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ABSTRACT:

Visualization of point clouds plays an important role in understanding the context of the digital representation of the built
environment. Modern commodity mobile devices (e.g., smartphones and tablets), are capable of capturing representations in
the form of 3D point clouds, with their depth-sensing and photogrammetry capabilities. Points clouds enable the encoding of
important spatial and physical features of the built environment they represent. However, once captured, point clouds need to be
processed before they can be used for further semantic enrichment and decision making. An integrated pipeline for such processes
is crucial for use in larger and more complex enterprise systems and data analysis platforms, especially within the realm of Facility
Management (FM) and Real Estate 4.0. We present and discuss a prototypical implementation for a service-oriented point cloud
processing pipeline. The presented processing features focus on detecting and visualizing spatial deviations between as-is versus
as-designed representations. We discuss the design and implementation of these processing features, and present experimental
results. The presented approach can be used as a lightweight software component for processing indoor point clouds captured
using commodity mobile devices, as well as primary deviation analysis, and also provides a processing link for further semantic
enrichment of base-data for Building Information Modeling (BIM) and Digital Twin (DT) applications.

1. INTRODUCTION

With recent adaptations of Industry 4.0 practices within
Architecture, Engineering and Construction (AEC) sectors, the
need for routine capture, processing and presentation of digital
built environment data is becoming increasingly important. The
ability to inspect, monitor, and forecast the current state of
the built environment opens new dimensions of stakeholder
engagement and enhancement of decision making. These
developments particularly concern stakeholders involved with
Facility Management (FM) operations, and are becoming part
of what is known as Real Estate 4.0 (RE 4.0). The ability to
capture and process historic and current digital data pertaining
to the physical and performance related aspects of a given
building enables FM stakeholders to assess specific conditions
and address any concerns more efficiently, while providing a
greater return-of-investment for building management practices
(Teicholz et al., 2013).

The most important aspect of these developments is the ability
to visually analyze the results of digital as-designed, as-
built, and as-is elements, together with related spatio-temporal
data and building documentation. The problem of comparing
spatial differences between geometric representations of as-
is or as-built versus as-designed geometry representations
is a common occurrence, especially when comparing point
cloud and BIM geometry representations. This may include
comparing the inclusion or exclusion of certain building
elements when compared to the original as-designed built
environment representation, as well as the their spatial
alignment corresponding to existing documentation (e.g., floor
plans).
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1.1 Problem Statement and Research Contributions

In order to carry out the comparison of spatial deviations
between different geometry representations of the built
environment, the deviation analysis process requires the
compared geometry to be processed in order to contain specific
attributes. This includes the generation of an additional
finite element representation of the as-designed BIM geometry,
as well as the post-processing of the compared point cloud
geometry. Post-processing of captured point cloud geometry
is required for their further use for semantic enrichment and
geometry comparison operations (Qu et al., 2014).

Such point cloud post-processing tasks commonly include
computation of normal vectors, segmentation, reconstruction
and transformation operations. Once post-processed, the point
cloud representation of a specific indoor environment can be
compared against the finite element version of its as-designed
BIM geometry counterpart for spatial deviations (Fig. 1).
The generation of a finite element representation of BIM
geometry can be accomplished with the use of voxelization-
based geometry processing methods. While all of these
processes can be implemented as separate software solutions
and components, or using existing software, an integrated
pipeline for such processes is crucial for use in larger and more
complex enterprise systems and data analysis platforms.

We present a system design and prototypical implementation
for a service-oriented point cloud processing pipeline, and
demonstrate it’s application for deviation analysis (Fig. 2). We
discuss the design and implementation details, and present
experimental results obtained using the prototypical system
implementation. The presented results focus on as-is point
cloud versus as-designed BIM geometry deviation analysis,
and we discuss the potential for using the prototypical
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(a) (b) (c) (d)

Figure 1. Example of point cloud and BIM geometry processing required for deviation analysis. (a) The captured indoor point cloud,
(b) The extracted BIM geometry mesh, (c) The voxelized version of the BIM geometry mesh, and (d) Aligned point cloud with the

voxelized BIM mesh, with spatial deviations highlighted in red.

Figure 2. A high-level overview of the associated processes for capture, processing and visualization of indoor point clouds. These
processes and components form the main parts of the proposed SOS-based processing pipeline for indoor point clouds representations,

and further semantic-enrichment and stakeholder engagement operations.

implementation for further semantic-enrichment of as-is indoor
point cloud representations within the realm of RE 4.0.

2. FOUNDATIONS AND RELATED WORK

Point Cloud Processing. The ability of point clouds to
capture the physical state of the built environment is one of
the key advantages of point cloud representations. Challenges
arise when attempting to make use of point clouds as they do
not feature any semantics by default, thus requiring semantic-
enrichment (Poux et al., 2017). However, prior to semantic
enrichment point clouds need to be processed. This processing
includes at the most minimal levels the generation of point
normals and segmentation of homogeneous point regions,
followed by optional reconstruction as either simplified models
reconstructed from bounding regions of segmented clusters, or
fully triangular or boundary representation mesh reconstruction
(Macher et al., 2017).

Grillit et al. provide an overview of common segmentation
methods for laser scanned and photogrammetrically generated
point clouds (Grilli et al., 2017). Such methods are suitable
for segmentation of both indoor and outdoor point clouds,
and rely on either the spatial coordinates, pre-computed point
normals or RGB color values of a given point set in order
to calculate distinguishable regions of homogeneous point
clusters. A notable method for segmentation that we make use
of is called Region Growing, and relies on iterative sampling
of neighbouring points for determining the segmented point
clusters, making use of either pre-computed point normals
or colors properties, which are iteratively searched within a

voxelized data structure (Bassier et al., 2017). The success of
region-growing segmentation approaches is largely dependent
on the initial point sampling size, thresholds for color variance,
and the accuracy of the normals estimation required to compare
the regions. Computation of point normals is most commonly
computed using neighbourhood sampling methods, such as k-
nearest neighbours (KNN) (Mitra, Nguyen, 2003).

Reconstruction of segmented point clouds can be
accomplished using axis or object-oriented bounding boxes.
Anagnostopoulos et al. describe a simple, but effective,
approach for reconstruction of primary building objects (e.g.,
walls, floors and ceilings) (Anagnostopoulos et al., 2016).
Since we are interested in reconstructing the key structural
features of a given building, using the coordinates of the
object-oriented bounding boxes of segmented indoor point
cloud clusters provides a quick and efficient approximation
for the generation of the primary boundaries of a given indoor
space.

Deviation Analysis. Deviation analysis plays an important
role in the approximation and visualization of spatial
differences between as-designed, as-built and as-is digital built
environment representations. This can include approximation
of planar surfaces for measuring deviations between as-built
and as-is BIM versus point cloud representations for core
structural elements such as non-curved walls (Stojanovic et
al., 2018). Anil et al. used an existing commercial software
tool to import corresponding as-is BIM and point cloud
representations, in order to perform comparative deviation
analysis — using a computationally expensive method based on
minimum Euclidean distance comparison (Anil et al., 2013).
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Bosché and Guenet presented a set of methods for evaluating
surface regularity, based primarily on matching points from a
3D point cloud to a as-built BIM component representation.
The points of the 3D point cloud are matched to the
corresponding BIM geometry using either surface proximity
(measuring the orthogonal distance of a point to the
BIM geometry surface), or using surface normal similarity
(comparing the precomputed normal vectors of the each point
to the normal vectors of the BIM geometry surface) (Bosché,
Guenet, 2014).

Research by Turkan et al. looks at using deviation analysis
methods for tracking of construction progress on building
sites, specifically looking at detecting primary and secondary
components from point clouds (Turkan et al., 2014). They
present three techniques for deviation analysis, first two of
which are based on earlier research by Bosché and Haas (2008)
— based on aligning the as-built BIM geometry within the
corresponding point cloud, where the range between the as-is
and as-designed point/triangle intersection is measured using
ray tracing, while their third method uses the bounding volumes
of negative areas of each BIM geometry component to detect a
number of points contained inside in post alignment (Bosche,
Haas, 2008).

Bassier et al. evaluated the use of a Finite Element Analysis
(FEA) method for structural analysis of heritage timber roof
structures (Bassier et al., 2016). They compared two aligned
models and checked for deviations in the post-registration phase
- one was a simpler wireframe model and the other was a
complex discretized FEA mesh. They noted the benefit of
using a more complex geometry discretization scheme for
increased deviation analysis accuracy, as opposed to using the
least complex geometric representations often featured in BIM
geometry models.

Wang et al. used deviation analysis for comparing an
as-is point cloud captured using a remote UAV and the
corresponding as-designed BIM model (Wang et al., 2015).
They recommend the use of different registration methods for
alignment of comparative data, particularly the zone fitting
algorithms described by Choi and Kurfess - assuming no
matching coordinate information is shared between the two
data sets (Choi, Kurfess, 1999). The deviation analysis is then
performed automatically using the selected Navisworks BIM
software.

Bonduel et al. describe the use of as-is point cloud and as-
built BIM comparisons for detecting micro and macro spatial
changes (Bonduel et al., 2017). They make use of the
CloudCompare software tool (Girardeau-Montaut, 2015), to
carry out the primary deviation analysis for detecting macro
spatial changes, and use a custom plugin for removing certain
components (e.g., windows), from the IFC BIM model prior
to detecting micro damage. The open-source CloudCompare
software tool can compare point cloud versus point cloud, as
well as point cloud versus mesh spatial deviations — generating
both visual and numerical deviation analysis results using an
octree-based approach with a linearly interpolated color map to
visually highlight any spatial deviations.

It can be observed from the cited research that there is a paucity
for flexible and computationally efficient deviation analysis
solutions. The two biggest challenges are 1) Registration of
the two data sets that are to be compared in the same coordinate
system and transformation frame, and 2) Efficiently calculating

the deviations for hundreds of millions of points to the nearest
matching geometry surface. The first challenge can in most
cases be solved using a selected point registration scheme, such
as the Iterative Closest Point (ICP) (Men et al., 2011).

The second problem is more complex to solve, as it requires
the use of a geometry discretization and point-to-polygon
comparison scheme. Based on the literature review, we have
opted for using a voxel-based deviation analysis approach, as
it offers the best trade-off between geometry discretization
complexity and deviation computation performance. A
voxelized representation of an as-built or as-designed mesh can
be generated by evaluating the shape and projection properties
of the triangular mesh that is used to generate a 3D voxel grid
(Eisert, 2005). This voxelized representation of the mesh can
be computed, at varying resolutions, most commonly using
octrees (Hornung et al., 2013) — and can preserve most of the
geometric features of the original polygonal mesh, making it
useful for approximating deviations of non-rectified or curved
geometry. The use of a voxelized mesh representation is
similar to the style of mesh representation used for FEA. Our
general deviation analysis approach approach is influenced
by earlier deviation analysis methods focusing on visualizing
spatial deviations between as-is point cloud and as-built BIM
models of indoor spaces (Stojanovic et al., 2018).

Service Oriented Processing and Visualization. Service
Oriented Systems (SOS) architecture make a clear separation
between the server and the client. This enables the design
of software systems with a distinct advantage of being able
decouple hardware requirements from client devices that may
not have specific hardware capabilities (Klimke, 2019). This
may include capabilities to process the analytics from the
integrated data sources, generate complex visualizations, and
to integrate non-monolithic software components for streaming
to mobile devices up to enterprise-level applications (Discher et
al., 2019).

The use of web-based graphics programming APIs and
frameworks can further enhance the visualization outputs
generated on or streamed to client devices. Notable Web3D
technologies such as WebGL, and high-level frameworks such
as Three.js (Cabello et al., 2010), can be used to visualize
important scene elements that can enhance stakeholder
engagement and decision making for RE 4.0 applications
(e.g., deviation analysis results, or a BIM-based 3D scene
with corresponding annotations) (Yan et al., 2011). Such
systems for visualizing BIM models, IoT-enabled (Internet
of Things) smart home visualization, and point cloud for
robotics applications have been described by (Zhang et al.,
2014), (Pouke et al., 2018) and (Toris et al., 2015). The
combined use of Web3D-based graphics frameworks and SOS
architecture allows for processing and visualizing of indoor
point clouds and associated semantics, capable of running
on different client hardware configurations (including mobile
devices). Such system architecture and Web3D frameworks
used in this research have been described and evaluated
previously (Stojanovic et al., 2019).

3. APPROACH

3.1 Point Cloud Capture

Modern commodity mobile devices with depth sensing
capabilities and sufficient digital camera resolutions can capture
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a point cloud using the depth-estimation provided by a time-
of-flight (TOF) and stereo-vision capture and reconstruction
methods. Notable research by (Angladon et al., 2018),
(Senthilvel et al., 2017) and (Kalyan et al., 2016) all describe
case studies where a Google Tango compatible mobile tablet
or phone were used for capture of point clouds of outdoor and
indoor building areas. The common census among the cited
papers is that while the captured point clouds were not of high
enough quality to be useful for accuracy-critical applications,
they are more suitable for applications where the accuracy
threshold error is tolerated. Furthermore, the authors also noted
the low cost, ease of use, high portability of such devices as
major benefits for routine point cloud capture for various FM-
related applications.

The capture of indoor point clouds requires the operator of
such a mobile scanning device to walk around a given indoor
space and sequentially scan each of the surfaces and devices.
The average recorded time taken to complete a scan of a 20m2

room is approximately 15 minutes. In most cases, the operator
would typically start at the entry point to the room, and walk
around the room in a clockwise or anti-clockwise manner while
scanning items of interest. This would typically first involve
scanning the walls, floor and ceiling, than all of the furniture
items. Depending on the memory capacity of a given mobile
device and the size of a given room/area, multiple scans may be
required. A common limitation to this capture approach is that
lighting conditions can affect the quality of the capture (e.g.,
environment is too dark, too reflective or has non-distinctive
edge features). The application that we used for capture of the
point cloud was the DotProduct Dot3D mobile app1. Using the
Dot3D app on an ASUS Zenfone AR mobile device, the user
has to point the mobile device camera in the direction of a given
area and wait while the software processes the given frame.

The captured 3D point cloud also needs to be filtered for
overlapping duplicate points (this is performed by the Dot3D
app). As multiple scans are required for large areas, the
final point cloud representation needs to be merged using
partial post-capture scans that have been registered and aligned.
We accomplished this with the CloudCompare software tool,
where we parsed multiple partial scans of a given indoor area
and aligned them manually using both floor plan images as
references, as well as visual anchors within the point clouds
themselves (e.g., an item that is distinguishable and featured in
all related scans, which is used as a reference to transform and
correctly align the related partial point cloud scans).

In most cases, the point cloud can also be sub-sampled
to around 100 000 points per 20m2, in order to decrease
processing time. We perform this using a random point
selection scheme, where we set a given point removal sub-
sampling value in the range from 0.0 to 1.0, in order to
approximate the amount of original points that will be left
remaining.

3.2 Service-Oriented System

Geometry Processing. The main processing components of
the pipeline are implemented as command line tools that are
executed on the server. The command line tools include
segmentation and voxelization tools. The segmentation tool
makes use of the Point Cloud Library framework (Cousins,
Rusu, 2011), in order to perform segmentation operations on

1https://www.dotproduct3d.com/dot3dedit.html

a given point cloud. The segmentation operations include
computation of point normal vectors, segmentation using
region growing, and generation of axis-aligned (AABB) and
object-oriented (OOBB) bounding boxes generated from the
segmented point clusters. The Binvox voxelization command
line tool is used to generate a voxelized representation either
of reconstructed as-is, or as-built or as-designed triangular
mesh geometry (Min, 2004 - 2019). This voxelized mesh
representation can then be aligned and compared against the
as-is point cloud representation in order to highlight any spatial
deviations.

The use of a SOS architecture enables scalable integration
of key processing components, software frameworks and data
sources for varying application requirements. The scalability
of a SOS solution depends on the kind of client the end
result is sent to, and/or further processed on - this includes
commodity hardware personal computers and mobile devices.
The server-side command line tools are invoked by an Express
server, implemented using Node.js2. The server is able to
process requests from the client web-application using real-time
bi-directional communication enabled through the Socket.IO3

JavaScript library. A custom command-line tool used for
segmentation and bounding-box reconstruction based on PCL
was implemented in C++, with the ability to directly pass user-
defined parameters when invoked. Since natively compiled
C++ runs faster than interpreted JavaScript, process-intensive
tasks such as segmentation, can be accomplished faster and
have better memory management options (thus being able to
process larger point cloud scenes) (Smedberg, 2010).

Deviation Analysis. Deviation analysis is used to record both
numerically and visually the spatial differences of overlapping
geometric elements when comparing BIM and point cloud
representations of the same built environment elements. In our
case, we evaluate and visualize how close a cluster of points of
a given as-is point cloud is to the overlapping voxel element of
an voxlized as-designed BIM model in the same 3D space. In
turn, the deviation threshold value is used to determine beyond
what threshold (measured as distance in Euclidean space),
we consider a 3D point to be deviating. This value can be
adjusted by the user or based on the required use-case specific
parameters. The deviation threshold value allows us to set an
acceptable fault tolerance when comparing different geometric
and primitive-type representations.

With voxelization we can approximate the general shape of
the as-designed 3D geometry, including irregular boundaries,
by fitting a number of n × m × k voxel elements within the
given polygonal shape boundaries. This then gives a voxelized
representation of the as-designed 3D geometry that we can use
to compare against the as-built 3D point cloud for deviation
analysis. The voxel mesh generated by the Binvox tool is
exported in the .MSH file format (a simple native file format
used by the Gmsh FEA tool4, where each center point of a
voxel is recorded. The actual size of the voxels calculated by
finding the common difference between XYZ coordinates of
each current and next voxel element.

The accuracy of the deviation analysis based on comparing
the point to voxels is correlated to the resolution of the the
voxelised mesh. If the voxelized mesh is too coarse, certain

2https://nodejs.org/en/
3https://socket.io/
4http://gmsh.info/
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geometry features may be omitted or too simplified to create
an accurate enough deviation analysis comparison with the
point cloud. However, the higher the resolution of the voxel
mesh is, the longer it takes to compute the deviation analysis
comparison between the intersecting points. The resolution for
the computed voxel mesh is set by the user, and referred to as
the approximate resolution - since the voxel fitting algorithm
tries to adjust the voxel resolution along the width, height and
depth based on the single parameter value. A good balance
between accuracy and resolution is usually use-case dependent,
but in most cases resolution should be high enough to feature all
of the extruded, protruded and non-regular geometry features
that are required for deviation analysis (Fig. 3).

The voxelization methods use by the Binvox tool are based
on the parity count and ray stabbing methods (Nooruddin,
Turk, 2003). The ray stabbing method is preferable for non-
organic geometry that has intersecting components (e.g., double
walls featured in building models), as the depth sampling
only samples the initial and final ray sections along a given
direction (that in turn is sampled multiple times in different
directions for each polygon within a voxel grid). This allows
for more accurate generation of complete voxel models (e.g.,
voxel models where the inside of the model is voxelised, rather
than just the shell of the model).

Furthermore, we make use of a greedy algorithm for generation
of voxelized geometry data used for visualization and deviation
comparison, meaning that the entire set of the voxelized as-
designed mesh is rendered. Since the captured point cloud
representation is usually projected along a given plane (e.g.,
point clouds do not contain volume, but rather just surface
representations), the use of a full-volume voxel models allows
us to compare all points that might otherwise be missed if they
were located in void space within the voxelized mesh. While
such a greedy voxelization method is practical to implement for
visualization of voxelized geometry, it is impractical for real-
time 3D viewing of larger and more complex models, thus a
more efficient polygon-based geometry rendering method can
be used if rendering speed is a requirement. Such methods
can represent each voxel as six-sided quad or cube, and check
where intersecting quads or triangles are present in order to
merge them — thus greatly improving rendering performance
by removing redundant polygons that are not seen by the user.

For each voxel element, we check if it contains a point from
the as-is 3D point cloud. If the point is contained in an voxel,
we can mark the point as non-deviating, otherwise the point is
marked as deviating. Since the voxel elements are represented
as bounding boxes, we can test to see if they contain a point
inside them or not. We first test to see what points from the
complete point cloud are inside the bounding box, which we
then copy to a temporary array — along with an additional
integer key value to indicate which specific points in the point
cloud array are copied. We then splice the complete point cloud
array using these key values in order to obtain a new temporary
array containing the deviating points. These deviating points
are then added as a new point cluster to the scene and marked
visually.

Apart from the binary deviation, we also need to take into
account if the deviation is present as a surface damage or
erosion element (e.g., damaged, missing or eroded elements).
We call this the point sparsity deviation analysis. In order
to assess point sparsity, we must first determine the average
number of points contained in each voxel, and check to see

if each voxel contains a number of points above this average
threshold. If the case is that the voxel contains a number of
points below the average threshold, we can assume that the
missing points present a deviation. Voxels that are completely
empty can also be marked as deviation, as these represent
elements that are present in the as-designed geometry by not
in the as-is 3D point cloud representation.

Web3D Visualization The visualization is implemented
client-side, in the form of a prototypical web-based application
programmed using HTML5 and JavaScript. We make use of
the Three.js Web3D framework for the majority of the 3D
visualization tasks. The use of the programmable graphics
pipeline enables point cloud geometry parsing and generation
methods for visualizing each of the processing results. In
the 3D scene, the point clouds are parsed in the PLY file
format, where the coordinates and vertex colors are parsed and
assigned to each newly generated point material sub-object of
the complete point cluster object. Using the default shader for
point cloud materials, we can also change the color and opacity
of any selected point group during run-time of the application.
One limit of Three.js for visualizing point clouds is the lack of
support for out-of-core rendering of massive amounts of point-
cloud data, and therefore it can only be used to visualize point-
cloud scenes in real-time with approximately 4.5 million points,
without resorting to the use of more sophisticated scene and
memory management methods (Discher et al., 2019).

3.3 Stakeholder Engagement and Decision Making

Process Parameter Input. Using the web-based client tool,
users are able to adjust each of the segmentation, reconstruction
and deviation analysis parameters, and interactively view and
inspect the generated results sent by the server. This includes
setting parameter such as the sub-sampling and scaling factors
for the point cloud, region growing segmentation parameters
(min/max point sampling, surface curvature threshold, k-
nearest neighbour sampling size), and the desired voxel
resolution size for the voxelized version of the as-is OOBB
mesh used for deviation analysis comparison. These parameters
are sent as socket data packets to the server, which in turn parses
them either as string or numerical data-type parameters for
the command-line tools. Certain domain expertise concerning
point cloud representations and processing is expected among
the users who input the parameters, but the ability to tie such
parameters to a GUI potentially allows for instructive and
educational use as well. We make use of common file formats
for exchanging point clouds and triangular geometry data (PLY
and XYZRGB file format for the point cloud, and OBJ for
the triangulated geometry models such as AABB and OOBB
reconstructions).

Further Semantic Enrichment. The segmented point cloud
and reconstructed AABB/OOBB geometry representations can
further be used for generating base-data for as-is BIM and
DT representations. The generation of such data requires
further semantic enrichment of either the processed point cloud,
or the reconstructed AABB/OOBB geometry representations.
Semantics generation are a key requirement for the generation
of usable data for further analysis. The process of semantic
enrichment is used to add context to the processed base-
data, by introducing understandable labels for each of the
segmented and/or reconstructed elements of a given indoor
environment representation. Semantics can either be added by
the stakeholders — by directly annotating a given point cloud

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019 
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W17-339-2019 | © Authors 2019. CC BY 4.0 License.

 
343



(a) (b) (c)

Figure 3. Example of progressively increasing voxelized mesh, based on the corresponding BIM geometry mesh. (a) 3608 voxels
(approximate resolution of 643), (b) 8345 voxels (approximate resolution of 963), (c) 14604 voxels (approximate resolution of 1283).

or reconstructed object, or it can be automatic with the use of
deep learning classification methods. A specific version of our
prototype application used for semantic enrichment of indoor
point clouds is presented and described in (Stojanovic et al.,
2019).

4. CASE STUDY

For the testing of the pipeline we make use of point cloud
representations of a typical office environment consisting of
a hallway with five connected rooms and a communal sitting
area extension. The point clouds used for testing were captured
using a Google Tango specification compatible mobile phone
(ASUS ZenPhone AR). The capture was completed during day
time under natural lighting conditions. Windows and highly-
reflective surfaces were not fully captured, and were thus
excluded from the scan (though for the case study the part of
the room with large windows is treated as a solid wall). A 3D
mesh representation of the given room was manually modeled
based on the original floorplan layout, and this served as an
synthetic as-designed version of the room that is used for the
deviation analysis comparison.

The initially captured point cloud of the office area was
further manually edited where noisy and partially scanned
clusters without significance were manually removed. We also
segmented out the ceiling, furniture objects and any partially
open office doors. The point cloud originally contained 2 506
858 points, but was sub-sampled to 501 372 points to decrease
processing time. The voxelized BIM geometry mesh used
for comparison contains 14604 voxel elements (approximate
resolution of 1283).

4.1 Empirical Deviation Analysis Results

We evaluated the implement deviation analysis approach, using
binary and point sparsity outputs to highlight spatial differences
between the compared as-is and as-designed geometry. We
compared voxlized BIM geometry against the corresponding
point cloud for obvious deviations (Fig. 4), where deviating
points are highlighted in red. Point sparsity deviation
analysis is also performed - highlighting voxels with eroded or
missing deviations in red, while healthy voxels are highlights
in blue (Fig.5). Additionally we also present preliminary
reconstruction results for a smaller office area, the point
cloud of which was captured separately and used the test
region growing segmentation and AABB/OOBB reconstruction
capabilities of the prototypical pipeline application (Fig. 6).
This office area consists of 222 084 points. Finally, we present

the preliminary performance results for the deviation analysis
approach. We measured the average computation taken (in
milliseconds), for the two different deviation analysis methods
to be performed client-side. The average time taken to perform
the binary deviation analysis was 645368 milliseconds, while
the average time taken to perform the point sparsity deviation
analysis was 452215 milliseconds. For generating the final
visualization results, we used a commodity laptop with an Intel
i5 1.8 GHz CPU, 8 GB RAM, and NVidia GeForce MX150
GPU with 2 GB video memory, running the FireFox 67.0 web
browser.

5. DISCUSSION AND CONCLUSIONS

The presented approach enables the processing and spatial
analysis of captured indoor point clouds for manifold
applications in BIM, FM — specifically O&M operations. The
use of a service-oriented paradigm, focusing on modular, light-
weight software components, enables the processing indoor
point clouds captured using commodity mobile devices. This
also removes the dependency on using third party monolithic
software tools for important tasks such as segmentation,
voxelization and deviation analysis. Using our approach,
we can quickly approximate spatial deviations between
voxelized as-designed BIM geometry and corresponding as-
is point clouds that are aligned in the same 3D space.
Server-side processing has also been implemented for more
computationally expensive tasks, such as region-growing
segmentation and simple reconstructions using bounding-box
approximations. The use of a front-end web-based GUI
enables user adjustment of processing parameters, thus making
the our approach adaptive to various indoor point cloud
representations. This can also encourage users to experiment
and learn what the best parameter configurations are for their
specific needs. Additionally, with Web3D-based visualization,
the users can interactively inspect and annotate the point cloud
results for various processing and analysis stages. We did not
focus on performance optimizations of our approach, instead
focusing on demonstrating the feasibility of our prototypical
pipeline implementation. For future work, we plan to
investigate the the use of a multi-directional raycasting method
for more accurate deviation analysis, as well as interpolated
color value mapping to the visualized deviating points — in
order to visualize the distance the points are deviating from the
nearest surface. Finally we plan to involve FM stakeholders for
further user-centered testing of the client-side web application.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019 
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W17-339-2019 | © Authors 2019. CC BY 4.0 License.

 
344



Figure 4. Experimental visualization results for the binary deviation analysis, with detected deviating points colored in red.

Figure 5. Experimental visualization results for point sparsity deviation analysis, with voxels containing below average number of
points highlighted in red, and those that are healthy highlighted in blue.
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Figure 6. Examples of point cloud processing operations, including (a) The original point cloud, (b) Segmentation using region
growing, (c) Generation of OOBBs, and (d) Generation of AABBs.
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