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ABSTRACT:

Monocular simultaneous localization and mapping (SLAM) attracted much attention in the mobile-robotics domain over the past
decades along with the advancements of small-format, consumer-grade digital cameras. This is especially the case for micro air vehicles
(MAYV) due to their payload and power limitations. The quality of global 3D reconstruction by SLAM solutions is a critical factor in
occupancy-grid mapping, obstacle avoidance, and map representation. Although several benchmarks have been created in the past to
evaluate the quality of vision-based localization and trajectory-estimation, the quality of mapping products has been rarely studied.
This paper evaluates the quality of three state-of-the-art open-source monocular SLAM solutions including LSD-SLAM, ORB-SLAM,
and LDSO in terms of the geometric accuracy of the global mapping. Since there is no ground-truth information of the testing
environment in existing visual SLAM benchmark datasets (e.g., EuRoC, TUM, and KITTI), an evaluation dataset using a quadcopter
and a terrestrial laser scanner is created in this work. The dataset is composed of the image data extracted from the recorded videos by
flying a drone in the test environment and the high-fidelity point clouds of the test area acquired by a terrestrial laser scanner as the
ground truth reference. The mapping quality evaluation of the three SLAM algorithms was mainly conducted on geometric accuracy
comparisons by calculating the deviation distance between each SLAM-derived point clouds and the laser-scanned reference. The

mapping quality was also discussed with respect to their noise levels as well as further applications.

1. INTRODUCTION

In order to explore unknown environments autonomously,
mobile robotics systems such as unmanned aerial vehicles
(UAVs) must be equipped with the ability to build a consistent
map of the environment while localizing themselves with the aid
of onboard sensors. This problem, known as simultaneous
localization and mapping (SLAM), has been actively studied in
computer vision and mobile robotics fields for the past two
decades (Grisetti et al., 2010). The SLAM problem is especially
challenging for micro aerial vehicles (MAVs) (Kumar and
Michael, 2017) due to payload limitation, power consumption,
and high degrees-of-freedom motion. Thus, solutions based on
monocular SLAM have attracted much attention of both
commercial and research sectors due to being advantageous in
terms of small size, lightweight, low power consumption, and
cost-effectiveness.

Generally speaking, a keyframe-based monocular SLAM system
(Younes et al., 2017) is composed of the visual odometry (VO)
(Scaramuzza and Fraundorfer, 2011), global optimization (GO)
and global mapping (GM) parts (Taketomi et al., 2017). The VO
component is responsible for estimating sequential ego poses
(position and orientation) of the camera. In VO, small portions of
the map and only the relative camera motions are computed; the
global consistency between these portions is not considered
(Klein and Murray, 2007). The GO component includes loop
closure (Williams et al., 2009) and global pose-graph
optimization (Dubbelman and Browning, 2015) elements to
handle the sequentially propagated errors, drifts, and global
geometric consistencies of the global map and camera trajectory.
During loop closure, the current image is compared to the
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previously observed image frames; a loop is detected when an
appropriate amount of correspondence is identified. Thus, the
accumulative error of the camera trajectory can be eliminated.
The global pose-graph optimization uses a graph to minimize the
accumulated errors of a large environment. The graph consists of
the camera poses as nodes that are connected by edges
representing camera motions. Instead of pose-graph
optimization, multi-view bundle adjustment (BA) can be used to
minimize not only the camera motions but also the position of the
three-dimensional (3D) structure points (Krombach et al., 2017).
The GM component refers to the consistent 3D mapping of the
whole explored environment. In monocular SLAM, the
environment map is represented as a point cloud. The point
clouds of the environment generated by SLAM approaches can
either be represented as meshed surfaces (Sadat et al., 2014) or
tree-based structures (Hornung et al., 2013). These generated
maps are primarily used for high-level applications such as
obstacle avoidance, path planning, and navigation in the closed-
loop robotics architecture (Liu, 2016). Since the majority SLAM
researches initiate from VO (Taketomi et al., 2017; Yang et al.,
2017), there are an abundant number of studies that report the
quality of camera trajectory estimations (Bodin et al., 2018;
Delmerico and Scaramuzza, 2018; Gao et al., 2018; Mur-Artal
and Tardos, 2017; Sturm et al., 2012). However, minimal
resources exist for evaluating the mapping quality of modern
monocular SLAM solutions. Even though the VO component
plays an essential role in evaluating states of the camera, the
mapping representation of the environment is equally important
in mobile robotic systems and other applications such as the
planning and monitoring of construction process and building
conditions (Kim et al., 2018).
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In this paper, we compare the geometric quality of 3D maps
generated by state-of-the-art monocular SLAM algorithms
implemented on a low-cost MAV. These algorithms are selected
due to their superior trajectory-estimation quality, their variations
in ranges of sparse, semi-dense or dense mapping, and being
equipped with global optimization components. These SLAM
methods include LSD-SLAM (Engel et al., 2014), ORB-SLAM
(Mur-Artal and Tardos, 2017), and LDSO (Gao et al., 2018).
Because there is no ground-truth information of the testing
environment in existing visual SLAM benchmarks (e.g., EuRoC,
TUM, and KITTI), in this work, an evaluation dataset using a
quadcopter and a terrestrial laser scanner is created. The dataset
is composed of images extracted from videos captured by flying
a MAYV in the test environment and a high-fidelity point cloud of
the test area acquired by a terrestrial laser scanner. The mapping
quality of these three SLAM algorithms is evaluated by the
deviation distances between each SLAM-derived point cloud and
the laser-scanned reference point cloud. These point clouds are
also compared with respect to their noise level and 3D
reconstruction ability. The implenmentation details of the LSD-
SLAM, ORB-SLAM, and LDSO algorithms for mapping quality
evaluation in this work are made publicly available at the
following link: https://github.com/jwangjie/Mapping-ARDrone.

2. MONOCULAR SLAM ALGORITHMS

The key features of three selected SLAM algorithms are
summarized in Table 1. LSD-SLAM is one of the most
recognizable monocular SLAM algorithms implementing the
direct method (as opposed to a feature-based solution). The direct
method doesn’t need feature extraction and thus is adaptable to
environments with less distinctive features. The camera is
localized by optimizing directly over image pixel intensities.
LSD-SLAM employs a photometric error as well as a geometric
prior; thus it can perform dense or semi-dense reconstructions of
the environment.

Approach LSD-SLAM | ORB-SLAM LDSO
Points . Sparse -
density Semi Dense Sparse Semi Dense
Method Direct and Indirect and Direct and
Dense Sparse Sparse
Glo'ba.l . Yes Yes Yes
optimization
Loop Yes Yes Yes
Closure

Table 1. Key features summary of the three selected visual
monocular SLAM algorithms

ORB-SLAM is one of the most reliable and complete feature-
based algorithms for monocular SLAM. Originated from PTAM
(Klein and Murray, 2007), ORB-SLAM benefits from updated
research progress incorporating ORB features, loop closure
detections, and pose graph optimization blocks. Because a dense
or semi-dense map is preferred for high-level robotics
applications (Faessler et al., 2016), methods to gain dense or
semi-dense maps from sparsely-generated point clouds are useful
for ORB-SLAM (Mur-Artal and Tardos, 2015). Mur-Artal et al.
developed a probabilistic semi-dense mapping module to work
together with ORB-SLAM. The integrated approach performs
semi-densification over keyframes in real-time on a CPU to
obtain semi-dense maps. Therefore, the ORB-SLAM algorithm
is also applicable to high-level robotics applications if it can
generate high-accuracy sparse point clouds.

LDSO is a full SLAM algorithm that integrates loop closure and
global map optimization into direct sparse odometry (DSO)
(Engel et al., 2018). DSO has a novel sparse and direct structure,
which combines the benefits of direct methods with the flexibility
of sparse approaches. The VO component of LDSO performs
optimizations to minimize photometric errors on a sparse set of
points directly. Unlike conventional feature-based approaches, it
tracks any pixels with large-enough intensity gradients. It
computes points on all gradient-rich areas including edges. The
density of the point clouds can be changed by defining the
gradient threshold numbers. As a result, LDSO can establish
maps with density ranging from spare to semi-dense.

3. EXPERIMENTS

This section describes the platform and algorithms setups to
implement the monocular SLAM methods on a MAV. We
utilized a Parrot AR Drone 2.0 (Parrot Drones SAS., n.d.) to
collect videos of the test environment, conducted camera
calibrations, and processed each test dataset and SLAM
algorithms properly for implementations.

3.1 Platform

A Parrot AR Drone 2.0 was used to collect videos of the test
environments. The Parrot AR. Drone 2.0 is a commercial
quadrotor shown in Figure 1a. The MAV has highlights of low
price, robustness to crashes, and high safety for indoor usage.
Because neither hardware nor software running onboard can be
modified easily, communication and control were realized by
Wi-Fi connections. The MAV has a front-facing camera shown
in Figure 1b that can be configured to capture and stream videos
with 1280%720 resolution at 30 fps. The camera was calibrated
using a standard checkerboard marker. In order to remove the
impact of substantial radial lens distortions caused by the wide-
angle lens of the camera, images extracted from collect videos
were rectified before being fed to each SLAM algorithm.

Figure 1. The Parrot AR. Drone 2.0: (a) with the hull; (b) the
front-facing camera

3.2 Point Clouds Mapping

There are three most commonly used datasets for visual SLAM
system evaluations including the EuRoC dataset (Burri et al.,
2016), TUM RGB-D and monoVO dataset (Sturm et al.,
2012)(Engel etal., 2016), and KITTI dataset (Geiger et al., 2013).
However, all the above datasets don’t include ground-truth point
clouds of the test scenes. For our mapping quality evaluation, a
reference point cloud map of our test environment was generated
using a terrestrial laser scanner as ground truth shown in Figure
2. Videos of the same test scene were recorded with 1280%720
resolution at 30 fps by flying the drone shown in Figure 1.
Because the three SLAM algorithms have different
configurations, proper modifications of each algorithm package
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are made to implement with our custom dataset. For example, the
ORB-SLAM package closes the point clouds window
immediately when the pipeline finishes running; it is impossible
to view and save the generated point clouds afterward.
Modifications of the original codes are conducted to run our test
dataset and to save generated point cloud files for conducting
accuracy evaluations.

(b)
Figure 2. Test scene: (a) one image frame; (b) reference point
cloud captured by a terrestrial laser scanner FARO Focus3D X

After several round implementations of the three SLAM
algorithms with our test images, a uniform test dataset was
created. Our custom dataset follows the format of the EuRoC
dataset. Images extracted from the recorded video at each frame
were named sequentially in the “data” folder; a “data.csv” was
created containing the timestamp and image filename
information; the “data” folder and “data.csv” file were stored in
the same folder.

3.3 LSD-SLAM

The LSD-SLAM algorithm provides implementation with the
TUM RGB-D dataset among the three datasets. For
implementing with our dataset, the LSD-SLAM method was
executed using the “dataset slam” command. The generated
point cloud map was saved by entering “p” for a few seconds
continuously when the “Isd_slam_viewer” window was selected.
The point cloud map was saved as a “pc.ply” file in the
“Isd_slam_viewer” folder shown in Figure 3a.

(®)
Figure 3. Semi-Dense point clouds generated by LSD-SLAM:
(a) raw data; (b) noise-filtered data

3.4 ORB-SLAM

It is straightforward to evaluate the ORB-SLAM algorithm by
commands provided by the author (Gaud, 2017) for all three
datasets. In order to be implemented with our dataset, the camera
calibration file and image timestamp file were modified to
specify the AR. Drone camera image information and were stored
in the “Monocular” folder following instructions in (Gaud, 2017).
The codes of “System.cc”, “System.h” and “CMakeLists.txt”
files were modified in order to output generated point clouds as
a file (Jeroen Zijlmans, 2017). A new “mono_ardrone pcl.cc”
file was created to generate an executable file to execute our
dataset. A point cloud map was saved as a “pointcloud.pcd” file
in the “ORB_SLAM?2” folder shown in Figure 4a.

(b)
Figure 4. Sparse point clouds derived by ORB-SLAM: (a) raw
data; (b) noise-filtered data

3.5 LDSO

Similar to ORB-SLAM, the LDSO algorithm can be tested by
provided commands (Gao and Demmel, 2018) with all three
datasets. After modifying the camera calibration parameters in
the “EUROC.txt” file, the LDSO was applied with the custom
dataset using the same command for the EuRoC dataset. When
the package finished running, the generated points cloud map was
automatically saved as the “pointcloud.ply” file by shutting down
the “Pangolin” window shown in Figure 5a.
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(b)
Figure 5. Semi-dense point clouds derived by LDSO: (a) raw
data; (b) noise-filtered data

4. EVALUATION RESULTS

In this section, the mapping quality of LSD-SLAM, ORB-
SLAM, and LDSO are evaluated by conducting cloud-to-cloud
(C2C) comparisons of each extracted point cloud with the laser-
scanned reference respectively. The outliers of each point cloud
are filtered first to avoid possible following point cloud
registration failures. A coarse registration between each SLAM-
derived and the reference point cloud is performed using a point-
pair based alignment method. The point cloud registration is
refined by iterative closest point (ICP) processing on the coarse
registration results. The main reason for conducting C2C
registration is that monocular SLAM algorithms are initiated in
arbitrary coordinate systems, and due to the lack of external
measurements, e.g., inertial measurements, maps generated by
these SLAM methods are not represented in the true scale.

The C2C deviation distances between each SLAM derived point
cloud and the reference point cloud are calculated on the fine
registration results using four distance computation methods
(nearest neighbor, least square plane, 2D1/2 triangulation, and
quadric). The distance computation results are compared and the
method has the smallest standard deviation (least square plane
method) is selected to evaluate the point cloud accuracy (Ahmad
Fuad et al., 2018). The whole evaluation process comprises the
raw point cloud outlier filtering, C2C registration, C2C deviation
distance calculation, and results analysis. These processes are
performed in the CloudCompare open-source software
(Girardeau-Montaut, 2015).

4.1 Outlier Points Filtering

In order to get cleaner point clouds, a statistical outlier removal
(SOR) filtering process was applied. For each point, the average
distances to its k nearest neighbors were computed. By assuming
that the distribution of inliers is Gaussian, points whose distances
were outside a 3-sigma interval from the mean were considered
as outliers and removed from the point clouds. Median filtering
was applied afterward to remove the additional noise. The
numbers of points in each raw and filtered point cloud were listed
in Table 2.

Mapping Solutions Number of points

Raw PC Filtered PC | Outliers %
Laser scanner 453,090 NA NA
LSD-SLAM 1,169,856 560,735 52.38%
ORB-SLAM2 3,402 3,131 8.91%
LDSO 248,341 215,482 18.71%

Table 2. Number of points in raw and filtered point clouds

4.2 C2C Registration

A proper C2C registration between the SLAM derived and laser-
scanned reference point clouds is essential to evaluate the
mapping accuracy. It was conducted by a manual point-pair
based alignment and automatic ICP based registration (Pottmann
et al., 2004). The point-pair based alignment was applied to
initialize the registration coarsely. When the two clouds are
roughly registered, they can be further fine registered by an ICP
method. Because the SLAM derived point clouds and laser-
scanned reference point cloud had a very low overlap with
different scales, point-pair based registration initialization was
conducted first. During the point-pair based alignment process,
at least three equivalent point pairs in both point clouds were
picked manually using the “Align” tool in CloudCompare. The
transformation matrix and root-mean-square error (RMSE) were
automatically calculated based on selected points, and the scale
of the align point cloud was also adjusted to the scale of the
reference point cloud.

A fine registration was then conducted on the roughly aligned
point clouds using the “Fine Registration” tool in CloudCompare.
During the automatic ICP based registration process, the ICP
algorithm takes the two point clouds as inputs and calculates the
rigid transformation (rotation matrix R and translation vector T)
that best registers the two point clouds. If the two point sets (n
points) express as X = {x1,%,, ., xp}and Y = {y1,¥y,, ..., ¥n}
respectively, then ICP iteratively calculate R and T that minimize
the sum of the squared error E(R,T) = % eqllx; — Ry; — T||2.
In the ICP fine registration, the process can either be stopped after
a defined maximum iteration number or when the error (RMSE)
difference becomes lower than a given threshold. The C2C
registration results between each SLAM derived and laser-
scanned reference point cloud are shown in Figure 6.
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Figure 6. The C2C registration results between each SLAM
derived and laser-scanned reference point clouds: (a) LSD-
SLAM,; (b) ORB-SLAM,; (c) LDSO

4.3 C2C Deviation Distance Calculation

The most basic C2C distance computation approach is the nearest
neighbor distance method (Moghaddame-Jafari, 2016). The
nearest neighbor distance method searches the nearest point in
the reference for each point in the compared point cloud and then
calculates their Euclidean distances (d;). The mean distance (x,y,)
and standard deviation (o) of the compared point clouds (n
points) are calculated by x, =Xi,d;/n and o=
J2ii(d; — xy) /n respectively. The issue of the nearest
neighbor distance method for C2C distance calculation is that the
nearest neighbor is not necessarily the actual nearest point on the
surface represented by the cloud (Moghaddame-Jafari, 2016).
This is especially true if the reference cloud has a low density,
which is the case for the LSD-SLAM derived point cloud who
has a higher point density compared to the reference point cloud
shown in Table 2. In this case, C2C distance methods computing
a local model around the nearest point to approximate the real
surface and get a better estimation of the 'real' distance should be
used. Three local modeling methods, least square plane, 2D1/2
triangulation, and quadric were used for the C2C deviation
distance calculations. These three modeling methods estimate the
best-fitting plane (plane, triangulation, and quadric respectively)
that goes through the nearest point and its neighbors. The mean
distance and standard deviation of each local modeling method
were calculated using the above equations. These results are
listed in Table 3.

Local points model Mean distance | Standard deviation
(m) (m)
LSD-SLAM point cloud
Nearest neighbour 0.0772 0.0961
Least square plane 0.0675 0.0856
2D1/2 triangulation 0.0766 0.0964
Quadric 0.0692 0.0876
ORB-SLAM2 point cloud
Nearest neighbour 0.0447 0.0494
Least square plane 0.0381 0.0429
2D1/2 triangulation 0.0440 0.0500
Quadric 0.0391 0.0435
LDSO point cloud
Nearest neighbour 0.1571 0.1152
Least square plane 0.1308 0.1075
2D1/2 triangulation 0.1568 0.1155
Quadric 0.1356 0.1103

Table 3. Distance calculations between the SLAM-derived point
cloud and the reference laser-scanned reference

4.4 Results Analysis

The evaluation results of the SLAM derived point cloud maps are
analyzed from the perspective of geometric accuracy, 3D
reconstruction ability, and noise and spare level.

44.1 Geometric Accuracy: In Table 3, It can conclude that
the least square plane method provides deviation distance
calculation results with the smallest standard deviation compared
to the other three methods. Thus, the least square plane method
is selected as the C2C distance computation method for deviation
calculations between the SLAM derived point clouds and the
laser-scanned reference point cloud similar to (Ahmad Fuad et
al., 2018). The C2C deviation distance results calculated by the
least square plane method presented in color scale mode are
shown in Figure 7. In Table 3, it can conclude that the overall
geometric accuracy of SLAM derived point cloud maps ranking
from high to low is ORB-SLAM, LSD-SLAM, and LDSO. The
accuracy results can also be viewed in Figure 7.

Figure 7. The C2C distances between the SLAM derived and
laser-scanner point clouds in color scale mode: a) LSD-SLAM,
b) ORB-SLAM; ¢) LDSO
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4.4.2 3D Reconstruction: In Figure 7, LSD-SLAM and
ORB-SLAM provide decent results of the 3D reconstruction.
Points of foreground objects, e.g., chair, table and standing
boards, were properly generated. Correct spatial information was
included in their generated point cloud maps shown in Figure 7a
and 7b respectively. LDSO provides the worst 3D reconstruction
of the test environment shown in Figure 7c. In fact, the derived
point cloud map was generated in a 2D plane instead of 3D
structure; all foreground objects were neglected. It can be seen
that LDSO failed to integrate spatial information into the
generated point clouds map.

In order to identify the poor 3D reconstruction performance of
LDSO is due to the AR. Drone camera or the algorithm itself,
further tests were conducted. The LDSO was tested with the
EuRoC vicon room 201 dataset. By trimming the right wall off
for a cleaner appearance view, it’s obvious that a high-quality
3D reconstruction point cloud of the test scene was generated
shown in Figure 8.

(b)
Figure 8. Semi-Dense point cloud generated by LDSO with

EuRoC vicon room 201: (a) test scene; (b) point cloud map

Because there is no ground truth reference in the EuRoC dataset,
the geometric accuracy of the point cloud in Figure 8b was
evaluated by comparing it with a point cloud generated by
running ORB-SLAM with the EuRoC vicon room 201 dataset.
Because ORB-SLAM has the best overall geometric accuracy
among the evaluated three SLAM method, this comparison can
reflect the geometric accuracy of the LDSO derived point cloud.
The deviation distance calculated by the least square plane
method between the LDSO and ORB-SLAM derived point cloud
is shown in Table 4 and Figure 9. The deviation distance results
between the ORB-SLAM and the laser-scanned point cloud were
also listed in Table 4 as a comparison reference.

Point Clouds Mean distance Standard deviation

(m) (m)
LDSO and ORB- 0.0069 0.0079
SLAM
ORB-SLAM and 0.0381 0.0429

Laser reference

Table 4. Deviation distances comparison between LDSO and
ORB-SLAM, and ORB-SLAM and the laser reference.

0.007611
0.000000

Figure 9. The C2C distances between the LDSO and ORB-
SLAM derived point clouds in color scale mode.

In Figure 8 and 9, it can be seen that the point cloud map
generated by LDSO with the EuRoC dataset has a solid 3D
reconstruction ability and high geometric accuracy. The LDSO
3D reconstruction was tested with another environment shown in
Figure 10a. Two videos were collected by moving an Intel
RealSense D435 camera and flying the AR. Drone around the test
scene; two datasets were created with recorded videos
respectively; point cloud maps were then generated by running
LDSO with the two datasets respectively shown in Figure 10b
and 10c. In Figure 10b, the point cloud map generated with D435
camera images achieves a high-quality 3D reconstruction of the
test scene; position differences of standing boards and wall
corners were clearly shown. While a 2D point cloud map similar
to Figure 5 generated with AR. Drone camera images is shown
in Figure 10c.

(b)
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(0)
Figure 10. Semi-Dense point clouds generated by LDSO: (a)

test scene; (b) with Intel RealSense D435 camera images; (c)
with AR. Drone camera images.

4.4.3 Noise and Sparse Level: The noise level of each SLAM
derived point clouds were evaluated in Table 2. The remaining
outliers of filtered point clouds were further cleaned by direct
trimming based on visual checks. The noise points percentages
were calculated by dividing the raw points number with the
cleaned points number. It can conclude that the LSD-SLAM
derived point clouds map is noisiest, LDSO is nosier, and ORB-
SLAM is quite noise-free.

The noise level of the SLAM derived point clouds may relate to
the sparse level. Due to the high sparsity of ORD-SLAM derived
point clouds, it can’t be directly applied for robotic navigation
tasks even its map accuracy is high. A probabilistic semi-dense
mapping module proposed in (Mur-Artal and Tardos, 2015)
working together with the ORB-SLAM to gain a semi-dense map
provides a good solution. The LSD-SLAM, on the other hand,
provides a semi-dense map with medium geometric accuracy,
which is more applicable to navigation applications.

4.4.4  Discussion: In our indoor 3D reconstruction tests with a
low-cost MAYV, it can conclude that the ORB-SLAM algorithm
provides the highest accuracy and noise-free point clouds map,
but the point cloud is too sparse to be directly applied to many
further applications. LSD-SLAM generates medium accuracy
and noisiest point clouds, but, instead, the map is dense enough
to embed critical information of the environment, specifically
along edges. LDSO produces the worst accuracy and medium
noisy point cloud map, and it fails to reconstruct 3D structures.
However, further tests of LDSO with global shutter camera
image datasets show an outstanding geometric accuracy and 3D
reconstruction ability.

5. CONCLUSION

In this paper, the quality of 3D point cloud maps generated by
monocular SLAM algorithms including LSD-SLAM, ORB-
SLAM, and LDSO is compared. A custom evaluation dataset is
created comprising images extracted from videos recorded by
flying a MAV in the test environment and a ground-truth
reference point cloud of the same area acquired by a terrestrial
laser scanner. After processing outlier filtering of the SLAM
derived point clouds and registering these point clouds with the
reference properly, the quality of the SLAM derived point clouds
maps are evaluated with their geometric accuracy by calculating
the deviation distance between each SLAM-derived point cloud
and the laser-scanned reference.

In our MAV indoor environment 3D reconstruction tests, it
concludes that the ORB-SLAM provides the highest accuracy,

LSD-SLAM generates medium accuracy, and LDSO gives worse
geometric accuracy point cloud map. The noise level of LSD-
SLAM is high, the LDSO is lower, and ORB-SLAM is almost
noise-free. For future applications such as navigation and 3D
reconstruction, LSD-SLAM is the only possible solution. The
ORB-SLAM and LDSO derived point clouds fail because of low
points density and poor spatial depth information representation
respectively. Additional tests also show high accuracy and 3D
reconstruction ability of LDSO with global shutter camera
images. Thus, LDSO is not suitable for 3D reconstructions tasks
using MAVs with low cost rolling shutter cameras onboard.
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