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ABSTRACT:

The reconstruction of Building Information Modeling objects for as-built modeling is currently the subject of ongoing research. A
popular method is to extract structure information from point cloud data to create a set of parametric objects. This requires the
interpretation of the point cloud data which currently is a manual and labor intensive procedure. Automated processes have to cope
with excessive occlusions and clutter in the data sets. To create an as-built BIM, it is vital to reconstruct the building’s structure i.e.
wall geometry prior to the reconstruction of other objects.
In this work, a novel method is presented to automatically reconstruct as-built BIM for generic buildings. We presented an unsuper-
vised method that procedurally models the geometry of the walls based on point cloud data. A bottom-up process is defined where
consecutively higher level information is extracted from the point cloud data using pre-trained machine learning models. Prior to the
reconstruction, the data is segmented, classified and clustered to retrieve all the available observations of the walls. The resulting ge-
ometry is processed by the reconstruction algorithm. First, the necessary information is extracted from the observations for the creation
of parametric solid objects. Subsequently, the final walls are created by updating their topology. The method is tested on a variety of
scenes and shows promising results to reliably and accurately create as-built models. The accuracy of the generated geometry is similar
to the precision of expert modelers. A key advantage is that that the algorithm creates Revit and Rhino native objects which makes the
geometry directly applicable to a wide range of applications.

1. INTRODUCTION

The production of as-built BIM models has become widespread
in the AEC industry. These models are vital in project prepara-
tions for renovations and are becoming increasingly mandatory
in project deliveries (Kavanaugh, 2013). Additionally, it can be
used for managing heritage assets and numerous analyses for ex-
isting buildings (Volk et al., 2014, Patraucean et al., 2015). In
the case of new constructions, the geometry of an as-built model
can be obtained from updating an as-design model. More com-
monly, it is conceived from metric measurements such as point
cloud data of the site. Currently, this Scan-to-BIM process is
a manual procedure performed by expert modelers that interpret
the point cloud and manually design all the relevant objects in the
scene. This is a significant time investment and thus the uptake
of automating this procedure is enormous. However, automated
procedures are halted by the lack of consistent data, the compu-
tational effort of the procedures involved and the complexity of
built structures. Furthermore, point cloud data acquired by re-
mote sensing techniques are inherently occluded and are littered
with clutter. It is within the scope of this research to fully au-
tomatically reconstruct BIM wall geometry up to as-built condi-
tions under these realistic conditions.

Automated Scan-to-BIM processes can be considered either bottom-
up or top-down procedures (Hichri et al., 2013). The former con-
siders a range of measurements from the site as input and extracts
increasingly higher level information from the observations until
the intended geometry can be reliably constructed. This is a gen-
eral approach which relies on building logic to interpret the data.
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It is often used in projects that do not have access to other reli-
able sources of information such is the case with insufficiently
documented buildings and heritage structures. In contrast, the
latter relies on this prior information for the point cloud inter-
pretation and reconstructs a well defined number of objects in a
selective manner. This is considered a supervised pattern recogni-
tion approach which is commonly used in Scan-vs-BIM (Bosché
et al., 2013, Bosché et al., 2014). In this research, we propose
a bottom-up method since the majority of built structures do not
have reliable plan information (Gimenez et al., 2015). Further-
more, we solely rely on the point cloud and building logic for the
point cloud interpretation since the incorporation of e.g. sensor
information would make the procedure sensor-dependent.

The emphasis of this work is on the reconstruction of wall geom-
etry as it forms the basis of other objects in the Building Infor-
mation Model. Also, their observed geometry has a quite distinct
signature which can be reliably detected by heuristics and ma-
chine learning techniques. The presented process consists of a
series of consecutive procedures including segmentation, classi-
fication, clustering and finally the reconstruction of the objects.
This research solely discuses the final step as the first three steps
are performed in prior work (Bassier et al., 2018, Bassier and Ver-
gauwen, 2019b). The procedure is specifically designed to deal
with the significant amount of clutter in the scene and to reason
about the occlusions in the input point cloud. The goal is to com-
pute a set of abstract but accurate LOD200 (BIMForum, 2016)
walls based on clustered wall segments. Also, our approach cre-
ates both Revit and Rhino native geometry which ensures data
compatibility with a wide range of industry applications.

The remainder of this work is structured as follows. The back-
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Figure 1: Overview of the intermediate results of the presented Scan-to-BIM procedure: unstructured point cloud (left), extracted
classified clustered planar wall segments (mid) and the reconstructed LOD200 walls (right).

ground and related work is presented in Section 2. In Section 3.
the methodology is presented. The test design and experimen-
tal results are proposed in Section 4. Finally, the conclusions are
presented in Section 5.

2. BACKGROUND & RELATED WORK

As stated above, bottom-up processes gradually extract higher
level information from the point cloud prior to the reconstruc-
tion (Nguyen and Le, 2013). Typically, the data is not processed
in its entirety but subsampled for efficiency (Tang et al., 2010).
In 2D methods, the point cloud is often reduced to a set of raster
images consisting of a slice of the data or other information (Lan-
drieu et al., 2017, Anagnostopoulos et al., 2016). In 3D meth-
ods, the point cloud is typically subsampled and restructured as a
voxel octree which allows efficient neighborhood searches (Vo et
al., 2015) (Fig. 1left). Next, the data is interpreted and assigned to
one of several predefined classes such as walls, ceilings and floors
that form the building’s main structure. Single point classification
does have applications (Qi et al., 2016) but typically the data is
oversegmented into geometric primitives such as planes or cylin-
ders to increase the distinctiveness of the observations. In our
research, we segment the data according to planar primitives due
to the structural components of a building generally being planar.
From each segment, local and contextual information is extracted
and processed by reasoning frameworks to assign the appropriate
label (Garstka and Peters, 2016, Weinmann et al., 2017, Dittrich
et al., 2017). Both heuristics and machine learning techniques
are considered, both of which show promising results due to the
distinct signature of archytypical building classes (Bassier et al.,
2016, Wolf et al., 2015, Xiong et al., 2013, Nikoohemat et al.,
2017). Once the class of the segments is established, the data is
grouped into all the relevant observations of individual objects.
In previous work, we employ a pretrained Conditional Random
Field to associatively group planar wall segments into wall clus-
ters (Fig. 1mid). These groups of observations are the input of
the presented reconstruction algorithm that extracts the relevant
wall parameters and subsequently the topology analysis.

Wall reconstruction algorithms vary depending on the wall geom-
etry that is reconstructed. Most approaches consider wall recon-
struction within the scope of surface based applications such as in
navigation, robotics, and so on (Dı́az-Vilariño et al., 2015). For
instance, Xiong et al. (Xiong et al., 2013) and Adan et al. (Adan
and Huber, 2011) reconstruct planar wall boundaries and open-
ings based on machine learning. Michailidis et al. (Michailidis
and Pajarola, 2016) reconstruct severely occluded wall surfaces
using a Bayesian graph-cut optimization on a cell complex de-
composition. Even Neural Networks are employed to compute a
realistic representation of wall surfaces (Barazzetti, 2018). In this
light, it can also be considered as a room reconstruction paradigm.
Oesau et al. (Oesau et al., 2014) consider the creation of water-
tight rooms as a 2D graph-cut optimization problem. Ochmann
et al. (Ochmann et al., 2016) and Mura et al. (Mura et al., 2016,
Mura et al., 2014) both focus on finding the optimal room layout.
Ochmann et al. do fit wall objects on the rooms edges but do this
for the purpose of room separation.

The emphasis of this research is on the reconstruction of Building
Information Modeling geometry which is most commonly based
on solid parametric entities that can be extended with non-metric
information for a variety of applications (Volk et al., 2014). This
requires a fundamentally different approach since we do not re-
construct the partially observed surfaces of the walls but rather
use the observations to extract the parametric information required
to create a solid wall object. In this research we create LOD200
walls, which have an abstract physical appearance and require a
base constraint, a height or a top constraint, a walltype and a path
which serves as a centreline or a centreplane. Closely aligned
with our work is the method of Macher et al. (Macher et al.,
2017). They have similar outputs as our method but first cre-
ate .obj files within Matlab which they manually transfer to .ifc
files using the FreeCAD Open Source software. In our work, we
use the Rhinocommon API for the information extraction and use
Rhino.Inside (Robert McNeel & Associates, 2019) and Revit API
to fully automatically create BIM geometry directly within Revit.
This allows for a wide range of outputs without the sometimes er-
roneous conversion through .ifc formats and exploits the capabil-
ities of both API’s. Thomson et al. (Thomson and Boehm, 2015)
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Figure 2: Overview implementation of the reconstruction algorithm. (1) the parameter extraction is performed in Rhino and Grasshop-
per with developed components based on the Rhinocommon API and (2) the partial wall geometry and final wall geometry are con-
structed directly inside Revit through the Rhino.Inside and Revit API.

also create BIM geometry. They propose a two-step approach
where they first create partial wall geometry of each segment or
paired segment. In the second step, they merge coplanar partial
walls and heuristically filter outliers. In our method, the cluster-
ing of wall segments is a separate step prior to the reconstruction.
This allows for a more balanced parameter extraction since all the
observations are already available per wall.

The reconstruction of the topology between walls has also been
researched. For instance, Budroni et al. (Budroni and Böhm,
2010) and Previtali et al. (Previtali et al., 2014) use wall line in-
tersections in a 2D cell decomposition. They combine both ceil-
ing and floor geometry to create initial blue prints for the rooms.
Valero et al. solves the intersections of pre-segmented wall lines
to create a closed area (Valero et al., 2012). 3D approaches also
have been presented. For instance, Turner et al. proposed 3D
voxel carving to create watertight meshes of rooms (Turner and
Zakhor, 2014). They determine individual room labels by per-
forming a min-cut on a 2D graph of the Delaunay mesh of the
floor plan. They are one of the few researchers that perform a
multi-storey reconstruction which also is the goal of this research.
However, their emphasis is on room boundaries while this re-
search focuses on accurate wall reconstruction. In this research,
the wall intersections are computed using the semi-automated
tools within Revit. This is quite efficient and often the connec-
tions between objects are project or application dependent.

3. METHODOLOGY

In this paper, a wall reconstruction algorithm is proposed that
creates BIM geometry directly within Revit. The procedure takes
as input a set of clustered labeled wall observations and outputs
generic LOD200 Basic walls (BIMForum, 2016) which are com-
patible with the IFCWallStandardcase class (BuildingSMART In-
ternational Ltd, 2013). Two steps are defined in the process.
First, parametric information is extracted from the clustered la-
beled segments to assign the appropriate walltype and constraints.

Next, the best fit centreline is computed and the partial geometry
is created. The method creates Revit native geometry through the
Rhino.Inside Plug-in and combines the Revit and Rhinocommon
API. This allows for a flexible method that can serve a wide range
of applications and also gives access to multiple file formats. The
consecutive steps are discussed in detail in the following para-
graphs.

3.1 Data preprocessing

Prior to the reconstruction, the data is segmented, classified and
clustered. First, the unstructured point cloud is represented as
a voxel octree after which planar patches are extracted from the
data as presented in our previous research (Bassier et al., 2017).
Next, the planar patches are subjected to a reasoning framework
that computes class labels for each patch. A pre-trained Ran-
dom Forests model is used for the classification (Bassier et al.,
2018). The result is a set of labeled segments that replaces the
point cloud representation of the building. These are then clus-
tered into groups that represent the individual walls. A Condi-
tional Random Field exploiting local and contextual information
is employed to compute the most likely assignment of the wall
segments (Bassier and Vergauwen, 2019c). The result is a set
of clustered wall mesh segments that represent all the available
observations of each wall. This is a highly reliable and accurate
representation of the observed structure but it is heavily occluded
and can only serve as a static model.

3.2 Level Creation

At the start of a Revit project, several levels are defined. These
are horizontal planes that serve as a reference for the different 2D
plans, views and objects. For instance, wall objects are typically
placed in relation to the nearby levels, even if their geometry does
not extend to this level. Most commonly, each storey of a build-
ing has its own level along with a top level for the roof and levels
for the foundations and the ground level. However, the number
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of levels is case-specific and can vary based on the type of project
and building. For instance, a building with intermediate storeys
can be designed with additional levels or the objects are mod-
eled with a height offset depending on the application. In this
research, we generate the levels semi-automatically. Given the
classified floor mesh segments, the user can select any number
of meshes and the levels are automatically created in the Revit
environment through the Rhino.Inside API. The height for these
levels are taken equal to the height of the centroid of the selected
mesh component.

3.3 Walltype

The estimation of the walltype is performed using the Rhinocom-
mon API as it has numerous functions for meshes. The goal of
this step is to compute the most accurate LOD200 representation
with respect to the observations. Therefore, the parameter ex-
traction is weighted based on the surface area of the individual
segments to ensure the best fit positioning of each partial wall.

Height Revit walls can either have a specific height or be placed
with respect to the nearby levels. In this research we prefer the
latter since the walls are then created dynamically and will move
with the levels if the user adjusts them. The top and base con-
straint are selected based on the absolute vertical distance of the
highest mesh point and the project levels (Eq.1).

base constraintw = l ∈ L, for which min|lz − wz,min|
top constraintw = l ∈ L, for which min|lz − wz,max|

(1)

where l ∈ L are the levels defined in the project, lz the height of
a level, w ∈ W the walls in the project that each contain a set
of segments {s1, s2, . . . , si} and wz,min and wz,max are respec-
tively the lowest and highest Z-coordinate of the wall cluster. The
base and top constraint do not have to be consecutive levels.

Width The width of an abstract LOD200 wall is defined as the
uniform orthogonal distance between the two wall faces. In or-
der to reduce the reconstruction error, the euclidean distance be-
tween the final wall faces and the observed mesh segments should
be minimized. However, BIM models shouldn’t unnecessarily
be flooded with numerous walltypes. Also, the noise introduced
by the sensors, registration and subsequent processing should be
taken into consideration. We therefore propose a semi-automated
wall width approach. First, the actual wall width is computed
given the observations. In parallel, the user can create several
walltypes within the Revit project according to their needs. Us-
ing the Rhinocommon API, the computed width is compared with
the user defined width of each walltype and the best fit walltype
is applied. This also allows the use of the Scan-to-BIM method
to extend existing models. To compute the highest accurate dis-
tance from the observations, the computations are performed in
3D. This avoids any abstractions made in 2D methods and takes
into account non-parallel wall segments, skewed walls and other
shortcomings. The segments in both wall faces are sampled with
a fixed number of points equal to their surface area. For every
point on a segment, the dot product of that segment’s normal and
the vector of this point and its closest point on a nearby wall face,
is computed. As this set is not normally distributed, we compute
the mode of the set. As this is unusable for continuous distri-
butions, we discretize the data by assigning frequency values to
intervals of equal distance (Eq. 2).

Figure 3: Width computation given s ∈ w (grey), with the sam-
pled points ∀p ∈ s (green), the normals

−−−→
nsi(p) per p (green ar-

rows) and the vectors −→psj connecting p to the nearest point on sj
(green lines).

−→
Pij =

{−−→pipj∣∣∣∀pi ∈ si ∧ pj /∈ si : argmin
pj

(‖pi − pj‖)
}

D =
{−→pij · −−−−→nsi(pi)

∣∣∣∀−→pij ∈ −→Pij ∧ |−→pij · −−−−→nsi(pi)|≥ tcopl

∧|
−−−−→
nsj (pj) ·

−−−−→
nsi(pi)|≥ tpar ∧ ‖−→pij‖≤ td

}
dw = Mo(|D|)

(2)

where ∀p ∈ s are the sampled points on each segment s ∈ w,
−−−−→
nsi(pi) the normal of mesh segment si at the location of p. By
sampling the surfaces with respect to their surface area, the actual
width dw is more accurate since the method favors large wall
surfaces which have a significant impact on the reconstruction
accuracy. The walltype is then decided by the minimal difference
between the Revit walltype width dr and dw (Eq. 3).

walltypew = walltyper ∈ Revit walltypes, for which
min|dw − dr|

(3)

3.4 Wall centre surface

Revit Basic Walls can be either slanted or vertical structures. The
vertical variant is created from a polyline in a horizontal plane. It
is the most commonly used geometry in as-built models despite
its inherent abstraction. The alternative is a slanted basic wall
which is placed based on a complex surface which in Revit is re-
ferred to as the wall face. The polyline and the wall face are of
course linked since the polyline is the projection of the wall face
in the case of a vertical wall. In this research, we consider this
face or polyline to be the centre of the wall and will be referred
to the centre surface and the centreline to avoid confusion with
the wall faces on either side of the wall. Also, the emphasis is
on the creation of vertical walls since slanted walls are typically
unwieldy for the majority of applications. The centreline is con-
structed as follows. First, a set of 2D points is created based on
the sampled points P of the mesh segments, their normals and
dw computed in the previous paragraph (Eq. 4).
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CxCy
Cz

 =

Px + 0.5dw
−−−→
ns(P )D̂

Py + 0.5dw
−−−→
ns(P )D̂

lz

 (4)

after which ∀c ∈ C are fed to a least squares and conditional
RANSAC fitting algorithm that establishes the centreline. Three
types of centrelines are identified: straight lines, arcs and poly-
lines. For each of the cases, RANSAC computes

1− p = (1− ωn)k (5)

k number of fits where the number of selected points N is condi-
tion per type based on the dimensions of w in X and Y. ω is ratio
of inliers and is considered fairly high since C is sampled solely
based on wall observations (Eq. 6).

N =



Line : (#n = 2|‖ci − cj‖≥ 0.5DimXY (w))

Arc : (#n = 3|‖ci − cj‖≥ 0.2DimXY (w))
Polyline : (#n > 3|‖ci − cj‖≥

DimXY (w)

#n
)

(6)

The best fitting model ψw is chosen based on the error between P
in the XY plane and ψ(N) given half of the final wall thickness
dw.

inliers(ψ(N)) =
{
p ∈ P

∣∣∣|‖ψ(N)− p‖−0.5dw|≤ to
}

ψw = argmin
ψ(N)

(|inliers(Ψ)|)
(7)

In the case of walls that are only observed from one side, we
compute the wall face instead of the centreline. Similar to the
two-faced walls, we compute the tracé based on sampled pointsC
but generate them with the normal pointing away from the nearest
floor. A default thickness of 100mm is given to these walls.

To increase the efficiency, not every model is tested to compute
the best fit model. Based on the expected inliers, the first function
to meet the inlier threshold is kept. If the maximum number of
control points is met first, the model with the highest score is
kept.

Once all the relevant parameters have been extracted, the geome-
try of the partial walls is created. Using the Rhino.inside API, a
Revit Basic wall entity is created for every w, with the appropri-
ate walltype, base and top constraint and centreline.

3.5 Wall topology

In order to create a logic building model, the topology of the par-
tial walls should be adjusted. As Revit native basic walls are
created, the semi-automated toolkit of the Revit API can be used
for this operation. Using the intuitive trim, extend and join func-
tions, a user can efficiently finalize the model while performing
a quality control. In future work, we will integrate an automated
topology creation method but currently this method is preferred
since wall connections can be established in several ways and are
often project and modeler specific.

(a) Straight line: #n = 2 model, D = 1.14m,Mo(D) =
1.22m, dw,manual = 1.20m, time = 0.14s

(b) Arc: #n = 3 model, D = 1.41m,Mo(D) =
1.52m, dw,manual = 1.40m, time = 0.26s

(c) Polyline: #n = 4 model, D = 1.77m,Mo(D) =
1.80m, dw,manual = 1.80m, time = 1.3s

Figure 4: Model fitting of ψ(N) (green lines) based on C (red
dots). ‖ψ(N)−P}‖ is computed between P (green dots) and C
given 0.5dw (offsetted green lines).

4. EXPERIMENTS

The proposed algorithm is successfully implemented in Revit us-
ing Matlab and the Rhinocommon and Revit API. Figure 5 shows
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Figure 5: Overview of the three wall cases. The interface of Revit
and Rhino showcase the observed and reconstructed wall geome-
try which are linked through the Rhino.Inside Plug-in.

an example of the interface between both software and the com-
ponents linking to the Matlab functions. Both the level creation,
walltype identification and centreline estimation were all performed
fully automatically. To test the algorithm’s performance, the cen-
treline computation is tested on 3 distinct wall cases i.e. a straight
wall, a curved wall and a wall with a discontinue wall axis. Each
case is simulated with a number of mesh observations which
is the output from our previous work (Bassier and Vergauwen,
2019a). The observed segments represent realistic conditions
with non-parallel meshes, occlusions, non-vertical segments, non-
uniform thickness and clutter. Overall, the segments are littered
with frequently occurring shortcomings given a mostly successful
clustering of the wall segments. For the sake of the experiment,
the scale of the walls was increased to augment the visibility and
the magnitude of the errors. The automatically reconstructed ge-
ometry is compared to manually designed walls. The same wall-
type was used and the sampled points P on the observed mesh
segments is used as a reference.

The results of the comparison are shown in Table 1. The man-
ual geometry was established with an accuracy of respectively
0.13m, 0.19m and 0.12m for the line, arc and polyline. The au-
tomated procedure achieved a similar accuracy (0.12m, 0.11m
and 0.18m). Moreover, the type of model selected by the auto-
mated procedure closely aligns with the actual shape of the wall.
As discussed in the methodology, the first model to meet the in-
lier threshold is kept. Table 1 shows clear spikes in inliers when
the appropriate model is fit and thus this is considered a reliable
indicator. Default values are provided for the fully automated
procedure but users can influence the expected inliers, distance
threshold and the number of control points. Overall, the method
shows promising results for the reconstruction of wall geometry
even in complex environments.

5. CONCLUSION

This paper presents an unsupervised method to reconstruct wall
geometry from unstructured point clouds of buildings. The method
takes as input clustered wall segments originating from previous
works and outputs Native Revit and Rhino LOD200 BIM objects.
Given sampled point on the observed segments, the method com-
putes the best fit centreline that serves as the basis for the recon-
structed entities. Additionally, each wall is associated with the
appropriate Revit walltype in order to create consistent wall ge-
ometry. The result is a set of partial walls that closely align with
the observed faces of the wall. Once the partial geometry is es-
tablished, the wall topology can be semi-automatically adjusted
in the Revit software to create a truthful as-built BIM.

The experiments indicate that the used method is a promising re-
construction framework. The achieved accuracy and model se-
lection rival that of manual modeling by experts for a variety of
scenes. The procedure is robust to noise and clutter and deals
with frequently occurring problems such as non-parallel walls.
In future work, the wall topology will also be automated to even
further reduce the user effort to create as-built BIM geometry.
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Line  
 |𝑝| = 68, 𝐸𝑚 = 0.13𝑚, 𝑖𝑛𝑙 = 26% 

Arc 
|𝑝| = 62, 𝐸𝑚 = 0.19𝑚, 𝑖𝑛𝑙 = 23% 

Polyline 

 |𝑝| = 77, 𝐸𝑚 = 0.12𝑚, 𝑖𝑛𝑙 = 85% 

Fit Line 

(TLS) 

𝐸𝑟𝑟𝑜𝑟 =  0.13 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  59%  𝐸𝑟𝑟𝑜𝑟 =  0.41 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  16% 𝐸𝑟𝑟𝑜𝑟 =  0.69 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  16% 

Fit Line 

(Ransac) 

𝐸𝑟𝑟𝑜𝑟 =  0.12 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  71% 𝐸𝑟𝑟𝑜𝑟 =  0.41 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  34% 𝐸𝑟𝑟𝑜𝑟 =  0.98 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  48% 

Fit Arc 

(TLS) 

𝐸𝑟𝑟𝑜𝑟 =  0.13 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  65% 𝐸𝑟𝑟𝑜𝑟 =  0.23 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  44% 𝐸𝑟𝑟𝑜𝑟 =  0.60 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  12% 

Fit Arc 

(Ransac) 

𝐸𝑟𝑟𝑜𝑟 =  0.12 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  87% 𝐸𝑟𝑟𝑜𝑟 =  0.11 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  71% 𝐸𝑟𝑟𝑜𝑟 =  0.41𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  16% 

Fit Poly 

(Ransac) 

𝑛 = 4 
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(Conditioned 
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𝐸𝑟𝑟𝑜𝑟 =  0.14 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 60% 𝐸𝑟𝑟𝑜𝑟 =  0.20 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 48% 𝐸𝑟𝑟𝑜𝑟 =  0.18 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 62% 

Table 1: Result of the automated hearthline reconstruction. Each column represents the fitting results for the Line, Arc and Polyline. The 

orange dots are P, the blue dots are C and the green lines are the computed hearthline given the different methods. The red rectangle depicts 

the first model to fulfill the expected error and inlier rate.   
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