maps and implementation of multispectral 

image classification techniques (Ampatzidis and Partel, 2019; 

Knyaz and Zheltov, 2018). The main solution in this approach 

is to use a global transformation to model the geometric 

correspondence of all pixels between the bands. Affine 

transformation (Kelcey and Lucieer, 2012), projective 

transformation (Jhan et al., 2017), first-order and second-order 

transformation functions (Yang et al., 2014) are examples of the 

transformations used in the literature. These approaches either 

use the calibrated relative orientation parameters between the 

cameras and/or automatically matched features across the bands 

to determine the geometric transformation. The primary 

assumption made in these approaches is that there are 

inconsiderable depth variations in the scene (compared to the 

distance of the camera to the scene), and thus the scene can be 

almost considered as a planar or piece-wise planar object. 

Therefore, all such approaches fail in the presence of 

considerable variations in depth, e.g. in close-range imagery 

(Jhan et al., 2018). These approaches, however, are useful for 

UAV-based precision agriculture since, compared to the 

distance of the drone from the scene, the vegetation field can be 

assumed planar. Some studies attempt sparse, feature-based 

matching between images in order to determine refined local 

transformations, instead of a fixed global transformation, for 

registering the images (Laliberte et al., 2011; Li et al., 2015). 

These methods require to find sufficient matching points across 

the bands, e.g. between blue and near-infrared bands. However, 

the spectral similarities between some bands can be minimal, 

and also distinct feature points might not be present in the 

scene. Thus, this requirement may never be fulfilled. Regardless 

of the approach, the precise knowledge of the relative 

orientation parameters (ROPs) of the cameras and the intrinsic 

calibration parameters of each camera are still two critical 

factors for robust band-to-band registration (Jhan et al., 2018). 

 

The contributions of this paper are twofold. First, we propose a 

robust multi-camera calibration approach that integrates relative 

orientations between cameras as additional constraints in the 

bundle adjustment and handles both fisheye geometry and 

central perspective geometry at the same time. This is 

particularly interesting for a camera system, such as Parrot 

Sequoia, which consists of both fisheye and rectilinear lenses. 

Second, we propose an approach for single image band-to-band 

registration that does neither make any assumptions about the 

scene structure nor attempt cross-spectral feature matching. 

Instead, it uses dense-matching between two similar bands, e.g. 

red-edge and near-infrared, to register two of the images. Then, 

it applies the knowledge of the relative orientation parameters 

from the calibration step to determine a set of trifocal 

constraints that register these images to all the other bands 

automatically. 

 

The rest of this paper is organized as follows. First, self-

calibration and co-registration methodologies are described. 

Second, experiments and results are discussed. Finally, 

conclusions and future-work suggestions are presented. 

2. PROPOSED METHODOLOGY 

The proposed method aims to seamlessly co-register images of 

a multi-sensor multispectral camera system. To achieve this 

objective, two key processes take place: 1) self-calibration that 

solves for all the geometric parameters of the integrated 

cameras, 2) band-to-band registration of multispectral images 

using trifocal constraints. A Parrot Sequoia multispectral 

camera is used in the experiments (Figure 1). The camera 

includes four sensors to capture red (R), green (G), red-edge 

(REG), and near-infrared (NIR) images. These cameras are 

equipped with fisheye lenses to provide a larger field-of-view 

on a smaller sensor. The fifth camera captures regular RGB 

images and has a rectilinear lens. 

   

 
a 

 
b 

Figure 1. a) Parrot Sequoia multispectral camera with its 

sunshine sensor (source: parrot.com); b) Multi-depth test field 

used for self-calibration (bottom) 

 

2.1 Self-Calibration  

We adopt a self-calibration method that uses a central 

perspective geometry model for the RGB camera, and a fisheye 

equidistant projection model for other cameras (G, R, REG, and 

NIR). Equation 1 describes the augmented co-linearity 

equations used to describe the central perspective projection 

geometry.  
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In Equation 1, ( , , )  R j
o j j j

 is the rotation matrix, C j
 is the 

position of the image perspective center, Xi
 is the 

homogeneous object coordinates of a tie-point and ( , )ij ijx y  are 

the observations of that point in the image coordinate system. 

Interior orientation parameters of the camera include the 

principal point offsets and the principal distance, ( , , )x yc c f . 

The distortion corrections ( , ) 
ij ijx y

 are defined by Equation 

2. 
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Fisheye geometry cannot be precisely described by Equation 1, 

even by using higher orders of polynomials to model radial 

distortions (Jarron et al., 2019). In fisheye cameras, the 

incidence angle of the projection ray is different from its 

reflection angle. The physical/mathematical relation between 

these two angles defines the type of the fisheye projection: 

equidistant projection, equisolid-angle projection, orthographic 

projection, and stereographic projection (Schneider et al., 2009). 

Equation 3 describes the equidistant projection model used in 

this study to calibrate single-band images of the Sequoia camera 

system. 
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(3) 

 

In addition, relative orientation constraints between the 

reference camera, in this study set to RGB, and the other four 

cameras are considered. These relations are described in 

Equation 4, where
RGB

mR is the 3D relative rotation matrix from 

RGB image to another band and rRGB
RGB m→ is the translation 

vector from the perspective center of the RGB camera to the 

perspective center of another band resolved in the coordinate 

system of the RGB camera.  
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A sparse free-network bundle adjustment solution with Gauss 

Helmert model is developed that simultaneously solves all the 

internal orientation parameters, additional distortion 

coefficients, and relative orientation parameters. The 

implementation details for this solution can be found in our 

previous work (Shahbazi et al., 2017). 

 

2.2 Co-registration using Trifocal Constraints 

Once the calibration is completed, images can be rectified for 

their distortions and fisheye effects. Thus, they are transformed 

to straight-line preserving pinhole camera models. Since the 

orientations of all cameras with respect to the reference camera 

are known, their “relative” perspective projection matrices can 

be expressed as follows. 

 

r

where:

   :  linear intrinsic calibration matrix 
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Thus, a trifocal constraint can be established between any of the 

three images. In this study, it will be considered as REG and 

NIR cameras with R, G, and RGB cameras. The trifocal 

constraint is simply the coplanarity condition (epipolar 

constraint) expanded from two views to three views. In a similar 

way that the fundamental matrix (a 3x3 homogeneous matrix) 

expresses the epipolar constraint to relate corresponding points 

in two images,  the trifocal tensor (a 3x3x3 matrix) sets the 

constraints to relate corresponding lines in three images as well 

as the constraints relating the corresponding points that are on 

those corresponding lines. Equations 6-10 illustrate how a 

trifocal tensor (T) can be derived from the perspective 

projection matrices corresponding to the three cameras in 

question.  
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 = ; ;REG NIR mT T T T                                    (10) 

 

If the trifocal tensor between three images and the 

correspondences of a point in two images are known, then the 
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point correspondence in the third image can be determined via 

Equation 11 (Förstner and Wrobel, 2016). We exploit this 

relationship by first performing dense matching between the 

REG and NIR images to obtain the initial corresponding points 

between them. These bands are chosen for this step due to their 

closeness in wavelengths, which makes their images spectrally 

comparable to each other and very simple to match. A fast 

approach of dense matching based on intrinsic curves is used for 

this purpose. The implementation details of this dense matching 

approach can be found in our previous work (Shahbazi et al., 

2018). Once the disparity map is generated between the REG 

and NIR images, any gaps in the disparity map (mainly 

happening due to either lack of spectral correspondence or 

actual occlusions) are filled by inward interpolations. These 

regions are very small in area and are seamlessly filled with this 

interpolation. Once the point matches between these two images 

are obtained, the corresponding points on the other images are 

found utilizing the trifocal tensor relating them (Equation 11). 

This method does not assume the scene to be planar and is, 

therefore, invariant to depth variations. This makes it suitable 

for applications where objects of interest might be present both 

near to and far from the point of view. 
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3. EXPERIMENTS AND RESULTS 

3.1 Self-Calibration  

To perform the calibration, a multi-depth test field (Figure 1) 

containing a checkerboard pattern (with 72 corners) and 12 

circular targets was used. A total of 24 poses were taken, 

resulting in 120 images. A total of 9342 image points were 

observed in these images. During the self-calibration of the 

multispectral camera, the RGB sensor was used as the reference 

camera to determine the ROPs of the remaining cameras within 

the bundle adjustment, as summarized in Table 1. The relative 

translations and rotations were estimated with standard 

deviations of 1 mm and 0.016 degrees, respectively.  

 
 Relative Translation (cm) Relative Rotation (deg.) 

Image x y z x y z 

G -2.681 -0.818 -0.194 -0.080 -0.053 0.177 

R -2.712 0.743 -0.327 -0.164 0.097 0.117 

REG -1.199 -0.724 -0.490 -0.025 0.229 0.095 

NIR -1.217 0.720 -0.334 -0.456 0.114 0.141 

Table 1. Results of relative orientation parameters from self-

calibration bundle adjustment 

 

To assess the precision of the calibration, the residuals of all 

observations at radial and tangential directions were derived. 

The standard deviation and the root mean square of these 

residuals are all shown to be in the sub-pixel level, indicating a 

reliable solution of the calibration parameters (Table 2). 

 

Statistics 

(in pixels) 

tangential 

residual 

radial 

residual 

Std. Dev. 0.048 0.053 

RMS 0.075 0.053 

Table 2. Image residual from the calibration results 

 

3.2 Co-registration  

The proposed method was tested on images of an outdoor scene 

since the noise of these sensors increases under indoor 

illumination conditions. Figure 2 shows individual images 

captured by the Sequoia camera. One can notice the spectral 

resemblance of red-edge and near-infrared images, which 

justifies our choice of these two images as references for trifocal 

constraints. The results of rectification, to turn camera models 

to straight-line preserving, are shown in Figure 3. It can be seen 

that all nonlinear distortions are removed; for example, notice 

the flooring tiles. We chose to keep the original size of the 

images; this causes marginal edges of the images captured by 

the fisheye cameras to be removed after rectification. Please 

note that the staircase in these images has small physical curves, 

and it should not be misinterpreted as remaining radial 

distortions on rectified images. 

 

 
a 

 
b 
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c 

 
d 

 
e 

Figure 2. raw images captured by the camera; a) Red band; b) 

Green band; c) Red-edge band; d) Near-infrared band; e) RGB 

image 

 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 3. Rectified images; a) Red band; b) Green band; c) Red-

edge band; d) Near-infrared band; e) RGB image 

 

Figure 4 shows the epipolar resampled REG and NIR images, as 

well as the disparity map, resulted from their dense matching. 
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a 

 
b 

 
c 

Figure 4. a) REG image after epipolar resampling; b) NIR 

image after epipolar resampling; c) disparity map (unit: pixels) 

generated by dense matching 

 

Figure 5 shows a zoomed-in area of an image, before and after 

co-registration, which captures objects in the scene at close-

range (checkerboard), mid-range (handrail), and long-range 

(background wall) distances from the sensor. For clarity 

purposes, the images before and after co-registration were 

compared between two bands at a time, with the REG band as 

an anchor: REG-G (Figure 5.a), REG-NIR (Figure 5.b), and 

REG-R (Figure 5.c). As Figure 5 illustrates, the ghosting effect 

is quite evident in all three image-pairs before co-registration 

(left side of Figure 5). On the contrary, after co-registration 

(right side of Figure 5), the images appear to overlay 

seamlessly.  

 

To quantify the accuracy of the proposed method, band intensity 

profiles across well-defined edges of objects near and far from 

the camera system were studied. The edge between contrasting 

surfaces in the image is defined for each spectral band as the 

pixel value intercepting the mean intensity across the one-

dimensional profile. A mean edge and standard deviation were 

calculated based on the edges pertaining to each of the spectral 

bands. Figure 6 shows the results from a section across the 

checkerboard (top) and the background wall (bottom) with 

misalignments between spectral bands of only 0.15 and 0.3 

pixels, respectively. It is worth noting that, in general, it is very 

difficult to quantify the band-to-band co-registration errors. For 

example, along a white-black edge, there is always some 

missing spectral information in each of the bands compared to 

another, which may be confused with a lack of accurate 

registration. 

 

 
Figure 5. Images showing before (left) and after (right) co-

registration between the REG band (in red) and the other three 

bands (in cyan) 

 

Another example of applying this technique is shown in the 

images captured from an agriculture field (Figure 7). Similarly, 

it can be noticed that the objects at far-depth, like side trees, or 

the ones closer to the camera, like the herbs on the ground, are 

equally well co-registered through the bands. This success is the 

result of the robustness of our co-registration approach to the 

scene structure. These band-to-band registered images can be 

readily used for real-time, single-shot vegetation index mapping 

or as input to various classification workflows, e.g. 

convolutional neural networks. 
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a 

 
b 

Figure 6: a) Intensity profiles of the spectral bands across a 

section of the checkerboard pictured in Figure 5c; b) Intensity 

profiles of the spectral bands across a section of the background 

wall in Figure 5a (transitioning from sunny to shaded areas) 

 

 

 
a 

 
b 

 
c 

Figure 7. Example of band-to-band multispectral image 

registration; a) raw RGB image; b) false-color image generated 

by overlaying R, G, NIR bands before co-registration; c) false-

color image generated by co-registered R, G, NIR bands 

 

 

4. CONCLUSIONS 

This paper proposes a method to co-register images from a 

Parrot Sequoia multispectral camera based on trifocal tensor 

estimations through a rigorous calibration procedure. Initial 

results indicate that this co-registration method is adaptable to 

both close-range and aerial applications with an accuracy higher 

than 0.3 pixels. It is also fully automatic and does not require 

any inputs from the user. Previous methods use different forms 

of transformations (e.g. homographies) to describe the co-

registration model in a global way. However, such models best 

describe projections from a projective space to another; i.e. the 

world space is assumed (quasi-)planar. This assumption is 

generally correct for close-to-nadir airborne imagery of low-

relief terrains. However, they do fail to perform co-registration 

for close-range imagery, oblique imagery, and aerial imagery of 

high-relief terrains (Jhan et al., 2018). In the literature, some 

“correction” methods are introduced to reduce these co-

registration errors. However, these methods depend on 

matching features from the reference image against all the other 

images. This cross-spectral matching introduces another 

problem since features visible in one band may not even appear 

in another band. In contrast, the proposed approach does not 

make any assumptions about the scene structure and only 

requires dense matching between two spectrally similar bands. 

Therefore, it is applicable to imagery captured from all types of 

scenes regardless of their geometric or radiometric properties. 
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